
FACTA UNIVERSITATIS  
Series: Mechanical Engineering Vol. 23, No 3, 2025, pp. 533 - 554  

https://doi.org/10.22190/FUME241116016S 

© 2025 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND 

Original scientific paper 

OPTIMIZING NON-INVASIVE REMOTE SENSING FOR 

GEOTHERMAL EXPLORATION WITH T-SPHERICAL DUAL 

HESITANT FUZZY DECISION MODEL 

Michael Sandra1, Samayan Narayanamoorthy1, Krishnan Suvitha2, 

Dragan Pamucar3,4,5, Daekook Kang6 

1Department of Mathematics, Bharathiar University, Coimbatore, India 
2Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai, Tamilnadu, India 

3Faculty of Engineering, Dogus University, Istanbul, Türkiye 
4Department of Industrial Engineering & Management,  

Yuan Ze University, Taoyuan City, Taiwan 
5Department of Applied Mathematical Science, College of Science and Technology,  

Korea University, Sejong, Republic of Korea 
6Department of Industrial and Management Engineering, Institute of Digital Anti-aging 

Health care, Inje University, Gyeongsangnam-do, Republic of Korea 

ORCID iDs: Michael Sandra  https://orcid.org/0009-0008-1913-1998  
 Samayan Narayanamoorthy  https://orcid.org/0000-0002-3782-4666    
 Krishnan Suvitha  https://orcid.org/0000-0003-1408-1393    
 Dragan Pamucar  https://orcid.org/0000-0001-8522-1942    
 Daekook Kang  https://orcid.org/0000-0002-7861-1544    

Abstract. Traditional geothermal detection methods, such as extensive ground-based 
surveys and drillings, are often costly, time-consuming, and environmentally intrusive. 
To address these challenges, this study presents a novel hybrid fuzzy multi-criteria 
decision-making model to evaluate and prioritize non-invasive, cost-effective remote 
sensing (RS) techniques. This model uses T-spherical dual-hesitant fuzzy set to manage 
the inherent ambiguities in the evaluation of multiple criteria. The logarithmic 
percentage change-driven objective weighting technique assigns the relative importance 
of criteria, and the multiple triangle scenarios-II methodology helps in comprehensive 
evaluation and ranking. By incorporating expert judgment and addressing inherent 
uncertainties, this model provides a systematic framework for optimizing RS technique 
selection. Findings indicate that thermal infrared imaging, with a significance score of 
0.7187, holds transformative potential for geothermal energy development. Sensitivity 
and comparative analyses further confirm the robustness of this approach. This research 
offers a valuable resource for energy developers and policymakers aiming to leverage 

RS technologies for efficient geothermal resource management and development. 
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1. INTRODUCTION 

The global population is projected to reach 9.7 billion by 2050 [1], presenting significant 

challenges in meeting the escalating energy demands driven by increased urbanization, 

industrialization, and technological advancements. The depletion of conventional energy 

sources such as coal, petroleum, and natural gas not only threatens to exacerbate global 

warming but also poses severe environmental risks [2]. According to Chhandama et al., 

[3], carbon dioxide (CO2) emissions are expected to reach 40 million kilograms by 2030, 

potentially contributing to a rise in global temperatures exceeding 20C. This abrupt upsurge 

in temperature could lead to the extinction of up to 1 million species and place hundreds of 

millions of humans at risk. Furthermore, it is predicted that around 50,000 TW of electrical 

energy will be required by 2050 [4], underscoring the urgent need for sustainable energy 

solutions. Immediate and sustainable interventions are essential to replenish these supplies 

and mitigate the associated environmental impacts to avert the impending energy crisis. 

Renewable energy (RE) offers a sustainable alternative to finite resources, meeting 

growing energy demands while reducing environmental impact. Among RE sources, the 

transition to geothermal energy (GE) is particularly crucial due to its stability and 

reliability. Unlike solar and wind, GE provides a consistent energy supply, unaffected by 

weather variability, making it a crucial solution for seamless grid integration and long-term 

decarbonization. Despite being underutilized, GE’s potential to deliver dependable, low-

emission power highlights its importance in advancing the energy transition and ensuring 

sustainable energy security. 

GE originates from the vast reservoir of thermal energy generated by the radioactive 

decay of minerals and the primordial heat from the Earth's formation. As a non-variable 

and renewable resource, GE can be used for baseload power generation, reducing 

overdependence on fossil fuels and hydropower plants [5]. Compared to other energy sources, 

the Earth has an essentially infinite supply of this energy stored within its core. This thermal 

energy is particularly abundant around the Pacific Ocean, including the Northern 

Hemisphere, where active volcanic regions contribute to significant geothermal resources. 

Effective exploitation of these resources requires thorough exploration. 

Research into GE exploration has heavily relied on standard methods such as geophysical 

[6], geospatial [7], and electromagnetic [8] techniques. However, unanticipated geological 

intricacies and reservoir characteristics that were not accounted for during the prediction process 

could present operational obstacles or safety hazards during extraction, exacerbating the effects 

of erroneous predictions. Therefore, ensuring precise and reliable projections of geothermal 

reserves is critical for increasing energy production, efficiency, enhancing safety, and 

ensuring the long-term sustainability of this significant RE resource. Remote sensing (RS) 

has the potential to accurately identify locations showing geothermal anomalies [9]. 

Prospective geothermal sites can be found in remote or challenging terrains due to RS, 

which provides an inexpensive and non-invasive way to explore large, often inaccessible 

areas. There are distinct types of RS techniques, such as ASTER and TIR, applicable in 

various circumstances. By utilizing satellite or aerial sensors, RS can detect subtle temperature 

anomalies and surface manifestations associated with geothermal activity. Evaluating and 

selecting RS techniques involves multiple, often conflicting criteria, necessitating a multicriteria 

model for efficient use of GE. Multi-Criteria Decision Making (MCDM) can help identify the 

most beneficial alternative by balancing these conflicting factors [10].  
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The limited availability of non-renewable resources presents a significant challenge in 

balancing future energy demand and production. This underscores the urgent need for more 

sustainable energy solutions. However, there is a notable gap in the existing literature 

regarding the optimal selection of RS techniques for geothermal reservoir exploration. 

Current methods for evaluating RS techniques often fail to fully capture the complexities of 

expert preferences, especially across large and diverse geographical areas. Additionally, 

MCDM models have limitations, including an inability to effectively convey expert 

assessments in natural language, and they tend to be time-consuming and inefficient. As a 

result, these models struggle to provide a decision order that reflects the real-world, in-depth 

process of human decision making (DM), hindering their effectiveness in selecting the most 

appropriate RS techniques for geothermal exploration. 

The motivation for this study is to identify the optimal RS technique for geothermal 

reservoir exploration. To achieve this, a novel hybrid MCDM paradigm is introduced, 

applying a fuzzy approach to assess various RS techniques. However, choosing the ideal 

solution in MCDM is challenging due to inherent uncertainties, such as incomplete or 

ambiguous information, dynamic external factors, and the subjective judgments of decision-

makers. By addressing these challenges, this study aims to improve decision-making 

processes, facilitating the efficient and accurate exploration of geothermal resources. This is 

crucial for advancing GE as a practical and reliable renewable energy source. 

The novelty of this study lies in the development of a comprehensive decision-making 

framework that integrates the t-spherical dual hesitant fuzzy (T-SDHF) set to handle high 

uncertainty and hesitation, employs the logarithmic percentage change-driven objective 

weighting (LOPCOW) method for precise criterion weighting, and utilizes the multiple 

triangles scenarios-II (MUTRISS-II) technique for accurate alternative ranking. This is the 

first study to combine LOPCOW and MUTRISS-II for evaluating and selecting remote 

sensing techniques in geothermal reservoir exploration, offering a balanced and reliable 

assessment. The proposed approach is rigorously validated through robustness, sensitivity, 

and comparison analyses, ensuring its effectiveness in addressing complex decision-

making challenges under imprecision and ambiguity. 

2. LITERATURE REVIEW 

In the multifaceted and constantly changing world of today, decision-makers face a 

slew of issues that necessitate an organized and well-informed process [11]. A systematic 

framework for handling decision issues combining numerous objectives, various criteria, 

and dynamic preferences is provided by MCDM techniques [12]. Traditional methods such 

as DEMATEL [13], VIKOR [14], TOPSIS [15], PROMETHEE [16], and ELECTRE [17] 

laid the groundwork by structuring decision problems, organizing options, and establishing 

preference relationships. However, as decision-making scenarios grew more intricate, 

newer techniques like WASPAS [18], COMET [19] and FRADAR [20] emerged. These 

advanced approaches better handle competing goals and incorporate subjective 

assessments from multiple decision-makers, providing a balanced and flexible framework 

that enhances decision quality and inclusiveness. 

Some of the subjective weighting techniques include AHP [21], SWARA [22] while 

objective methods include entropy [23] and MEREC [24]. Besides these MCDM models, 

Ecer and Pamucar [25] introduced a novel objective weighting technique named LOPCOW. Its 
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benefits include removing gaps in data because of the size, producing more realistic weightings, 

and taking into account positive as well as negative data when weighting. Tadic et al., [26] used 

modified fuzzy TOPSIS and fuzzy COPRAS methods for evaluation and ranking of electric 

vehicles. Nila et al., [27] employed triangular fuzzy LOPCOW-FUCOM technique for the 

evaluation and selection of third-party logistics service. Ulutas et al., [28] used grey numbers 

based LOPCOW framework for the evaluation of third-party logistic providers for automobile 

production firms. Biswas and Joshi [29] compared the post-listing performance of IPOs in 

the Indian Stock Market (ISM) using LOPCOW, highlighting that market performance is 

not solely driven by fundamental efficiency and equity ownership has little impact. The 

study suggested that other factors contribute to IPO performance beyond these traditional 

metrics. 

Every MCDM technique that has been devised so far has encountered some restrictions such 

as the subjective nature of DM, reliance on data quality, and the challenge of model complexity 

[30]. To address these challenges, Zakeri et al., [31] presented a novel MCDM approach, 

MUTRISS-II that could compute the areas filled by options in n-dimensional space. The 

material selection challenges were addressed using this MUTRISS approach. 

Making decisions frequently requires navigating subjectivity and ambiguity. Fuzzy-based 

MCDM techniques have been introduced to address unpredictability and inaccuracy in DM 

systems [32]. Multiple fuzzy sets (FS) have been proposed so far in the literature, including 

intuitionistic FS, interval-valued FS, neutrosophic FS, picture FS [33], bipolar FS, and linear-

diophantine FS. However, among all of these FS, an innovative FS, spherical FS, introduce by 

Kutlu and Kahraman, has piqued the interest of academics due to the benefits it offers [34]. 

Bonab et al., [35] utilized spherical FS and choquet integral to evaluate autonomous cars for the 

logistics sector. 

 Nguyen et al., [36] assessed the wire and cable industry's governance, social, and 

environmental performance using the WASPAS and spherical fuzzy DEA-AHP approaches. 

Gamal et al. [37] developed an ecologically sound computational technique for evaluating the 

optimal energy storage systems by integrating AHP-MACONT in a spherical fuzzy 

environment. Spherical linear diophantine FS and its accompanying aggregated geometric and 

arithmetic operators were developed by Riaz et al. [38] in a study, and they are employed in 

many real-world applications, such as network systems, voting, digital image processing and so 

on. Further Kakati et al. [39] introduced rectified complex T-SF set employing the Dombi-

Choquet integral operator to diagnose diabetic retinopathy through fundus images. Later, 

Alamoodi et al., [40] integrated 2-tuple linguistic T-SF set and entropy-FDOSM for the effective 

appraisal of electric bus. 

Conventional models typically require experts to provide single values for membership 

parameters, which can be restrictive and less expressive, particularly in situations with 

competing criteria or uncertain evaluations. To address these issues, the T-SDHF set combines 

the t-spherical fuzzy (T-SF) and dual hesitant fuzzy (DHF) sets, incorporating positive, 

negative, and neutral membership functions. This integration allows T-SDHF sets to capture 

both degrees of membership and non-membership simultaneously, giving experts a more 

flexible and realistic way to convey hesitation and preferences. By doing so, the T-SDHF set 

improves the robustness of DM processes, providing a structured framework that can more 

accurately reflect expert input and enhance the reliability of decision outcomes, even in intricate 

and high-dimensional DM scenarios.  

MCDM techniques have proven effective in diverse fields such as business, engineering, 

healthcare, and energy, addressing complex decision-making challenges [41]. Their adaptability 
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and versatility make them suitable for various decision-making scenarios. Mostafaeipour et al., 

[42] used the fuzzy-DELPHI-AHP methodology to investigate the difficulties in GE extraction 

in India. Using the SWARA-ARAS technique, Puppala et al., [43] investigated the location 

selection for geothermal projects in Afghanistan in 2022. Ghose et al., [44] then used triangular 

fuzzy TOPSIS technique to evaluate varied RE in India. Gudala et al., [45] used horizontal wells 

to analyse the Puga geothermal reservoir. A triplet of horizontal wells was evaluated and 

improved for CO2 plume GE harvesting by Nematollahi et al., [46]. In their study, Ngethe et al., 

[47] examined the selection of GE resources for direct use in Kenya. In the northeastern region 

of Anatolia, Zorlu and Dede [48] assessed the possible geoheritage in glacial and periglacial 

deposits. 

3. PRELIMINARIES  

3.1. Dual Hesitant Fuzzy Set 

A dual hesitant fuzzy (DHF) set defined on the Universal Set ℧ is represented by, 

  , ( ), ( ) |x h x g x x =   (1) 

where, h(x) and g(x) are two sets of some values in [0,1] denoting the possible grades of 

membership and non-membership of the member x ϵ ℧ to the set ρ respectively, satisfying 

the condition 

 0 , 1,0 1   + +   +   (2) 

where ζ ϵ h(x), η ϵ g(x), ζ+ ϵ h+(x) = Uζ ϵ h(x) max {ζ}, η+ ϵ g+(x) = Uη ϵ g(x) max {η} for all x ϵ 

℧. For ease, the pair (h(x), g(x)) is termed as DHF element denoted by Ξ = (h,g), satisfying 

the condition, ζ ϵ h, η ϵ g, ζ+ ϵ h+ = Uζ ϵ h max {ζ}, η+ ϵ g+ = Uη ϵ g max {η}, 0 ≤ ζ , η ≤ 1, 0 

≤ ζ+ + η+ ≤ 1. 

3.2. T-Spherical Fuzzy Set 

A t-spherical fuzzy (T-SF) set on ℧ is stated as, 

  , ( ), ( ), ( )T T TT x x x x x  =   (3) 

where, αT (x) : ℧ → [0,1], βT (x) : ℧ → [0,1] and γT (x) : ℧ → [0,1] signifies the positive 

grade of membership (PgM), abstain grade of membership (AgM) and negative grade of 

membership (NgM) to T respectively, fulfilling the condition, 

 ( ) ( ) ( )0 ( ) ( ) ( ) 1
n n n

T T Tx x x   + +   (4) 

for some Z+ n with the triplet (α, β, γ) known as T-SF elements.    
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3.3. T-Spherical Dual Hesitant Fuzzy Set 

A t-spherical dual hesitant fuzzy (T-SDHF) set on ℧ is defined by, 

  , ( ), ( ), ( )x x x x x     =   (5) 

where ϕϖ (x), µϖ (x), ψϖ (x) are three sets of some possible different values between [0,1] 

signifying PgM, AgM and NgM of the member x ϵ ℧ to the set ϖ respectively, with the 

condition,   

 ( ) ( ) ( )0 max ( ) min ( ) min ( ) 1
n n n

x x x     + +   (6) 

here ϕϖ (x) = max {Ξϕ}, µϖ (x) = max {Ξµ} and ψϖ (x) = max {Ξψ}, in which Ξϕ, Ξµ and Ξψ 

are DHF elements for some Z+ n. For convenience, the triplet ϕϖ (x), µϖ (x), ψϖ (x) is termed 

as t-spherical dual hesitant number (T-SDHFN) denoted by ρ = (ϕ, µ, ψ). The refusal grade 

of membership is defined as, 

 ( )  ( )  ( )  
1

1 max ( ) min ( ) min ( )
n n n n

x x x      = − + +
  

 (7) 

3.4. Score and Accuracy Function 

The score function S(ρ) and accuracy function P(ρ) of T-SDHFN ρ are defined by, 

 

( ) ( ) ( ) ( )

1 1 1 1

1 1 1 1
1

( ) ( ) ( ) ( )

( )
2

n n
N N N N

i i i iN h N g N h N g

S

   

   

   

   


= = = =

    
 + − − −           

=

   

 (8) 

 

( ) ( ) ( ) ( )

1 1 1 1

1 1 1 1
1

( ) ( ) ( ) ( )

( )
2

n n
N N N N

i i i iN h N g N h N g

P

   

   

   

   


= = = =

    
 + − + −           

=

   

 (9) 

where N(hϕ), N(gϕ), N(hψ), and N(gψ) represent the number of elements contained 

respectively in ϕ and ψ for some Z+ n. The value of the S(ρ) ϵ [0,1]. 

Consider ρ1 and ρ2 be the two T-SDHFNs. Let S(ρ1) and S(ρ2) be the score functions 

with P(ρ1) and P(ρ2) as the accuracy functions of ρ1 and ρ2 respectively. Then  

If S(ρ1) ˃ S(ρ2) then ρ1 ˃ ρ2 

If S(ρ1) = S(ρ2) then either P(ρ1) ˃ P(ρ2) then ρ1 ˃ ρ2 or P(ρ1) = P(ρ2) then ρ1 = ρ2 

4. PROPOSED METHODOLOGY 

In this study, LOPCOW method is applied to calculate the criterion weights and 

MUTRISS-II method is applied to rank the alternatives. The graphical representation of 

this framework is given in Fig. 1. Theoretical explanations of these methods are presented 

below. 
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Fig. 1 Proposed MCDM framework 

4.1. Logarithmic Percentage Change-Driven Objective Weighting Method 

Step 1: Create the initial decision matrix, 

 
ij m n

D


 =    (10) 

here m and n represent the number of alternatives and criteria of the complex problem 

respectively. Each performance value ℘ij determined by the relevant experts are based on 

the T-SDHF set provided in Eq. (5). Then the T-SDHF decision matrix is defuzzified 

employing the score function provided in Eq. (8). 

Step 2: The normalized decision matrix is determined by employing linear max-min 

normalization technique using the following equations, 

 

min

max min

max

max min

   for beneficial criteria,

   for cost criteria

ij j

i i

ij

j ij

i i

R

  −

 −

= 
 −

 −

 (11) 

Step 3: The PV for every criterion is determined by taking the natural log of the mean 

square value and expressing it as a percentage of the standard deviation. This stage aids in 

reducing the weights' unequal distribution. As a result, PV is determined as, 

 

2

1ln 100

m

ij
i


=

 
 

  = 
 
 
 


 (12) 
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where the standard deviation and number of alternatives are denoted by σ and m respectively. 

Step 4: The relative significance of each criterion is determined using the equation 

given below, 

 

1

ij

n

ij
j=


=



 (13) 

4.2. Multiple Triangles Scenarios-II Method 

The algorithm for the ith alternative in the proposed MUTRISS-II method is given as 

follows:  

Step 1: The normalization of the matrix is done using the equation provided below, 

 1

1

   for beneficial criteria
max

min
   for cost criteria

ij

ij
j n

ij

ij
j n

ij

R
 

 





= 






 (14) 

Step 2: Construct the following equation by placing each ℘j of the ith alternative in 

descending order, 

 
max min max max 1 min n min

: { , , , , }ij mn ij mn mn mn mn mn− −
  → → =      (15) 

Step 3: The subsequent equation is employed to compute the angles of each ith alternative, 

 ( )
1

1 1

1 1( ) ( ) 90, 1, , 1
ij ij ij ijj w w w w j n
   

−
− −

  −   −=  = −  (16) 

 
1ij ij

w w
   −

 

Step 4: Calculate the overall score of the alternatives by calculating the areas that the 

alternatives occupy using the formula below,  

 
1

1

sin 0.5
ij ij

n

i j
j

AV w w 
   −

=

=  (17) 

in line with AVi, the alternatives are arranged in descending order. 

5. CASE STUDY 

In this section, we have demonstrated the proposed novel hybrid MCDM approach 

through the selection of the most beneficial remote sensing technique for the exploration 

of geothermal reservoirs in India. 

India, the third-largest global power consumer after the US and China, has an annual 

demand of 1.54 trillion kWh, with over 45% met by fossil fuels, 26% by petroleum, and the 

rest from biomass and RE sources [49]. The country’s large population drives increasing 

energy needs. Research by the Indian Institute of Science reveals 86 GW of installed RE 
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capacity, including 34 GW from solar and 37.5 GW from wind power [49]. While solar and 

wind provide significant returns, their output can be inconsistent. A case study is conducted 

for the discovery of promising and untapped geothermal reservoirs in the Indian region.  

To make sure that the DM process is strategic, and in line with the objective of 

identifying the most promising geothermal reservoir, an expert with insights in the pertinent 

field is selected to advise and validate the various remote sensing choices. Prior to 

extraction of the energy, a number of essential factors are taken into account to make an 

informed choice, the description of which is shown in Fig. 2.  

 

 Fig. 2 Description of the criteria 

The following gives a brief description about the remote sensing alternatives. 

Light Detection and Ranging (LiDAR) (O1) - The LiDAR remote sensing technique 

operates by producing laser pulses from an aerial or terrestrial platform and measuring the 

time it takes for the pulses to return after striking the Earth's surface. LiDAR sensors generate 

precise three-dimensional point clouds, allowing for thorough mapping of the Earth's 

topography and surface features. By providing realistic terrain models and recognizing 

structural patterns, LiDAR aids in mapping fractures, fault lines, and other subsurface 

features that may indicate the presence of geothermal reservoirs. 

Thermal Infrared (TIR) (O2) - This technique detects geothermal spots by gathering and 

analyzing thermal radiation released by the Earth's surface. The approach is based on 

sensors that capture infrared wavelengths linked with temperature fluctuations. The 

presence of underlying heat in geothermal locations causes various thermal signatures on 

the Earth's surface. TIR sensors detect these temperature variations, allowing for the exact 

identification of prospective geothermal areas. TIR sensing offers beneficial insights into 

the thermal properties of the landscape by measuring the heat emitted from the surface, 

allowing for the recognition and mapping of regions with temperatures that are elevated, 

which indicate underlying geothermal activity. 



542 M. SANDRA, S. NARAYANAMOORTHY, K. SUVITHA, D. PAMUCAR, D. KANG 
 

RAdio Detection And Ranging (RADAR) (O3) – This technique functions by radiating 

microwave pulses at the Earth's surface and capturing the signals that bounce back. 

RADAR is very valuable because it can penetrate clouds and function in all-weather 

situations. RADAR sensors can detect small surface deformations and topographical 

changes caused by subsurface geothermal activity. These modifications may include 

variations in ground elevation or surface roughness. The RADAR data can reveal these 

underlying structures, providing insights into feasible geothermal reservoirs. 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (O4) – 

ASTER operates using multispectral and thermal infrared capabilities. In the context of 

geothermal detection, ASTER's thermal infrared bands (8-12 micrometers) are very 

relevant. These bands allow for the measurement of surface temperatures, which allows for 

the detection of thermal anomalies associated with probable geothermal locations. ASTER 

helps to identify and characterize subsurface heat sources by evaluating temperature 

changes and surface features. ASTER imagery's high degree of spatial accuracy makes it 

easier to identify geological structures and features essential to geothermal exploration. 

Visible and Near-Infrared to Shortwave Infrared (VNIR, 350 to 1300 nm-SWIR, 1300 

to 2500 nm) (O5) – This remote sensing technology captures electromagnetic radiation in 

certain spectral bands extending from the visible to the shortwave infrared regions. Surface 

temperatures, vegetation and minerals all have distinct spectral signatures in these bands. 

VNIR bands are sensitive to differences in vegetation health and land cover, whereas SWIR 

bands are sensitive to temperature-related characteristics.  

5.1. Determination of Criteria Weights  

The developed fusion fuzzy MCDM framework is employed to determine the 

weights of each criterion and probable alternative.  An expert in the pertinent field 

evaluates each of the alternatives Oi, i = 1, ..., 5, for the circumstance in hand in 

accordance with each of the attributes Sj, j = 1, ..., 6, and offers their assessment of 

performance in the form of a T-SDHFN. The steps adapted from the weighting and 

ranking technique is as follows: 

Step 1: The expert evaluates each alternative's performance using the T-SDHFN 

specified in Eq. (5). Table 1 represents the initial T-SDHF matrix. Table 2 presents the 

defuzzified score matrix using the expression given in Eq. (5). An illustration of the score 

function of the first element (that is, ℘11) is shown below, 

 

3 3
1 1 1 1

1 (0.52 0.26 0.15) (0.24 0.3) (0.35 0.5) (0.22 0.15)
3 2 2 2

0.4931
2

    
+ + + − + − + − +         

=

 Step 2: The defuzzified matrix is normalized using the Eq. (11) for beneficial and cost 

criteria respectively. 
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0.4931 0.3862
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Table 1 The T-SDHF decision matrix 

 S1 S2 S3 

O1 
(<{0.52,0.26,0.15},{0.24,0.30}>, 

<{0.52,0.36,0.66},{0.12,0.09}>, 

<{0.35,0.50},{0.22,0.15}>) 

(<{0.39,0.29},{0.13}>, 

<{0.42},{0.14}>, 

<{0.26,0.31,0.45},{0.25,0.14,0.45}>) 

(<{0.64,0.58,0.47},{0.15,0.21}>, 

<{0.15},{0.11}>, 

<{0.33,0.35},{0.14}>) 

O2 
(<{0.45,0.67},{0.28}>, 

<{0.55,0.05},{0.31,0.43}>, 

<{0.25},{0.11}>) 

(<{0.32},{0.19}>, 

<{0.15,0.25},{0.12,0.15}>, 

<{0.45,0.57,0.59},{0.17,0.35}>) 

(<{0.34,0.67},{0.15,0.12,0.29}>, 

<{0.15,0.35},{0.19}>, 

<{0.25,0.35,0.45},{0.30,0.40,0.30}

>) 

O3 (<{0.52,0.56},{0.33}>, 

<{0.62,0.53},{0.10,0.05}>, 

<{0.55},{0.36}>) 

(<{0.43,0.37},{0.32}>, 

<{0.25,0.55},{0.13}>, 

<{0.47},{0.47,0.49}>) 

(<{0.35},{0.11}>, 

<{0.47,0.15},{0.15}>, 

<{0.51,0.64},{0.15}>) 

O4 (<{0.39,0.41},{0.31}>, 

<{0.35,0.55},{0.21,0.34}>, 

<{0.25,0.34,0.48},{0.05,0.09}>) 

(<{0.25},{0.12}>, 

<{0.15,0.35},{0.05,0.10}>, 

<{0.59,0.32},{0.36}>) 

(<{0.15,0.39,0.25},{0.12,0.27}>, 

<{0.61,0.21},{0.05}>, 

<{0.42,0.34},{0.19}>) 

O5 (<{0.47,0.49},{0.26}>, 

<{0.69,0.15},{0.08}>, 

<{0.74},{0.20,0.05,0.11}>) 

(<{0.35},{0.15}>, 

<{0.15,0.05},{0.60,0.40}>, 

<{0.40},{0.57}>) 

(<{0.63,0.34},{0.11,0.09,0.13}>, 

<{0.21,0.15},{0.14}>, 

<{0.35,0.45},{0.06,0.21}>) 

 
S4 S5 S6 

(<{0.68,0.55},{0.11}>, 

<{0.25,0.35},{0.17}>, 

<{0.37,0.15},{0.19,0.11}>) 

(<{0.72,0.57},{0.16}>, 

<{0.15},{0.04}>, 

<{0.24,0.39},{0.14}>) 

(<{0.69,0.75},{0.11,0.15}>, 

<{0.55},{0.14}>, 

<{0.51,0.15},{0.06,0.14}>) 

(<{0.91,0.51},{0.04}>, 

<{0.34},{0.11}>, 

<{0.52,0.49},{0.24}>) 

(<{0.65,0.54,0.61},{0.14,0.11}>, 

<{0.46},{0.22}>, 

<{0.62,0.49},{0.15,0.09}>) 

(<{0.45,0.49,0.51},{0.21,0.14}>, 

<{0.45,0.35},{0.09,0.12}>, 

<{0.54},{0.30}>) 

(<{0.59,0.43},{0.17}>, 

<{0.39,0.47},{0.11}>, 

<{0.43,0.41},{0.17,0.15,0.11}>) 

(<{0.41,0.65},{0.26}>, 

<{0.45,0.55},{0.14,0.16}>, 

<{0.54},{0.08,0.31}>) 

(<{0.61},{0.11}>, 

<{0.45,0.55},{0.04,0.16}>, 

<{0.65},{0.11,0.15}>) 

(<{0.69,0.66,0.42},{0.11,0.21}>, 

<{0.55,0.65},{0.16,0.17}>, 

<{0.41,0.33,0.27},{0.14}>) 

(<{0.61,0.59},{0.17}>, 

<{0.65},{0.20}>, 

<{0.61},{0.12}>) 

(<{0.65,0.74},{0.18}>, 

<{0.65,0.55},{0.17,0.03}>, 

<{0.45,0.55,0.19},{0.13}>) 

(<{0.79,0.57},{0.59}>, 

<{0.35,0.55},{0.33,0.01}>, 

<{0.15,0.25},{0.21}>) 

(<{0.68,0.54},{0.31}>, 

<{0.35},{0.21}>, 

<{0.25,0.15},{0.10,0.16}>) 

(<{0.65,0.75},{0.14,0.15}>, 

<{0.45},{0.11}>, 

<{0.15,0.45},{0.22,0.27}>) 

Table 2 The defuzzified T-SDHF decision matrix 

 S1 S2 S3 S4 S5 S6 

O1 0.4931 0.5045 0.5086 0.4995 0.5544 0.5966 

O2 0.5096 0.4905 0.5161 0.6411 0.5124 0.5077 

O3 0.5012 0.5003 0.4685 0.5091 0.4893 0.4922 

O4 0.4886 0.5007 0.4967 0.5360 0.4809 0.5588 

O5 0.3862 0.5065 0.5171 0.5744 0.5133 0.5854 

Step 3: The PV of each criterion is computed using the Eq. (12) and is provided in 

Table 3. The PV of first criterion is given below, 

 1

0.8134
ln 100 79.4613

0.3674

 
 =  = 

 
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Step 4: Table 3 shows the relative significance of each criterion which is calculated 

using Eq. (13).  

 
1

79.4613
0.2476

320.8675
 = =  

Table 3 Standard deviation, percentage value and significance of criteria 

Criteria σ PV Relative weight  

S1 0.3674 79.4613 0.2476 

S2 0.3452 38.9030 0.1212 

S3 0.3705 73.4468 0.2289 

S4 0.3643 35.5419 0.1108 

S5 0.3476 41.7180 0.1300 

S6 0.3975 51.7965 0.1614 

5.2. Identifying the Rank of Alternatives  

Step 1: A T-SDHF decision matrix is constructed in the form of Eq. (10) (refer Step 1 

of LOPCOW method). The defuzzified matrix is normalized using the Eq. (14) for 

beneficial and cost criteria respectively. For instance, 

 
11

0.4931
0.9677

0.5096
R = =  

Step 2: Each ℘j of ith alternative is arranged in their descending order using Eq. (15). 

Table 4 shows the example of Alternative-1. That is, {S6, S5, S3, S2, S1, S4}. 

Step 3: The angles of each triangle is computed using the Eq. (16). Table 4 shows the 

angles of each triangle for Alternative-1.  

 ( )0.1614 (1/13) 0.1557 90 17.3678j =    =  

Step 4: Table 4 shows overall areas occupied by Alternative-1 using the Eq. (17). The 

angle and area occupied by rest of the alternatives are computed in the same way as 

Alternative-1. Table 5 shows the overall score and ranking of each alternative. For instance, 

 ( )1 1 1 sin(17.3978) 0.5 0.0681 0.2131 0.0562 0.1961 0.6831AV =    + + + + =  

Table 4 Area occupied by Alternative 1 

Criteria Alternative-1 Weight Angle θj Radian Area 

S6 1.0000 0.1614     

S5 1.0000 0.1300 1.2416 17.3978 0.3038 0.1496 

S3 0.9837 0.2289 0.5680 7.9591 0.1390 0.0681 

S2 0.9722 0.1212 1.8879 26.4549 0.4619 0.2131 

S1 0.9677 0.2476 0.4896 6.8603 0.1198 0.0562 

S4 0.7792 0.1108 2.2357 31.3279 0.5470 0.1961  
     0.6831 



 Optimizing Non-Invasive Remote Sensing for Geothermal Exploration with T-Spherical Dual Hesitant... 545 

  Table 5 Rank and area occupied by each alternative 

Alternative  AVi Rank  

O1 0.6831 3 

O2 0.7187 1 

O3 0.6252 5 

O4 0.6532 4 

O5 0.6914 2 

6. RESULTS AND DISCUSSION 

In this study, the optimal RS technique for the maximal energy detection of the 

geothermal reservoir is explored through novel hybrid fuzzy MCDM under a T-SDHF 

environment. 

The spherical framework of the T-SDHF set enabled a smoother transition between varying 

levels of uncertainty. By incorporating the flexibility of DHF set, which accommodated multiple 

membership and non-membership degrees, the T-SDHF set accurately depicted complex and 

multidimensional data, by allowing choice-makers to capture intricate interconnections within 

a decision context. In scenarios where standard fuzzy sets or HF sets, which address only 

membership hesitation, fall short, the T-SDHF set provides a more comprehensive solution. T-

SDHF set-based techniques additionally enhanced DM resilience by providing a systematic 

framework for dealing with ambiguities and vagueness, hence increasing the dependability and 

stability of decision outputs. 

The case study in this research involved six criteria and five alternatives. The significance 

of each criterion was computed using the T-SDHF LOPCOW method, and the ranking of the 

alternatives was done using the MUTRISS-II method. The LOPCOW approach leverages 

objective information to generate the criteria weights. The criterion weights have a relatively 

even distribution. Furthermore, this technique proves to efficiently handle an enormous number 

of parameters and alternatives. Contrarily, MUTRISS-II gets beyond the shortcomings of the 

existing MCDM approach, which include inconsistent ranking, identifying several 

possibilities as preferred alternatives, and failing to consider the input of experts during the 

DM process. The versatility of the suggested hybrid technique, as well as its ability to give 

precise information, contribute to its usefulness in assisting geothermal exploration DM. 

Furthermore, the proposed approach aims to provide accurate solutions using robust but 

simple algorithmic procedures. 

From the results of the T-SDHF LOPCOW method, it is found that spatial resolution (S1) 

obtained the highest weightage of 0.2476, followed by spectral bands (S3) with a value of 

0.2289, and thirdly temporal resolution (S6) with 0.1614. The spatial resolution determined 

the level of clarity in the image. It accurately detected tiny features such as temperature 

anomalies and surface manifestations, which were critical for identifying probable geothermal 

sites. On the other hand, even though the area with coverage (S4) of the distinct remote sensing 

techniques were significant, this criterion obtained the least value of 0.1108. 

TIR (O2) obtained 0.7187 and constituted the leading remote sensing technique for 

identifying geothermal reserves. TIR has the ability to detect small temperature variations, 

which is critical for efficient and targeted geothermal exploration and resource assessment. 

TIR sensing provides unique insights into the thermal features of the landscape by 

measuring heat released from the surface, allowing for the identification and mapping of 
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areas with elevated temperatures that indicate underlying geothermal activity. The TIR 

remote sensing for detecting potential geothermal sites is shown in Fig. 3. Different 

triangles covered by TIR are displayed in Fig. 4. 

The second favored technique was VNIR-SWIR (O5), which achieved a value of 

0.6914. These sensors are very useful for studying the Earth's surface features. The technique 

uses sensitivity to detect minor changes in surface composition and temperature that indicate 

geothermal activity. VNIR-SWIR remote sensing identifies and maps probable geothermal 

energy locations by analyzing reflectance patterns and thermal anomalies.  

 

         Fig. 3 TIR detecting heat anomalies 

Even though LiDAR (O1) is extremely accurate for topographic mapping, it is limited 

by its reliance on direct line-of-sight. This means that elements obscured by dense foliage 

or structures may not be fully recorded. Furthermore, LiDAR data collecting and 

processing can be expensive and resource-intensive, providing obstacles for projects with 

little funding. This puts LiDAR in third place for geothermal location detection. ASTER 

has a limited revisit frequency, which means that revisit times might be relatively long, 

ranging from weeks to months depending on the location. This infrequent visitation 

complicates the monitoring of dynamic geothermal phenomena that may change rapidly 

over shorter timescales. Whereas RADAR's (O3) poor ability to penetrate dense foliage 

limits its effectiveness in heavily forested areas. Furthermore, RADAR often has lower 

spatial resolution than optical sensors such as ASTER (O4). This places ASTER fourth, 

with RADAR being the least recommended alternative.  

Despite TIR's high ranking in geothermal resource exploration, challenges persist due to the 

ill-posed nature of surface temperature data, which is constrained by limited spectral 

information and assumptions about air conditions or emissivity. To address these limitations, it 

is crucial to integrate multiple remote sensing methods such as optical, infrared, and radar and 

employ high-spectral TIR imaging for comprehensive data fusion [50]. 
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         Fig. 4 Different triangles covered by TIR 

This approach enhances the accuracy and consistency of geothermal resource exploration 

by mitigating issues like uneven surface temperatures and atmospheric interference. 

Combining data from various sensors and increasing observation frequencies can provide 

more precise insights and capture complex geothermal resource characteristics. 

This study benefits stakeholders and the government by highlighting the risks of 

inaccurate geothermal reserve estimation. Overestimating reserves may lead to excessive 

costs and environmental impact, while underestimating them could cause premature operation 

shutdowns and financial losses. Erroneous forecasts can also hinder reservoir management, 

threatening long-term sustainability. 

6.1. Comparative Analysis of Different Ranking Techniques 

Every MCDM technique has a unique way for carrying out DM examination. In this 

section, the outcomes of the proposed hybrid MCDM methodology are compared to those 

of existing MCDM techniques. We compared the rankings of our proposed technique to 

distance-based (TOPSIS) [15], score-additive (COPRAS) [51], trace-based (MCRAT) [52], 

perimeter similarity (RAPS) [53], outranking (PROMETHEE-II) [16], and aggregated sum 

product (WASPAS) [18] methods.  

From Table 6, it is seen that O2 consistently ranks as the highest performing alternative 

in most methods. For instance, in the TOPSIS method, O2 has the highest score, compared 

to O1, O3, O4, and O5, indicating that it is the most optimal choice based on relative 

closeness to the ideal solution. Similarly, in COPRAS, O2 achieves a perfect score of 1, 

outperforming the other alternatives. In contrast, the MCRAT method shows a smaller gap 

between alternatives, with O1 (0.1780) and O2 (0.1787) having nearly identical values, but 

O2 still slightly edges ahead. For the RAPS method, O2 remains the best performer, while 

O1 is worst. In the PROMETHEE-II method, O2 also outperforms all other alternatives with 

a positive value of 0.038, while O3, O4, and O5 have negative values, indicating poorer 
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relative performance. Lastly, in the WASPAS method, O2 marginally outperforms O1, but 

the difference between the alternatives is minimal overall.  

Table 6 Comparison of the proposed model with the existing models 

 TOPSIS COPRAS MCRAT RAPS PROMETHEE-II WASPAS 

O1 0.6956 0.9932 0.1780 0.9692 0.0314 0.4802 

O2 0.7239 1.0000 0.1787 0.9753 0.0380 0.4829 

O3 0.5480 0.9366 0.1688 0.9244 -0.0370 0.4529 

O4 0.6355 0.9647 0.1730 0.9454 -0.0033 0.4664 

O5 0.3710 0.9438 0.1664 0.9117 -0.0291 0.4560 

 

    Fig. 5 Comparison of the proposed technique with existing models 

The variation in rankings across these methods highlights the sensitivity of the results 

to the chosen decision-making approach, emphasizing the need to select the method that 

best aligns with the decision context and priorities. The results reveal that the integrated 

MCDM framework produces more flexible solutions than the individual techniques. 

However, in contrast to the aforementioned MCDM methodologies, the suggested strategy 

is compatible for our application. Fig. 5 shows a grouped bar plot illustrating the ranks 

acquired using various MCDM approaches. To go deeper into these rankings, Spearman's 

rank correlation coefficient is employed. Fig. 6 shows the results of the correlation coefficient. 
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Fig. 6 Spearman’s rank correlation coefficient 

6.2. Sensitivity Analysis 

In this section, we evaluated the level of sensitivity of our suggested system. The 

coherence of the findings obtained with the proposed approach is assessed by varying the 

significance level of each criterion. To evaluate the reliability of the gathered results, we 

examine two cases. 

In the first case, the beneficial criteria, high desired value, is set to one, while the cost 

criteria, least desired value, is assigned to zero. That is, S1, S3, S4, S5, S6, which are 

considered as the beneficial criteria are given the value of 0.2 and the cost criterion, namely, 

(S2) is asset to zero. In the second case, both the beneficial and non-beneficial criteria are 

set to be equal. Here, all the criteria are assigned equal values of 0.167.  

Table 7 and Fig. 7 illustrate the impact of adjusting significant parameters on the 

ranking of alternatives in two different cases, highlighting the responsiveness of the model 

to changes in criterion weighting. In Case-I, the alternatives are ranked as follows: O4 is 

the top choice followed by O5, O3, O1, and O2 in the last position. In Case-II, however, the 

rankings change considerably: O4 remains the highest ranked, but O2 rises to the second 

position, followed closely by O3, O5, and O1 drops to the lowest rank. These shifts 

demonstrate that even slight variations in the weighting of criteria can lead to a reordering 

of alternatives, emphasizing the model’s sensitivity to the values assigned to different 

factors. This investigation underlines the importance of proper weight adjustment to ensure 

that the chosen alternative aligns with the desired priorities in each scenario. 
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Table 7 Results of the sensitive analysis 

Alternative Case - I Case - II 

AVi Rank AVi Rank 

O1 0.0170 4 0.02146 5 

O2 0.0164 5 0.02151 2 

O3 0.0181 3 0.02149 3 

O4 0.0233 1 0.02152 1 

O5 0.0200 2 0.02148 4 

 

Fig. 7 Radar representation of the outcome of sensitive analysis 

Further, Spearman rank correlation coefficient was conducted in the study. It showed 

that the proposed rank showed a negative correlation of -0.5 with Case-I, indicating a 

moderate inverse relationship between the two. Similarly, the proposed rank and Case-II 

exhibited a negative correlation of -0.1, suggesting a very weak inverse association. In 

contrast, the correlation between Case-I and Case-II was positive, with a value of 0.3, 

indicating a weak positive relationship between the two cases. These results provide 

insights into how the different cases and the proposed rank interact and highlight varying 

degrees of association among them. 

7. CONCLUSION 

As the entire world grapples with the challenges of a burgeoning population, the 

transition to RE emerges as a critical strategy for ensuring a robust and sustainable future. 

The need to investigate different sources of RE is critical for producing energy in situations 

where the conventional high energy return renewable resources become inconsistent and 

unreliable. In this study, geothermal reserves were identified using the most promising RS 

approach through a unique hybrid fuzzy MCDM technique. One of the distinguishing 

features of the GE is its reliability and consistency. Geothermal power generation, unlike 



 Optimizing Non-Invasive Remote Sensing for Geothermal Exploration with T-Spherical Dual Hesitant... 551 

other RE sources such as solar or wind, is not weather-dependent. It delivers continuous 

and baseload power, making it an important and consistent contributor to the global energy 

mix. RS technologies allow for the detailed mapping of surface temperatures, geological 

formations, and vegetation stress, which are indicators of geothermal activity. This minimizes 

the need for extensive ground-based surveys and drilling, reducing environmental disruption 

and lowering exploration costs. Additionally, continuous monitoring through RS supports 

the efficient management of geothermal fields, ensuring the long-term viability and minimal 

ecological impact of geothermal energy projects. The T-SDHF-LOPCOW-MUTRISS-II model 

is used to assess the difficulty of selecting an appropriate remote sensing technique for detecting 

probable geothermal reserves in India. 

Understanding the characteristics of geothermal spots prior to extraction is critical for 

drilling activities to reduce the risk of resource depletion or reservoir damage, thereby 

contributing to the overall sustainability, efficiency, and responsible management of GE 

resources. Therefore, five RS techniques were investigated under several critical criteria in 

a newly introduced T-SDHF environment. The combination of the T-SF set with the DHF 

set has proven to be a promising technique for dealing with ambiguity as well as vagueness 

in the DM process. The LOPCOW approach assessed the relative importance of each 

crucial criterion. The LOPCOW results revealed that spatial resolution and area with 

coverage were the most and least critical parameters for precisely locating the site for 

maximum energy extraction. MUTRISS-II method uses triangles to express criteria-based 

performance values and prioritizes remote sensing approaches based on the area of the 

shapes formed by these triangles. The angles between the triangles are dynamically 

calculated in MUTRISS-II. This technique revealed that the TIR approach improved the 

ability to identify minor temperature differences in a concise manner, allowing for more 

efficient exploration and usage of geothermal resources. This approach also offered useful 

information on the thermal properties of the ground. According to the sensitivity analysis, 

the suggested method is sensitive to the weights of the attributes, and the comparative 

analysis confirmed that our established structure is capable of providing a reliable remote 

sensing technique for potential geothermal reserves. 

This study, like many other scientific investigations, has some limitations. The data 

focused solely on prospective RS techniques for exploring geothermal resources in the 

Indian region, and only one DM expert was involved, limiting the breadth of informed DM. 

Additionally, the novel MUTRISS-II approach, which utilized analytic geometry to determine 

areas filled by alternatives in n-dimensional space, struggled with handling unknown variables 

in the application. While TIR is the top strategy for exploring geothermal resources, it might be 

challenging to obtain data just from this method. Surface temperature estimation is challenging 

due to limited spectral information and assumptions about air conditions or emissivity, resulting 

in inaccurate results. To overcome this constraint, varied RS data must be integrated. 

Future research could broaden the scope by incorporating data from countries across 

various regions of the world and enhancing the analysis process by including group 

knowledge. Interdisciplinary research is crucial for exploring and evaluating geothermal 

resources. Collaboration among geology, geophysics, geochemistry, geography, and 

hydrology enhances resource detection accuracy and provides a comprehensive assessment 

of potential, providing reliable foundations for energy development. Furthermore, the 

newly developed set could also be extended to incorporate other subjective weighting 

methods or MCDM techniques for identifying potential geothermal sites.  
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