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Abstract. Traditional geothermal detection methods, such as extensive ground-based
surveys and drillings, are often costly, time-consuming, and environmentally intrusive.
To address these challenges, this study presents a novel hybrid fuzzy multi-criteria
decision-making model to evaluate and prioritize non-invasive, cost-effective remote
sensing (RS) techniques. This model uses T-spherical dual-hesitant fuzzy set to manage
the inherent ambiguities in the evaluation of multiple criteria. The logarithmic
percentage change-driven objective weighting technique assigns the relative importance
of criteria, and the multiple triangle scenarios-I1I methodology helps in comprehensive
evaluation and ranking. By incorporating expert judgment and addressing inherent
uncertainties, this model provides a systematic framework for optimizing RS technique
selection. Findings indicate that thermal infrared imaging, with a significance score of
0.7187, holds transformative potential for geothermal energy development. Sensitivity
and comparative analyses further confirm the robustness of this approach. This research
offers a valuable resource for energy developers and policymakers aiming to leverage
RS technologies for efficient geothermal resource management and development.
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1. INTRODUCTION

The global population is projected to reach 9.7 billion by 2050 [1], presenting significant
challenges in meeting the escalating energy demands driven by increased urbanization,
industrialization, and technological advancements. The depletion of conventional energy
sources such as coal, petroleum, and natural gas not only threatens to exacerbate global
warming but also poses severe environmental risks [2]. According to Chhandama et al.,
[3], carbon dioxide (CO>) emissions are expected to reach 40 million kilograms by 2030,
potentially contributing to a rise in global temperatures exceeding 2°C. This abrupt upsurge
in temperature could lead to the extinction of up to 1 million species and place hundreds of
millions of humans at risk. Furthermore, it is predicted that around 50,000 TW of electrical
energy will be required by 2050 [4], underscoring the urgent need for sustainable energy
solutions. Immediate and sustainable interventions are essential to replenish these supplies
and mitigate the associated environmental impacts to avert the impending energy crisis.

Renewable energy (RE) offers a sustainable alternative to finite resources, meeting
growing energy demands while reducing environmental impact. Among RE sources, the
transition to geothermal energy (GE) is particularly crucial due to its stability and
reliability. Unlike solar and wind, GE provides a consistent energy supply, unaffected by
weather variability, making it a crucial solution for seamless grid integration and long-term
decarbonization. Despite being underutilized, GE’s potential to deliver dependable, low-
emission power highlights its importance in advancing the energy transition and ensuring
sustainable energy security.

GE originates from the vast reservoir of thermal energy generated by the radioactive
decay of minerals and the primordial heat from the Earth's formation. As a non-variable
and renewable resource, GE can be used for baseload power generation, reducing
overdependence on fossil fuels and hydropower plants [S]. Compared to other energy sources,
the Earth has an essentially infinite supply of this energy stored within its core. This thermal
energy is particularly abundant around the Pacific Ocean, including the Northern
Hemisphere, where active volcanic regions contribute to significant geothermal resources.
Effective exploitation of these resources requires thorough exploration.

Research into GE exploration has heavily relied on standard methods such as geophysical
[6], geospatial [7], and electromagnetic [8] techniques. However, unanticipated geological
intricacies and reservoir characteristics that were not accounted for during the prediction process
could present operational obstacles or safety hazards during extraction, exacerbating the effects
of erroneous predictions. Therefore, ensuring precise and reliable projections of geothermal
reserves is critical for increasing energy production, efficiency, enhancing safety, and
ensuring the long-term sustainability of this significant RE resource. Remote sensing (RS)
has the potential to accurately identify locations showing geothermal anomalies [9].
Prospective geothermal sites can be found in remote or challenging terrains due to RS,
which provides an inexpensive and non-invasive way to explore large, often inaccessible
areas. There are distinct types of RS techniques, such as ASTER and TIR, applicable in
various circumstances. By utilizing satellite or aerial sensors, RS can detect subtle temperature
anomalies and surface manifestations associated with geothermal activity. Evaluating and
selecting RS techniques involves multiple, often conflicting criteria, necessitating a multicriteria
model for efficient use of GE. Multi-Criteria Decision Making (MCDM) can help identify the
most beneficial alternative by balancing these conflicting factors [10].
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The limited availability of non-renewable resources presents a significant challenge in
balancing future energy demand and production. This underscores the urgent need for more
sustainable energy solutions. However, there is a notable gap in the existing literature
regarding the optimal selection of RS techniques for geothermal reservoir exploration.
Current methods for evaluating RS techniques often fail to fully capture the complexities of
expert preferences, especially across large and diverse geographical areas. Additionally,
MCDM models have limitations, including an inability to effectively convey expert
assessments in natural language, and they tend to be time-consuming and inefficient. As a
result, these models struggle to provide a decision order that reflects the real-world, in-depth
process of human decision making (DM), hindering their effectiveness in selecting the most
appropriate RS techniques for geothermal exploration.

The motivation for this study is to identify the optimal RS technique for geothermal
reservoir exploration. To achieve this, a novel hybrid MCDM paradigm is introduced,
applying a fuzzy approach to assess various RS techniques. However, choosing the ideal
solution in MCDM is challenging due to inherent uncertainties, such as incomplete or
ambiguous information, dynamic external factors, and the subjective judgments of decision-
makers. By addressing these challenges, this study aims to improve decision-making
processes, facilitating the efficient and accurate exploration of geothermal resources. This is
crucial for advancing GE as a practical and reliable renewable energy source.

The novelty of this study lies in the development of a comprehensive decision-making
framework that integrates the t-spherical dual hesitant fuzzy (T-SDHF) set to handle high
uncertainty and hesitation, employs the logarithmic percentage change-driven objective
weighting (LOPCOW) method for precise criterion weighting, and utilizes the multiple
triangles scenarios-1I (MUTRISS-II) technique for accurate alternative ranking. This is the
first study to combine LOPCOW and MUTRISS-II for evaluating and selecting remote
sensing techniques in geothermal reservoir exploration, offering a balanced and reliable
assessment. The proposed approach is rigorously validated through robustness, sensitivity,
and comparison analyses, ensuring its effectiveness in addressing complex decision-
making challenges under imprecision and ambiguity.

2. LITERATURE REVIEW

In the multifaceted and constantly changing world of today, decision-makers face a
slew of issues that necessitate an organized and well-informed process [11]. A systematic
framework for handling decision issues combining numerous objectives, various criteria,
and dynamic preferences is provided by MCDM techniques [ 12]. Traditional methods such
as DEMATEL [13], VIKOR [14], TOPSIS [15], PROMETHEE [16], and ELECTRE [17]
laid the groundwork by structuring decision problems, organizing options, and establishing
preference relationships. However, as decision-making scenarios grew more intricate,
newer techniques like WASPAS [18], COMET [19] and FRADAR [20] emerged. These
advanced approaches better handle competing goals and incorporate subjective
assessments from multiple decision-makers, providing a balanced and flexible framework
that enhances decision quality and inclusiveness.

Some of the subjective weighting techniques include AHP [21], SWARA [22] while
objective methods include entropy [23] and MEREC [24]. Besides these MCDM models,
Ecer and Pamucar [25] introduced a novel objective weighting technique named LOPCOW. Its
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benefits include removing gaps in data because of the size, producing more realistic weightings,
and taking into account positive as well as negative data when weighting. Tadic et al., [26] used
modified fuzzy TOPSIS and fuzzy COPRAS methods for evaluation and ranking of electric
vehicles. Nila et al., [27] employed triangular fuzzy LOPCOW-FUCOM technique for the
evaluation and selection of third-party logistics service. Ulutas et al., [28] used grey numbers
based LOPCOW framework for the evaluation of third-party logistic providers for automobile
production firms. Biswas and Joshi [29] compared the post-listing performance of IPOs in
the Indian Stock Market (ISM) using LOPCOW, highlighting that market performance is
not solely driven by fundamental efficiency and equity ownership has little impact. The
study suggested that other factors contribute to IPO performance beyond these traditional
metrics.

Every MCDM technique that has been devised so far has encountered some restrictions such
as the subjective nature of DM, reliance on data quality, and the challenge of model complexity
[30]. To address these challenges, Zakeri et al., [31] presented a novel MCDM approach,
MUTRISS-II that could compute the areas filled by options in n-dimensional space. The
material selection challenges were addressed using this MUTRISS approach.

Making decisions frequently requires navigating subjectivity and ambiguity. Fuzzy-based
MCDM techniques have been introduced to address unpredictability and inaccuracy in DM
systems [32]. Multiple fuzzy sets (FS) have been proposed so far in the literature, including
intuitionistic FS, interval-valued FS, neutrosophic FS, picture FS [33], bipolar FS, and linear-
diophantine FS. However, among all of these FS, an innovative FS, spherical FS, introduce by
Kutlu and Kahraman, has piqued the interest of academics due to the benefits it offers [34].
Bonab et al., [35] utilized spherical FS and choquet integral to evaluate autonomous cars for the
logistics sector.

Nguyen et al., [36] assessed the wire and cable industry's governance, social, and
environmental performance using the WASPAS and spherical fuzzy DEA-AHP approaches.
Gamal et al. [37] developed an ecologically sound computational technique for evaluating the
optimal energy storage systems by integrating AHP-MACONT in a spherical fuzzy
environment. Spherical linear diophantine FS and its accompanying aggregated geometric and
arithmetic operators were developed by Riaz et al. [38] in a study, and they are employed in
many real-world applications, such as network systems, voting, digital image processing and so
on. Further Kakati et al. [39] introduced rectified complex T-SF set employing the Dombi-
Choquet integral operator to diagnose diabetic retinopathy through fundus images. Later,
Alamoodi et al., [40] integrated 2-tuple linguistic T-SF set and entropy-FDOSM for the effective
appraisal of electric bus.

Conventional models typically require experts to provide single values for membership
parameters, which can be restrictive and less expressive, particularly in situations with
competing criteria or uncertain evaluations. To address these issues, the T-SDHF set combines
the t-spherical fuzzy (T-SF) and dual hesitant fuzzy (DHF) sets, incorporating positive,
negative, and neutral membership functions. This integration allows T-SDHF sets to capture
both degrees of membership and non-membership simultaneously, giving experts a more
flexible and realistic way to convey hesitation and preferences. By doing so, the T-SDHF set
improves the robustness of DM processes, providing a structured framework that can more
accurately reflect expert input and enhance the reliability of decision outcomes, even in intricate
and high-dimensional DM scenarios.

MCDM techniques have proven effective in diverse fields such as business, engineering,
healthcare, and energy, addressing complex decision-making challenges [41]. Their adaptability
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and versatility make them suitable for various decision-making scenarios. Mostafacipour et al.,
[42] used the fuzzy-DELPHI-AHP methodology to investigate the difficulties in GE extraction
in India. Using the SWARA-ARAS technique, Puppala et al., [43] investigated the location
selection for geothermal projects in Afghanistan in 2022. Ghose et al., [44] then used triangular
fuzzy TOPSIS technique to evaluate varied RE in India. Gudala et al., [45] used horizontal wells
to analyse the Puga geothermal reservoir. A triplet of horizontal wells was evaluated and
improved for CO, plume GE harvesting by Nematollahi et al., [46]. In their study, Ngethe et al.,
[47] examined the selection of GE resources for direct use in Kenya. In the northeastern region
of Anatolia, Zorlu and Dede [48] assessed the possible geoheritage in glacial and periglacial
deposits.

3. PRELIMINARIES

3.1. Dual Hesitant Fuzzy Set
A dual hesitant fuzzy (DHF) set defined on the Universal Set O is represented by,

p={{xh(x),g(x)) | x €T} (1

where, 4(x) and g(x) are two sets of some values in [0,1] denoting the possible grades of
membership and non-membership of the member x € O to the set p respectively, satisfying
the condition

0<¢,n<1,0<" +n" <1 )

where (€ h(x), 7 € g(x), " € h*(x) = Us cnmmax {{}, 17 € g7(x) = U, c gy max {5} forall x €
O. For ease, the pair (h(x), g(x)) is termed as DHF element denoted by E = (h,g), satisfying
the condition, ce h, neg ¢ eh™ =U;cpmax {{}, n7eg" =U,cemax {5}, 0<¢,n<1,0
< +pt<l

3.2. T-Spherical Fuzzy Set

A t-spherical fuzzy (T-SF) set on O is stated as,
T =(x,{a; (x), B, (x), 7, ()} | x € ) 3)
where, ar(x) : O — [0,1], fr(x) - U — [0,1] and y7(x) - U — [0,1] signifies the positive

grade of membership (PgM), abstain grade of membership (AgM) and negative grade of
membership (NgM) to T respectively, fulfilling the condition,

0<(ar (%) +(Br ()" +(r;(x)" <1 )

for some Z+ n with the triplet (¢, f, y) known as T-SF elements.
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3.3. T-Spherical Dual Hesitant Fuzzy Set
A t-spherical dual hesitant fuzzy (T-SDHF) set on O is defined by,

@ =(x,{¢, (X), 1, (x), w, (x)}|x € V) (5)

where ¢ (¥), U (X), Yo (x) are three sets of some possible different values between [0,1]
signifying PgM, AgM and NgM of the member x € O to the set @ respectively, with the
condition,

0 <max (g, (x))" +min(z,(x))" +min(y,(x))" <1 (6)

here ¢ (x) = max {E4}, o (x) = max {E,} and y,(x) = max {E,}, in which 54, E,and E,
are DHF elements for some Z+ n. For convenience, the triplet ¢e (x), 4o (X), Yo (x) is termed
as t-spherical dual hesitant number (T-SDHFN) denoted by p = (4, &, ). The refusal grade
of membership is defined as,

3 |-

7= [1 - {{max (¢, (x))}n + {min(,um (x))}n + {min(t,//m (x))}n H @)

3.4. Score and Accuracy Function

The score function S(p) and accuracy function P(p) of T-SDHFN p are defined by,

1 N o Y Nw) Nay Y
1+[N(h,l,),-l N( ¢)ZU¢J _[N(h TS ZUWJ ©

2

1( 1 N@ RO ]" ( 1\%) 1 Ni) ]"
+ —
N(hy) 5 S Ny S ™) T vy & v Ny 5

2

S(p)=

(€))

where N(hg), M(gy), N(h,), and N(g,) represent the number of elements contained
respectively in ¢ and y for some Z: n. The value of the S(p) € [0,1].

Consider p; and p> be the two T-SDHFNSs. Let S(pi1) and S(p2) be the score functions
with P(p1) and P(p,) as the accuracy functions of p; and p; respectively. Then
IfS(pl) > S(pz) then p1> P2
If S(p1) = S(p2) then either P(p1) > P(p>) then p1> p or P(p1) = P(p>) then p1=p»

4. PROPOSED METHODOLOGY

In this study, LOPCOW method is applied to calculate the criterion weights and
MUTRISS-II method is applied to rank the alternatives. The graphical representation of
this framework is given in Fig. 1. Theoretical explanations of these methods are presented
below.
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Fig. 1 Proposed MCDM framework

4.1. Logarithmic Percentage Change-Driven Objective Weighting Method

Step 1: Create the initial decision matrix,
D = [(@lj :|m><n (10)

here m and » represent the number of alternatives and criteria of the complex problem
respectively. Each performance value g, determined by the relevant experts are based on
the T-SDHF set provided in Eq. (5). Then the T-SDHF decision matrix is defuzzified
employing the score function provided in Eq. (8).

Step 2: The normalized decision matrix is determined by employing linear max-min
normalization technique using the following equations,

min

% for beneficial criteria,

R; = o max SO[ (11)
% for cost criteria
£; —§;

Step 3: The PV for every criterion is determined by taking the natural log of the mean
square value and expressing it as a percentage of the standard deviation. This stage aids in
reducing the weights' unequal distribution. As a result, PV is determined as,

L 2
2.6
i=1

o

I =|In -100 (12)
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where the standard deviation and number of alternatives are denoted by o and m respectively.
Step 4: The relative significance of each criterion is determined using the equation
given below,

~

Qo (13)

n

J=1

4.2. Multiple Triangles Scenarios-II Method

The algorithm for the i” alternative in the proposed MUTRISS-II method is given as
follows:
Step 1: The normalization of the matrix is done using the equation provided below,

2y
- max gy
R =15 (14)

min @,
1<j<n 2

2y

for beneficial criteria

for cost criteria

Step 2: Construct the following equation by placing each ; of the i alternative in
descending order,

P 2 P, 5 7 Py = s P> P> P, b (15)

\\\\\\\\\

Step 3: The subsequent equation is employed to compute the angles of each i alternative,
-1
6, =w, (v, )" (X, 00, ") 90, j=1n-1 (16)

Wo, 7 Wa,.-1
Step 4: Calculate the overall score of the alternatives by calculating the areas that the
alternatives occupy using the formula below,

AV, =3 w, w, sing,0.5 7)
=

in line with 4V, the alternatives are arranged in descending order.

5. CASE STUDY

In this section, we have demonstrated the proposed novel hybrid MCDM approach
through the selection of the most beneficial remote sensing technique for the exploration
of geothermal reservoirs in India.

India, the third-largest global power consumer after the US and China, has an annual
demand of 1.54 trillion kWh, with over 45% met by fossil fuels, 26% by petroleum, and the
rest from biomass and RE sources [49]. The country’s large population drives increasing
energy needs. Research by the Indian Institute of Science reveals 86 GW of installed RE
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capacity, including 34 GW from solar and 37.5 GW from wind power [49]. While solar and
wind provide significant returns, their output can be inconsistent. A case study is conducted
for the discovery of promising and untapped geothermal reservoirs in the Indian region.

To make sure that the DM process is strategic, and in line with the objective of
identifying the most promising geothermal reservoir, an expert with insights in the pertinent
field is selected to advise and validate the various remote sensing choices. Prior to
extraction of the energy, a number of essential factors are taken into account to make an
informed choice, the description of which is shown in Fig. 2.

. X Indicates the level of detail in the imagery; higher resolution improves feature
Spatial resolution

[ identification, making it a beneficial criterion. Measured in meters. )

Refers to the financial expense of data acquisition; lower cost is preferred,
Cost [ making it a non-beneficial criterion. Measured in monetary units.
J
Represents the number and range of wavelengths captured; more bands enable
| Spectral bands }—> better material differentiation, making it a beneficial criterion. Measured in

|_bands or wavelength in micro-meters. )

> advantageous, making it a beneficial criterion. Measured in square kilometers
\or hectares.

7 = . i
Describes the geographic extent covered by the sensor; larger coverage is )
[ Area & coverage F

J

Accuracy & Reliability

interpretation, making it a beneficial criterion. Measured in percentage.

Reflects the precision and consistency of data; higher accuracy ensures reliable ]

Denotes the frequency of data capture; higher frequency supports dynamic}

[ Temporal resolution monitoring, making it a beneficial criterion. Measured in time intervals.

Fig. 2 Description of the criteria

The following gives a brief description about the remote sensing alternatives.

Light Detection and Ranging (LiDAR) (O:) - The LiDAR remote sensing technique
operates by producing laser pulses from an aerial or terrestrial platform and measuring the
time it takes for the pulses to return after striking the Earth's surface. LIDAR sensors generate
precise three-dimensional point clouds, allowing for thorough mapping of the Earth's
topography and surface features. By providing realistic terrain models and recognizing
structural patterns, LiDAR aids in mapping fractures, fault lines, and other subsurface
features that may indicate the presence of geothermal reservoirs.

Thermal Infrared (TIR) (O;) - This technique detects geothermal spots by gathering and
analyzing thermal radiation released by the Earth's surface. The approach is based on
sensors that capture infrared wavelengths linked with temperature fluctuations. The
presence of underlying heat in geothermal locations causes various thermal signatures on
the Earth's surface. TIR sensors detect these temperature variations, allowing for the exact
identification of prospective geothermal areas. TIR sensing offers beneficial insights into
the thermal properties of the landscape by measuring the heat emitted from the surface,
allowing for the recognition and mapping of regions with temperatures that are elevated,
which indicate underlying geothermal activity.
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RAdio Detection And Ranging (RADAR) (O3) — This technique functions by radiating
microwave pulses at the Earth's surface and capturing the signals that bounce back.
RADAR is very valuable because it can penetrate clouds and function in all-weather
situations. RADAR sensors can detect small surface deformations and topographical
changes caused by subsurface geothermal activity. These modifications may include
variations in ground elevation or surface roughness. The RADAR data can reveal these
underlying structures, providing insights into feasible geothermal reservoirs.

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (O4) —
ASTER operates using multispectral and thermal infrared capabilities. In the context of
geothermal detection, ASTER's thermal infrared bands (8-12 micrometers) are very
relevant. These bands allow for the measurement of surface temperatures, which allows for
the detection of thermal anomalies associated with probable geothermal locations. ASTER
helps to identify and characterize subsurface heat sources by evaluating temperature
changes and surface features. ASTER imagery's high degree of spatial accuracy makes it
easier to identify geological structures and features essential to geothermal exploration.

Visible and Near-Infrared to Shortwave Infrared (VNIR, 350 to 1300 nm-SWIR, 1300
to 2500 nm) (Os) — This remote sensing technology captures electromagnetic radiation in
certain spectral bands extending from the visible to the shortwave infrared regions. Surface
temperatures, vegetation and minerals all have distinct spectral signatures in these bands.
VNIR bands are sensitive to differences in vegetation health and land cover, whereas SWIR
bands are sensitive to temperature-related characteristics.

5.1. Determination of Criteria Weights

The developed fusion fuzzy MCDM framework is employed to determine the
weights of each criterion and probable alternative. An expert in the pertinent field
evaluates each of the alternatives O;, i = 1, ..., 5, for the circumstance in hand in
accordance with each of the attributes S;, j = 1, ..., 6, and offers their assessment of
performance in the form of a T-SDHFN. The steps adapted from the weighting and
ranking technique is as follows:

Step 1: The expert evaluates each alternative's performance using the T-SDHFN
specified in Eq. (5). Table 1 represents the initial T-SDHF matrix. Table 2 presents the
defuzzified score matrix using the expression given in Eq. (5). An illustration of the score
function of the first element (that is, 1) is shown below,

3 3
[1 +(;(O.52+0.26+0.15) —%(0.24 +0.3)] —[;(0.35 +0.5) —%(0.22 +o.15)] ]
=0.4931

2

Step 2: The defuzzified matrix is normalized using the Eq. (11) for beneficial and cost
criteria respectively.
~0.4931-0.3862

= =0.8665
0.5096—-0.3862

11
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Table 1 The T-SDHF decision matrix

Sy

S

S3

(<{0.52,0.26,0.15},{0.24,0.30}>,
<{0.52,0.36,0.66},{0.12,0.09}>,

<{0.35,0.50},{0.22,0.15}>)

(<{0.39,0.29},{0.13}>,
<{0.42},{0.14}>,

<{0.26,0.31,0.45},{0.25,0.14,0.45}>)

(<{0.64,0.58,0.47},{0.15,0.21}>,
<{0.15},{0.11}>,
<{0.33,0.35}.{0.14}>)

0, (<{0.45,0.67},{0.28}>, (<{0.32},{0.19}>, (<{0.34,0.67},{0.15,0.12,0.29}>,
<{0.55,0.05},{0.31,0.43}>, <{0.15,0.25},{0.12,0.15}>, <{0.15,0.35},{0.19}>,
<{0.25},{0.11}>) <{0.45,0.57,0.59},{0.17,035}>)  <{0.25,0.35,0.45},{0.30,0.40,0.30}
>)
0s (<{0.52,0.56},{0.33}>, (<{0.43,0.37},{0.32}>, (<{0.35},{0.11}>,
<{0.62,0.53},{0.10,0.05}>, <{0.25,0.55},{0.13}>, <{0.47,0.15},{0.15}>,
<{0.55},{0.36}>) <{0.47},{0.47,0.49}>) <{0.51,0.64},{0.15}>)
O, (<{0.39,0.41},{0.31}>, (<{0.25},{0.12}>, (<{0.15,0.39,0.25},{0.12,0.27}>,

<{0.35,0.55},{0.21,0.34}>,
<{0.25,0.34,0.48},{0.05,0.09}>)

<{0.15,0.35},{0.05,0.10}>,
<{0.59,0.32},{0.36}>)

<{0.61,0.21},{0.05}>,
<{0.42,0.34},{0.19}>)

Os

(<{0.47,0.49},{0.26}>,
<{0.69,0.15},{0.08}>,
<{0.74},{0.20,0.05,0.11}>)

(<{0.35},{0.15}>,
<{0.15,0.05},{0.60,0.40}>,

<{0.40},{0.57}>)

(<{0.63,0.34},{0.11,0.09,0.13}>,
<{0.21,0.15},{0.14}>,
<{0.35,0.45},{0.06,0.21}>)

S4

Ss

Se

(<{0.68,0.55},{0.11}>,
<{0.25,0.35},{0.17}>,
<{0.37,0.15},{0.19,0.11}>)

(<{0.72,0.57},{0.16}>,
<{0.15},{0.04}>,
<{0.24,0.39},{0.14}>)

(<{0.69,0.75},{0.11,0.15}>,
<{0.55},{0.14}>,
<{0.51,0.15},{0.06,0.14}>)

(<{0.91,0.51},{0.04}>,
<{0.34},{0.11}>,
<{0.52,0.49},{0.24}>)

(<{0.65,0.54,0.61},{0.14,0.11}>,
<{0.46},{0.22}>,
<{0.62,0.49},{0.15,0.09}>)

(<{0.45,0.49,0.51},{0.21,0.14}>,
<{0.45,0.35},{0.09,0.12}>,
<{0.54},{0.30}>)

(<{0.59,0.43},{0.17}>,
<{0.39,0.47},{0.11}>,

<{0.43,0.41},{0.17,0.15,0.11}>)

(<{0.41,0.65},{0.26}>,
<{0.45,0.55},{0.14,0.16}>,
<{0.54},{0.08,0.31}>)

(<{0.61},{0.11}>,
<{0.45,0.55},{0.04,0.16}>,
<{0.65},{0.11,0.15}>)

(<{0.69,0.66,0.42},{0.11,0.21}>,

<{0.55,0.65},{0.16,0.17}>,
<{0.41,0.33,0.27},{0.14}>)

(<{0.61,0.59},{0.17}>,
<{0.65},{0.20}>,
<{0.61},{0.12}>)

(<{0.65,0.74},{0.18}>,
<{0.65,0.55},{0.17,0.03}>,
<{0.45,0.55,0.19},{0.13}>)

(<{0.79,0.57},{0.59}>,
<{0.35,0.55},{0.33,0.01}>,
<{0.15,0.25},{0.21}>)

(<{0.68,0.54},{0.31}>,
<{0.35},{0.21}>,
<{0.25,0.15},{0.10,0.16}>)

(<{0.65,0.75},{0.14,0.15}>,
<{0.45},{0.11}>,
<{0.15,0.45},{0.22,0.27}>)

Step 3: The PV of each criterion is computed using the Eq. (12) and is provided in

Table 2 The defuzzified T-SDHF decision matrix

Si S2 S3 S4 Ss Se
O 0.4931 0.5045 0.5086 0.4995 0.5544 0.5966
02 0.5096 0.4905 0.5161 0.6411 0.5124 0.5077
03 0.5012 0.5003 0.4685 0.5091 0.4893 0.4922
O4 0.4886 0.5007 0.4967 0.5360 0.4809 0.5588
Os 0.3862 0.5065 0.5171 0.5744 0.5133 0.5854

Table 3. The PV of first criterion is given below,

X =
3, =

(0.8134
In

0.3674

]-100‘=79.4613
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Step 4: Table 3 shows the relative significance of each criterion which is calculated
using Eq. (13).
_ 794613

=———=0.2476
320.8675

1

Table 3 Standard deviation, percentage value and significance of criteria

Criteria o PV Relative weight
Si 0.3674 79.4613 0.2476
S2 0.3452  38.9030 0.1212
S3 0.3705 73.4468 0.2289
Sa 0.3643 35.5419 0.1108
Ss 0.3476 41.7180 0.1300
Se 0.3975 51.7965 0.1614

5.2. Identifying the Rank of Alternatives

Step 1: A T-SDHF decision matrix is constructed in the form of Eq. (10) (refer Step 1
of LOPCOW method). The defuzzified matrix is normalized using the Eq. (14) for
beneficial and cost criteria respectively. For instance,

~ 04931

= =0.9677
0.5096

Step 2: Each g of i” alternative is arranged in their descending order using Eq. (15).
Table 4 shows the example of Alternative-1. That is, {Se, Ss, S3, S, Si1, Sa}.

Step 3: The angles of each triangle is computed using the Eq. (16). Table 4 shows the
angles of each triangle for Alternative-1.

0, =(0.1614x(1/13))x0.1557x90 = 17.3678

Step 4: Table 4 shows overall areas occupied by Alternative-1 using the Eq. (17). The
angle and area occupied by rest of the alternatives are computed in the same way as
Alternative-1. Table 5 shows the overall score and ranking of each alternative. For instance,

AV, =(1x1xsin(17.3978)x0.5)+0.0681+0.2131+0.0562 +0.1961 = 0.6831

Table 4 Area occupied by Alternative 1

Criteria Alternative-1 Weight Angle 0 Radian Area
Se 1.0000 0.1614
Ss 1.0000 0.1300 1.2416 17.3978 0.3038 0.1496
S3 0.9837 0.2289 0.5680 7.9591 0.1390 0.0681
Sz 0.9722 0.1212 1.8879 26.4549 0.4619 0.2131
Si 0.9677 0.2476 0.4896 6.8603 0.1198 0.0562
S4 0.7792 0.1108 22357  31.3279 0.5470 0.1961

0.6831
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Table 5 Rank and area occupied by each alternative

Alternative AVi Rank
(o)1 0.6831 3
02 0.7187 1
03 0.6252 5
O4 0.6532 4
Os 0.6914 2

6. RESULTS AND DISCUSSION

In this study, the optimal RS technique for the maximal energy detection of the
geothermal reservoir is explored through novel hybrid fuzzy MCDM under a T-SDHF
environment.

The spherical framework of the T-SDHF set enabled a smoother transition between varying
levels of uncertainty. By incorporating the flexibility of DHF set, which accommodated multiple
membership and non-membership degrees, the T-SDHF set accurately depicted complex and
multidimensional data, by allowing choice-makers to capture intricate interconnections within
a decision context. In scenarios where standard fuzzy sets or HF sets, which address only
membership hesitation, fall short, the T-SDHF set provides a more comprehensive solution. T-
SDHF set-based techniques additionally enhanced DM resilience by providing a systematic
framework for dealing with ambiguities and vagueness, hence increasing the dependability and
stability of decision outputs.

The case study in this research involved six criteria and five alternatives. The significance
of each criterion was computed using the T-SDHF LOPCOW method, and the ranking of the
alternatives was done using the MUTRISS-II method. The LOPCOW approach leverages
objective information to generate the criteria weights. The criterion weights have a relatively
even distribution. Furthermore, this technique proves to efficiently handle an enormous number
of parameters and alternatives. Contrarily, MUTRISS-II gets beyond the shortcomings of the
existing MCDM approach, which include inconsistent ranking, identifying several
possibilities as preferred alternatives, and failing to consider the input of experts during the
DM process. The versatility of the suggested hybrid technique, as well as its ability to give
precise information, contribute to its usefulness in assisting geothermal exploration DM.
Furthermore, the proposed approach aims to provide accurate solutions using robust but
simple algorithmic procedures.

From the results of the T-SDHF LOPCOW method, it is found that spatial resolution (S;)
obtained the highest weightage of 0.2476, followed by spectral bands (S3) with a value of
0.2289, and thirdly temporal resolution (Se) with 0.1614. The spatial resolution determined
the level of clarity in the image. It accurately detected tiny features such as temperature
anomalies and surface manifestations, which were critical for identifying probable geothermal
sites. On the other hand, even though the area with coverage (S4) of the distinct remote sensing
techniques were significant, this criterion obtained the least value of 0.1108.

TIR (O;) obtained 0.7187 and constituted the leading remote sensing technique for
identifying geothermal reserves. TIR has the ability to detect small temperature variations,
which is critical for efficient and targeted geothermal exploration and resource assessment.
TIR sensing provides unique insights into the thermal features of the landscape by
measuring heat released from the surface, allowing for the identification and mapping of
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areas with elevated temperatures that indicate underlying geothermal activity. The TIR
remote sensing for detecting potential geothermal sites is shown in Fig. 3. Different
triangles covered by TIR are displayed in Fig. 4.

The second favored technique was VNIR-SWIR (Os), which achieved a value of
0.6914. These sensors are very useful for studying the Earth's surface features. The technique
uses sensitivity to detect minor changes in surface composition and temperature that indicate
geothermal activity. VNIR-SWIR remote sensing identifies and maps probable geothermal
energy locations by analyzing reflectance patterns and thermal anomalies.

- " - R\
W
‘&(1,6«* d

et

B\ )

Data
collection v
il
G e— T
gl > '%};’("\k e D - 3
Geysers Fumaroles Volcanoes  Hot spring

A — Ground receiver
B — Image processing
C — Thermal anomalies

1
1
: Faults
1

Magma chamber

Fig. 3 TIR detecting heat anomalies

Even though LiDAR (Oy) is extremely accurate for topographic mapping, it is limited
by its reliance on direct line-of-sight. This means that elements obscured by dense foliage
or structures may not be fully recorded. Furthermore, LiDAR data collecting and
processing can be expensive and resource-intensive, providing obstacles for projects with
little funding. This puts LiDAR in third place for geothermal location detection. ASTER
has a limited revisit frequency, which means that revisit times might be relatively long,
ranging from weeks to months depending on the location. This infrequent visitation
complicates the monitoring of dynamic geothermal phenomena that may change rapidly
over shorter timescales. Whereas RADAR's (O3) poor ability to penetrate dense foliage
limits its effectiveness in heavily forested areas. Furthermore, RADAR often has lower
spatial resolution than optical sensors such as ASTER (Os). This places ASTER fourth,
with RADAR being the least recommended alternative.

Despite TIR's high ranking in geothermal resource exploration, challenges persist due to the
ill-posed nature of surface temperature data, which is constrained by limited spectral
information and assumptions about air conditions or emissivity. To address these limitations, it
is crucial to integrate multiple remote sensing methods such as optical, infrared, and radar and
employ high-spectral TIR imaging for comprehensive data fusion [50].
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Fig. 4 Different triangles covered by TIR

This approach enhances the accuracy and consistency of geothermal resource exploration
by mitigating issues like uneven surface temperatures and atmospheric interference.
Combining data from various sensors and increasing observation frequencies can provide
more precise insights and capture complex geothermal resource characteristics.

This study benefits stakeholders and the government by highlighting the risks of
inaccurate geothermal reserve estimation. Overestimating reserves may lead to excessive
costs and environmental impact, while underestimating them could cause premature operation
shutdowns and financial losses. Erroneous forecasts can also hinder reservoir management,
threatening long-term sustainability.

6.1. Comparative Analysis of Different Ranking Techniques

Every MCDM technique has a unique way for carrying out DM examination. In this
section, the outcomes of the proposed hybrid MCDM methodology are compared to those
of existing MCDM techniques. We compared the rankings of our proposed technique to
distance-based (TOPSIS) [15], score-additive (COPRAS) [51], trace-based (MCRAT) [52],
perimeter similarity (RAPS) [53], outranking (PROMETHEE-II) [16], and aggregated sum
product (WASPAS) [18] methods.

From Table 6, it is seen that O consistently ranks as the highest performing alternative
in most methods. For instance, in the TOPSIS method, O has the highest score, compared
to O, O3, O4, and Os, indicating that it is the most optimal choice based on relative
closeness to the ideal solution. Similarly, in COPRAS, O, achieves a perfect score of 1,
outperforming the other alternatives. In contrast, the MCRAT method shows a smaller gap
between alternatives, with O; (0.1780) and O, (0.1787) having nearly identical values, but
O; still slightly edges ahead. For the RAPS method, O, remains the best performer, while
Oy is worst. In the PROMETHEE-II method, O, also outperforms all other alternatives with
a positive value of 0.038, while O3, O4, and Os have negative values, indicating poorer
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relative performance. Lastly, in the WASPAS method, O> marginally outperforms O;, but
the difference between the alternatives is minimal overall.

Table 6 Comparison of the proposed model with the existing models

TOPSIS COPRAS MCRAT RAPS PROMETHEE-II WASPAS

O 0.6956 0.9932 0.1780 0.9692 0.0314 0.4802
(0] 0.7239 1.0000 0.1787 0.9753 0.0380 0.4829
(05} 0.5480 0.9366 0.1688 0.9244 -0.0370 0.4529
O4 0.6355 0.9647 0.1730 0.9454 -0.0033 0.4664
Os 0.3710 0.9438 0.1664 0.9117 -0.0291 0.4560

0.9
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«
& 03
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" MUTRISS-II # TOPSIS ®COPRAS mMCRAT ®RAPS mPROMETHEE-II ® WASPAS

Fig. 5 Comparison of the proposed technique with existing models

The variation in rankings across these methods highlights the sensitivity of the results
to the chosen decision-making approach, emphasizing the need to select the method that
best aligns with the decision context and priorities. The results reveal that the integrated
MCDM framework produces more flexible solutions than the individual techniques.
However, in contrast to the aforementioned MCDM methodologies, the suggested strategy
is compatible for our application. Fig. 5 shows a grouped bar plot illustrating the ranks
acquired using various MCDM approaches. To go deeper into these rankings, Spearman's
rank correlation coefficient is employed. Fig. 6 shows the results of the correlation coefficient.
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Fig. 6 Spearman’s rank correlation coefficient

6.2. Sensitivity Analysis

In this section, we evaluated the level of sensitivity of our suggested system. The
coherence of the findings obtained with the proposed approach is assessed by varying the
significance level of each criterion. To evaluate the reliability of the gathered results, we
examine two cases.

In the first case, the beneficial criteria, high desired value, is set to one, while the cost
criteria, least desired value, is assigned to zero. That is, Si, S3, Ss, Ss, S¢, which are
considered as the beneficial criteria are given the value of 0.2 and the cost criterion, namely,
(S2) is asset to zero. In the second case, both the beneficial and non-beneficial criteria are
set to be equal. Here, all the criteria are assigned equal values of 0.167.

Table 7 and Fig. 7 illustrate the impact of adjusting significant parameters on the
ranking of alternatives in two different cases, highlighting the responsiveness of the model
to changes in criterion weighting. In Case-I, the alternatives are ranked as follows: Oy is
the top choice followed by Os, O3, Oy, and O, in the last position. In Case-II, however, the
rankings change considerably: O4 remains the highest ranked, but O, rises to the second
position, followed closely by O3, Os, and O; drops to the lowest rank. These shifts
demonstrate that even slight variations in the weighting of criteria can lead to a reordering
of alternatives, emphasizing the model’s sensitivity to the values assigned to different
factors. This investigation underlines the importance of proper weight adjustment to ensure
that the chosen alternative aligns with the desired priorities in each scenario.
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Table 7 Results of the sensitive analysis

Alternative Case -1 Case - 11
AVi Rank AVi Rank

01 0.0170 4 0.02146 5

(0] 0.0164 5 0.02151 2

(05} 0.0181 3 0.02149 3

Oq4 0.0233 1 0.02152 1

Os 0.0200 2 0.02148 4

LiDAR

-e-Case-1I
-+-Case-11

VNIR-SWIR TIR

0.005

ASTER RADAR

Fig. 7 Radar representation of the outcome of sensitive analysis

Further, Spearman rank correlation coefficient was conducted in the study. It showed
that the proposed rank showed a negative correlation of -0.5 with Case-I, indicating a
moderate inverse relationship between the two. Similarly, the proposed rank and Case-II
exhibited a negative correlation of -0.1, suggesting a very weak inverse association. In
contrast, the correlation between Case-I and Case-II was positive, with a value of 0.3,
indicating a weak positive relationship between the two cases. These results provide
insights into how the different cases and the proposed rank interact and highlight varying
degrees of association among them.

7. CONCLUSION

As the entire world grapples with the challenges of a burgeoning population, the
transition to RE emerges as a critical strategy for ensuring a robust and sustainable future.
The need to investigate different sources of RE is critical for producing energy in situations
where the conventional high energy return renewable resources become inconsistent and
unreliable. In this study, geothermal reserves were identified using the most promising RS
approach through a unique hybrid fuzzy MCDM technique. One of the distinguishing
features of the GE is its reliability and consistency. Geothermal power generation, unlike
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other RE sources such as solar or wind, is not weather-dependent. It delivers continuous
and baseload power, making it an important and consistent contributor to the global energy
mix. RS technologies allow for the detailed mapping of surface temperatures, geological
formations, and vegetation stress, which are indicators of geothermal activity. This minimizes
the need for extensive ground-based surveys and drilling, reducing environmental disruption
and lowering exploration costs. Additionally, continuous monitoring through RS supports
the efficient management of geothermal fields, ensuring the long-term viability and minimal
ecological impact of geothermal energy projects. The T-SDHF-LOPCOW-MUTRISS-II model
is used to assess the difficulty of selecting an appropriate remote sensing technique for detecting
probable geothermal reserves in India.

Understanding the characteristics of geothermal spots prior to extraction is critical for
drilling activities to reduce the risk of resource depletion or reservoir damage, thereby
contributing to the overall sustainability, efficiency, and responsible management of GE
resources. Therefore, five RS techniques were investigated under several critical criteria in
a newly introduced T-SDHF environment. The combination of the T-SF set with the DHF
set has proven to be a promising technique for dealing with ambiguity as well as vagueness
in the DM process. The LOPCOW approach assessed the relative importance of each
crucial criterion. The LOPCOW results revealed that spatial resolution and area with
coverage were the most and least critical parameters for precisely locating the site for
maximum energy extraction. MUTRISS-II method uses triangles to express criteria-based
performance values and prioritizes remote sensing approaches based on the area of the
shapes formed by these triangles. The angles between the triangles are dynamically
calculated in MUTRISS-II. This technique revealed that the TIR approach improved the
ability to identify minor temperature differences in a concise manner, allowing for more
efficient exploration and usage of geothermal resources. This approach also offered useful
information on the thermal properties of the ground. According to the sensitivity analysis,
the suggested method is sensitive to the weights of the attributes, and the comparative
analysis confirmed that our established structure is capable of providing a reliable remote
sensing technique for potential geothermal reserves.

This study, like many other scientific investigations, has some limitations. The data
focused solely on prospective RS techniques for exploring geothermal resources in the
Indian region, and only one DM expert was involved, limiting the breadth of informed DM.
Additionally, the novel MUTRISS-II approach, which utilized analytic geometry to determine
areas filled by alternatives in n-dimensional space, struggled with handling unknown variables
in the application. While TIR is the top strategy for exploring geothermal resources, it might be
challenging to obtain data just from this method. Surface temperature estimation is challenging
due to limited spectral information and assumptions about air conditions or emissivity, resulting
in inaccurate results. To overcome this constraint, varied RS data must be integrated.

Future research could broaden the scope by incorporating data from countries across
various regions of the world and enhancing the analysis process by including group
knowledge. Interdisciplinary research is crucial for exploring and evaluating geothermal
resources. Collaboration among geology, geophysics, geochemistry, geography, and
hydrology enhances resource detection accuracy and provides a comprehensive assessment
of potential, providing reliable foundations for energy development. Furthermore, the
newly developed set could also be extended to incorporate other subjective weighting
methods or MCDM techniques for identifying potential geothermal sites.
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