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Abstract. Rolling bearing is one of the most commonly used components in rotating 

machinery, and researching fault diagnosis techniques for it has important practical 

significance. In this paper, a fault diagnosis method based on extreme learning machine 

optimized by improved whale optimization algorithm (IWOA-ELM) is proposed for 

rolling bearing vibration signals. Firstly, Variational Mode Decomposition (VMD) is 

used to decompose the vibration signal of the bearing, and the energy entropy is 

calculated to form the eigenvector. Secondly, based on the original whale optimization 

algorithm, a hybrid initialization population strategy is adopted to generate an initial 

population with a certain quality. Selecting convergence factors based on reinforcement 

learning to improve global search capability, and using adaptive weights and random 

jumps to update individual positions. In this process, the t-distribution-levy flight 

variation strategy is introduced to avoid being attracted by local extremum. Then, the 

improved whale optimization algorithm is used to optimize the input weights and hidden 

layer thresholds of the Extreme Learning Machine (ELM). Finally, the feature set is input 

into an improved ELM model for training and testing. Experiments on fault diagnosis of 

rolling bearings of different types and degrees have shown that the model proposed in 

this paper can effectively improve the accuracy of fault classification.  
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1. INTRODUCTION 

Rotating machinery plays an important role in modern society, and rolling bearings are 

critical components that impact its performance. However, the working environment of 

most rolling bearings is relatively harsh, which makes them prone to failure, resulting in 

significant economic losses and even catastrophic events. The fault vibration signal of 

rolling bearings has nonlinear and non-stationary characteristics. How to extract fault 

information from vibration signals and accurately locate bearing faults are essential for 

fault diagnosis and normal machinery operation [1-4]  

The application of machine learning methods in fault diagnosis can minimize manual 

involvement and greatly improve the accuracy of fault diagnosis, such as support vector 

machines (SVM) [5-7], backpropagation neural networks (BPNN) [8-10], and 

convolutional neural networks (CNN) [11-13]. However, these models face limitations: 

SVM needs to store large datasets, making it difficult to solve multi classification problems; 

BPNN and CNN have slow convergence speed and high computational cost, particularly 

with deeper layers. 

Extreme Learning Machine (ELM) has the characteristics of fast training speed, few 

learning parameters, strong generalization ability, and is widely used in the field of fault 

diagnosis [14-16]. Wang et al. [17] proposed a bearing fault diagnosis method based on 

ELM for adaptive parameter optimization, and introduced spectral cross-correlation to help 

select the optimal penalty factor, improving classification accuracy. In order to further 

enhance the generalization ability of ELM, Zhang et al. [18] used the Multitask Beetle 

Antennae Swarm Algorithm (MBAS) to optimize the input weights and biases of ELM, 

which can simultaneously reduce the number of conditions and regression errors. From the 

above description, it can be seen that optimizing the parameters of ELM based on 

optimization algorithms can further improve the performance of the model. Whale 

Optimization Algorithm (WOA) is a meta-heuristic algorithm developed in recent years, 

which is used to handle various optimization problems in different fields due to its 

advantage of fewer adjustable parameters [19-21]. However, as the dimensionality of the 

search space increases, WOA faces problems such as easily falling into local optima and 

slow convergence speed.  

Based on the above analysis, we propose a rolling bearing fault diagnosis method based 

on extreme learning machine optimized by improved whale optimization algorithm 

(IWOA-ELM), as shown in Fig. 1. Firstly, the variational mode decomposition (VMD) 

method is used to extract the fault signal features of rolling bearings, which are then divided 

into a training set and a testing set. Then, based on the WOA, a hybrid initialization 

population strategy, a convergence factor selection based on reinforcement learning, an 

adaptive weight and random jump update strategy, and a t-distribution-levy flight variation 

strategy are introduced to solve the problem of the algorithm falling into local optimum. 

Finally, the IWOA was used to optimize the parameter settings of the extreme learning 

machine, thereby improving the speed and accuracy of bearing fault diagnosis. The IWOA-

ELM algorithm was compared with WOA-ELM, PSO-ELM, GWO-ELM, and the 

experimental results verified the effectiveness of the improved rolling bearing fault 

diagnosis method proposed in this paper. 
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Fig. 1 Methodological framework of this study 

2. SIGNAL DECOMPOSITION AND FEATURE EXTRACTION 

2.1 VMD Theory 

VMD is an innovative and adaptive signal processing method [22] that can solve the 

common endpoint effects and mode component mixing problems in Empirical Mode 

Decomposition (EMD). VMD decomposes the initial signal into k discrete sub-signals, 

ensuring that each decomposition represents a finite bandwidth modal component centered 

at a specific frequency. At the same time, the sum of estimated bandwidths for each 

modality is minimized, and the sum of all modes is equal to the original signal as a 

constraint. The constraint variational expression can be written as: 
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where, k is the number of decomposed modes. The symbols {uk} and {ωk} refer to the kth 

mode component and center frequency after decomposing, respectively. (t) is the Dirac 

function where t represents time. * is the convolution operator. 

Furthermore, we introduce the Lagrange multiplication operator  and the quadratic 

penalty factor  to find the optimal solution for the constrained variational problem, and 

obtain the augmented function: 
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where, α is a quadratic penalty factor used to reduce the interference of Gaussian noise. 

The alternate direction method of multipliers (ADMM) iterative algorithm combined with 

Parseval/Plancherel and Fourier isometry transform is used to optimize each eigenmode 

component and center frequency, and to search for saddle points of the extended 

Lagrangian function. The expressions for uk, ωk, and λ change after alternating optimization 

iteration is as follows: 
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where, γ is the noise margin, 
1ˆ ( )n

ku 
, ˆ ( )iu  , ˆ ( )f   and ˆ( )   correspond to the 

Fourier transforms of uk
n+1(t), ui(t), f(t) and λ(t) respectively. The main iterative VMD 

solution process is as follows: 

(1) Initialize 
1 1 1ˆˆ , ,k ku    and set the maximum number of iterations N, n←0; 

(2) Using Eqs. (3) and (4), update ûk and ωk; 

(3) Update ̂  using Eq. (5); 

(4) Accuracy convergence criterion ε>0, if n<N and
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satisfied, return to the second step. Otherwise, the iteration is completed.  

2.2. Extraction of Feature: Energy Entropy 

Yu [23] proposed the theory of energy entropy, and judged the fault information of 

rolling bearings based on the difference in energy by different frequency bands. The energy 

for any part of the waveform is defined as: 
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where, N is value of sample points of the ith IMF, and xik is the the amplitude. 

Decompose the original vibration signal into n IMF vibration components, and the 

energy of each IMF component is Ei. The energy of the original vibration wave is 
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The corresponding energy entropy equation is: 
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3. IWOA-ELM MODEL 

3.1 ELM theory 

ELM is used to train single hidden layer feedforward neural networks (SLFN). Fig. 2 

illustrates the network structure of ELM. 

 

Fig. 2 The network structure of ELM 

Assuming there are N random samples (xi, ti), i = 1, 2,…, N, where

 1 2, , ,
T n

i i i inx x x x R   and  1 2, , ,
T m

i i i int t t t R  . For a SLFN with L hidden layer 

nodes and an activation function g(x) can be calculated: 
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where, ωi, bi, and βi represent the input weight, deviation, and output weight of the ith node 

in the hidden layer. We can use a matrix to represent it: 𝐻𝛽 = 𝑇, where H is the output of 

the hidden layer node, β is the output weight, and T is the output matrix.  
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Thus, the output weight is: 

 H T   (12) 

where, H+ is the Moore-Penrose generalized inverse of H. 

3.2 WOA Theory 

In WOA algorithm, each whale represents a set of solutions and can be optimized by 

its location and speed. When a whale detects its prey, it performs a spiral motion around it 

and releases a bubble net to trap the prey. The whale individuals can interact with each 

other in various ways, including "encircling prey," "bubble net attack," and "search for 

prey," which are described as follows:  

3.2.1. Encircling Prey 

During hunting, whales will continuously update their position and swim towards their 

prey after determining its location. In the solution space of the algorithm, assume that the 

position of the individual whale close to the prey is the optimal position. Other individual 

whales follow the best whale to update their position and gradually approach their prey. 

The above behavior is expressed as: 
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where, t is the current number of iterations, *X  is best position, X  is current position 

of an individual whale, D stands for distance. A  and C  are coefficient vectors, which 

are calculated as follows:  
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where, a is the convergence factor with its value decreasing linearly from 2 to 0 during the 

iteration, M is the maximum number of iterations. 
1r  and 

2r  
are both random vectors 

in [0,1]. 

3.2.2. Bubble-Net Attacking Method (Exploitation Phase) 

At this stage, the shrinking encircling mechanism of the WOA algorithm is shown in 

equation (13). In addition, after determining the position of the prey, the humpback whale 

will move along the spiral towards the prey and update its individual position. The 

mathematical model is as follows:   

 
' *
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where, 
'

D  is the distance between the current whale's position and the best whale's 

position. b is a logarithmic spiral shape constant, and l is a random value between [-1,1]. 

The two hunting behaviors of shrinking encircling and spiral movement are performed 

simultaneously. These two actions are selected by setting the parameter p, where p is a 

random number between [0,1], and the probability of p<0.5 and p ≥ 0.5 is 50%. The 

mathematical model is as follows:  
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3.2.3. Search for Prey (Exploration Phase) 

At this stage, the behavior of whales is controlled by coefficient vectors A  to expand 

the search range and improve search capabilities. When the value of A is not within the 

range of [-1,1], individual whales will randomly select other whales as guides to update 

their position. The mathematical model is as follows: 

 ( 1) randX t X A D     (21) 

 ( )randD C X X t    (22) 

where,
randX is a vector of random individual positions. 

3.3 Improved Whale Optimization Algorithm 

The WOA algorithm was briefly summarized in the previous section. In order to 

improve the algorithm's ability and efficiency in finding the global optimal solution, this 

section proposes IWOA. A hybrid initialization population scheme is designed based on 

the original WOA. Meanwhile, we select convergence factor based on reinforcement 
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learning and design adaptive weight. The random jump update strategy and t-distribution-

levy flight variation strategy are implemented to improve the search ability of the algorithm. 

3.3.1. Hybrid Initialization 

In this section, we use improved Tent chaos mapping and opposition-based learning to 

initialize the population, and design a random exchange strategy for disadvantaged 

populations. 

(1) Improved Tent chaos mapping 

Tent chaotic mapping is a piecewise linear mapping that has more uniform traversal 

and faster search speed than Logistic chaos mapping. The expression of Tent chaos 

mapping is: 
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The expression after Bernoulli shift transformation is: 

  1 2 mod1i ix x   (24) 

To prevent the Tent chaotic sequence from getting stuck in unstable periodic points 

during the iteration, Zhang [24] introduced a random variable to the original Tent chaotic 

mapping equation as follows: 

 

 

   
1

1 1
2 0,1         0

2

1 1
2 1 0,1      1

2

i

i

i

x rand x
N

x

x rand x
N




   

 
     


 (25) 

The expression after Bernoulli shift transformation is: 

    1

1
2 mod1 0,1i ix x rand

N
     (26) 

where N is the number of particles within the sequence. 

(2) Opposition-based learning 

Opposition-based learning mechanism can effectively improve the quality of the 

population and is applied to the improvement of various optimization algorithms. The 

expression of OBL is as follows: 

  ix lb rand ub lb    (27) 

 
'

i ix lb ub x    (28) 

where rand is a random value on the interval [0,1], lb and ub are the upper and lower 

bounds of the search space, respectively. Applying the OBL idea to the randomly generated 
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N initial solutions  1 2, , ,N nX x x x  to obtain N reverse solutions 

 1 2, , ,N nX x x x    . In the process of searching for the optimal solution, the current 

solution and the reverse solution are simultaneously searched, and the better solution 

among them is taken as the problem solution, which can expand the search scope and 

improve the search efficiency of the algorithm. The initial solutions generated by chaotic 

mapping and opposition-based learning are mixed into a population with 2N initial 

solutions, and then the N initial solutions with smaller fitness values are selected according 

to the ranking of fitness values. This move can reduce the loss of good solutions. 

(3) Random exchange of inferior populations 

In order to further improve the quality of the initial population, two different individuals 

were randomly selected from the N initial solutions with poor fitness generated in the 

previous step to form a group (total N/2 groups). The algorithm randomly select K non 

repeating positions for each individual in each group, and replace the K positions of 

individual 1 with those of individual 2. Similarly, perform the same operation on individual 

2 to generate N new initial solution individuals. Then the fitness value of each individual 

is calculated and compared with the previous N smaller initial solutions, and the N initial 

solutions with smaller fitness values are selected. The random exchange operation for the 

inferior groups is shown in Fig. 3. 

 

Fig. 3 Random exchange 

3.3.2. Improved Hunting Patterns 

(1) Adaptive weight 

In order to improve the ability of traditional WOA algorithms to find optimal solutions, 

we introduce an exponentially changing adaptive weight during the algorithm's prey 

encirclement stage. The algorithm uses larger weights in the early stage to improve its 

global search ability, but when approaching the optimal solution, the weight values 

decrease exponentially to enhance the algorithm's local optimization ability. The weight 

expression can be written as: 
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e
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Taking the above equation into Eq. (20), the individual position update model for the 

encircling prey stage is obtained: 

 
'

*

*

                         0.5
( 1)

       

( )

cos 5(2 ) ( 0t) .bl

X A D p
X t

X p

t

D e l

   
  

     

 (30) 

where T is the highest number of iterations and t is the current number of iterations. 
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(2) Random jump update strategy 

The superiority of WOA in the population iteration process depends on the search agent 

selected from the previous generation of the population. From Eqs. (21) and (22), it can be 

derived that the search agent position update during exploration is based on a randomly 

selected individual, and the new population convergence speed and accuracy are 

necessarily affected by the random individual. To address this phenomenon, a random 

jump update strategy is used to select the search agent more efficiently. The improved 

formula is as follows: 

 ( )randD XC X t   (31) 

    1X t C D C X t      (32) 

(3) Reinforcement learning based convergence factor selection 

Whales act ‘nonlinearly’ in the real hunting process, and the linear descent strategy 

used by traditional algorithms cannot fully reflect the true situation of WOA. Therefore, 

this paper adopts different nonlinear control strategies to optimize the convergence factor 

a. 

Ref [25] uses a nonlinear convergence factor based on sinusoidal function to improve 

whale optimization algorithm, and its mathematical model is: 

    sin / 2max max mina a a a t T    . (33) 

On this basis, several adjustment strategies for control parameter a were proposed in 

references [26, 27], such as: 

Nonlinear decreasing strategy based on quadratic function: 

   
2

/max max mina a a a t T    (34) 

Nonlinear decreasing strategy based on logarithmic form: 

     ln 1 e 1 /max max mina a a a t T      (35) 

Through numerous experiments in references [26, 27], it can be seen that the 

convergence factor adjustment strategy has different effects on the utility of test functions. 

In order to investigate the experimental effect, the various adjustment strategies are 

considered as actions, and a suitable action is chosen to control the position of the whale at 

each step of the whale hunt. In addition, the possibility of making the right decision is 

greater if one can consider a few more steps forward before making a decision. Therefore, 

when whales choose actions, the effectiveness of multiple evolutionary steps can be judged 

by evaluating the advantages and disadvantages of different actions, which increases the 

whales' ability to find the best. 

Reinforcement learning can gradually learn the optimal action policy by selecting the 

action that maximizes the agent’s cumulative return with discount. Q-learning is a model 

independent reinforcement learning algorithm that obtains the optimal action strategy 

through multi-step learning of the agent to find the action with the maximum discounted 

return. If the adjustment strategy of the convergence factor is regarded as an action, the 

individual whale’s choice of the optimal adjustment strategy is transformed into the agent’s 
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choice of the optimal action. Based on this, the standard whale optimization algorithm, Eq. 

(33), Eq. (34), and Eq. (35) four convergence factor adjustment strategies are selected as 

the set of actions in this paper. 

The basic format of Q-learning is 

      , , max ,
a

Q s a r s a Q s a


   (36) 

where, r(s,a) is the immediate reward of the agent after taking action a in state s. s and s 

represent the two states of the agent, while a and a represent the two actions of the agent. 

γ(0≤γ<1) is the discount factor, and max Q(s,a) denotes the agent the maximum value of 

the reward that can be obtained by choosing a different action in the next state s. 

Assume that the set of operations available to the agent in any state is 

 1 2, , , nA a a a  . If the first action taken by the agent is a, then the revenue when the 

agent chooses the action a after m+1 steps is calculated as: 

             1 22 mmQ a r a Q a Q a Q a        (37) 

where, a, ( )ia A , and 1 i m  , the parameter m controls the number of steps to 

calculate the Q value looking forward. 

With the above Q-learning algorithm, the mapping between WOA and Q-learning 

algorithm can be achieved by considering the whale as an agent and various distance 

control parameter adjustment strategies as a set of agent actions. For any individual whale 

in the WOA, looking forward m+1 steps, the gain Q(a) when the whale chooses action a 

can be calculated by Eq. (37). Define the individual immediate gain, r(a) = fp(a)- fo(a). 

Here, fp(a) is value of fitness function corresponding to parent whale individual and fo(a) 

is value of fitness function about offspring whale individual generated after selecting action 

a. If the number of optional actions of whales is n, then nm whales will be generated after 

m times of evolution. To calculate the optimal evolutionary strategy for the whales, an 

exponential calculation is required, which is too computationally intensive. For this 

purpose, the probability of each offspring being retained is calculated using the Boltzmann 

distribution: 

      / /

1
/i i

nr a T r a T

i i
p a e e


   (38) 

Furthermore, the highest probability of the n whale offspring generated will be retained. 

After this simplification, only one of the n offspring produced by a whale after one 

evolution is preserved during the evolution process, which greatly reduces the complexity 

of the algorithm. The convergence of the evolutionary planning algorithm based on Q-

learning is proved in the [28]. The proof process of WOA is similar, and its convergence 

will not be proved in this paper due to the limitation of space. 

3.3.3. T-Distribution-Levy Flight Variation Strategy 

(1) T-distribution variation strategy 

T-distribution has a degree of freedom parameter of n and its probability density 

function is: 
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 (39) 

For each whale, the algorithm generates a random number in the [0,1]. If the variation 

probability is greater than the generated random number, t-distribution perturbation is 

applied to it. The specific location update method is as follows: 

 ( )j j

new best

j

bestx x t iteration x =  (40) 

where, t(iteration) is the t-distribution with degree of freedom parameter as the number of 

iterations.  

j

bestx  and  

j

newx  are the positions of the optimal whale individual in the jth 

dimension before and after variation perturbation, respectively. If the new solution after t-

distribution perturbation has a better fitness value, the old solution is replaced; otherwise, 

the old solution is retained. 

(2) Levy flight strategy 

Levy flight is a search method that obeys levy distribution [29]. This paper introduces 

the Levy flight strategy into the whale optimization algorithm after T-distribution 

perturbation. By conducting small-scale exploration around the optimal solution, the search 

area of the algorithm is further increased to avoid the population falling into local optima. 

The location update formula is 

( )k k

new bestx x levy  
                           (41) 

where, levy(β) is a method to generate random numbers that obey the levy distribution. In 

this paper, we take advantage of the normal distribution to resolve random numbers [30]. 

The steps to generate random numbers submitted to levy distribution are as follows: 

 
1

~ ( )
u

s levy

v 

   (42) 

where, u obeys a normal distribution, i.e.  2~ 0,u N  , and v obeys a standard normal 

distribution, i.e.  ~ 0,1v N . The value of σ is taken as follows: 

 

1

1

2

sin

2

2

1

2













 
    
  
  

   
  

 (43) 

Generally speaking, the range of values for β is 1≤β≤3, which is taken as 1.5 in this 

paper. 
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3.3.4. IWOA Algorithm Performance Test 

In order to verify the feasibility of the algorithm, 8 benchmark test functions are chosen 

to evaluate the IWOA algorithm. Table 1 displays the test functions. For each benchmark 

function, IWOA is compared with WOA, OBCWOA [31], REMWOA [32], GWO [33] and 

GOA [34], SSA [35]. The population size is set to 30 and the maximum number of iterations 

is 500.The parameters of the OBCWOA method are configured as follows: a=4, k=1. The 

relevant parameters of GOA algorithm are cmax=1 and cmin=0.00004. The SSA algorithm is 

set to ST=0.8, the proportion of producers is 20% and the proportion of scouts is 10%. 

Table 1 Functions for testing  

 

Fig. 4 illustrates the iterative optimization process of several algorithms. It can be seen 

that the original WOA has a slow convergence rate. Although the convergence speed of 

OBCWOA and REMWOA has improved, it is easy to fall into local optimum in different 

test functions. IWOA improves the original whale optimization algorithm by using 

multiple optimization strategies and improves the optimization capability of WOA. The 

IWOA algorithm can jump out of local optima and find the optimal solution of the function 

in a timely manner even when encountering local optima, which improves the optimization 

performance of the algorithm. 
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(a)  

(b)  

(c)  

(d)  
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(e)  

(f)  

(g)  

(h)  

Fig. 4 Convergence curves of 8 test functions:  

(a) f1(x); (b) f2(x); (c) f3(x); (d) f4(x); (e) f5(x); (f) f6(x); (g) f7(x); (h) f8(x) 
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All algorithms were executed 30 times on the 8 benchmark functions, and the average 

values were computed. The results of experiment are given in Table 2. 

Table 2 Optimization performance of 8 benchmark functions 

Table 2 illustrates that the WOA is particularly obvious disadvantaged when solving 

for the optimal value of high dimensional functions. The reason for this result is that there 

are three ways to update it, but only one way of obtaining the exploration, and the 

probability of getting it is low. Therefore the WOA is prone to falling into local optima. 

Compared with WOA, the algorithm used in this paper improves the convergence accuracy 

of the algorithm in later iterations through the choice of convergence factors and the 

variational strategy. Meanwhile, compared with other improved WOA, IWOA can also 

effectively solve the problem of algorithm falling into local extremes. It shows significant 

advantages over several other algorithms about convergence accuracy and stability. 

3.4 IWOA-ELM Fault Diagnosis Model 

In this section, the IWOA algorithm is selected to optimize the input weights and biases 

of the ELM model, and use the training set error rate and validation set error rate of the 

extremum learning machine as fitness values, as described in equation (44), in order to 

improve the accuracy and generalization ability of the ELM model classification. The 

feature set is divided into training set, validation set and testing set as the input of ELM, 

and the minimum fitness value Fmin and population extreme value Gbest and individual 

extreme value Pbest are obtained. The optimal solution, individual extreme value Pbest and 

population extreme value Gbest are updated iteratively until the best fitness value is obtained 

or the maximum number of iterations is reached, and the optimal hidden layer weights and 

bias are obtained.  

 2 train verifyfitne Accuracyss Accuracy    (44) 

where, Accuracytrain and Accuracyverify represent the correct classification ratio of training 

set and validation set, respectively. The procedure of IWOA-ELM model is shown in Fig. 

5. 

Function WOA REMWOA OBCWOA IWOA GOA SSA GWO 

f1(x) 5.97×10-72 1.26×10-290 2.06×10-262 0 93.63 3.99×10-60 1.00×10-27 

f2(x) 6.11×10−52 1.26×10−147 6.55×10−135 0 77.88 1.79×10−30 7.39×10−17 

f3(x) 43722.24 1.27×10−233 6.4×10−225 0 2007.86 2.63×10−24 3.92×10−5 

f4(x) 0.003952 8.29×10−5 9.39×10−5 7.25×10-5 0.463665 0.001386 0.002197 

f5(x) 0 0 0 0 189.4202 0 2.3886621 

f6(x) 4.32×10−15 8.88×10−16 8.88×10−16 8.88×10-16 8.60 8.88×10−16 1.05×10−13 

f7(x) 0.014453 0 0 0 2.535341 0 0.002539 

f8(x) 0.000584 0.000352 0.000714 0.000397 0.009826 0.000332 0.005038 
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Fig. 5 Fault diagnosis flowchart 

4. EXPERIMENTAL STUDY 

4.1 Equipment and Data  

In this paper, we used data from both normal and faulty rolling bearings, which were 

provided by Case Western Reserve University (CWRU). Fig. 6 illustrates the experimental 

simulation platform of CWRU. The experimental setup includes a 2 hp motor, a torque 

transducer, a dynamometer, and the corresponding control electronics. During the 

experiment, vibration signals were collected using an accelerometer with a sampling 

frequency of 12 kHz. 

Case 1: Vibration signals for different fault conditions were diagnosed under varying 

loads, with the fault diameter in the rolling bearings kept constant. The data that collected 

from the 6 o'clock position at the 12K drive end serves as the primary source, including 

fault damage diameter of 0.36mm inner and outer rings, rolling elements, and normal 

bearing data. The specifics of the bearing data are provided in Table 3. 

Case 2: Diagnose vibration signals under different fault diameters while keeping the 

load on the rolling bearing constant. The data source acquisition method remains 

unchanged, including the normal state of the bearing inner ring and the fault damage 

diameters of 0.18 mm, 0.36 mm, and 0.53 mm, respectively. The bearing data are presented 

in Table 4. 
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Fig. 6 Baring fault simulation test-bed 

Table 3 Overview of the data sets for Case 1 

Table 4 Overview of the data sets for Case 2 

4.2 Proposed Model Evaluation 

4.2.1. Experiment 1 Validation 

Among the collected data, we selected 120,000 vibration signal samples and 10 seconds 

sampling time. The vibration signals were divided into 400 segments, each containing 300 

points. The time-domain waveform of the initial signal is shown in Fig. 7. From Fig. 7, it 

can be seen that identifying the fault type from the time-domain waveform is challenging 

and can be time-consuming even when successful, highlighting the urgent need for the 

proposed diagnostic method. We use VMD to decompose the vibration signal of rolling 

bearings, with VMD decomposition K and penalty factor α values of 4 and 1989, 

respectively [36]. Fig. 8 illustrates the modal components along with their corresponding 

frequency domain diagrams for various fault types. It can be seen from Figure 8 that the 

energy in the low-frequency range is more pronounced for the normal state, while the inner 

and outer ring failures exhibit the highest energy in their respective frequency bands. The 

rolling element fault shows significant energy distribution in both low and high-frequency 

ranges. Short-duration low-frequency pulses in the vibration signal indicate shock events 

due to partial damage in the bearing. Additionally, the signal contains resonant components 

Bearing status Fault diameter(mm) Acronym Label 

Normal 
Ball fault 
Inner race fault 
Outer race fault 

- N 1 

0.36 BF 2 

0.36 IRF 3 

0.36 ORF 4 

Bearing status Fault diameter(mm) Acronym Label 

Normal 
Inner race fault 

- N 1 

0.18 

0.36 

0.53 

IRF-0.18 

IRF-0.36 

IRF-0.53 

2 

3 

4 
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generated by these shock events, which excite high-frequency intrinsic vibrations, 

modulated by their amplitude. 

Finally, the IMFs constituents obtained from the signals of the four fault types are 

decomposed according to the VMD and the energy entropy is calculated. The characteristic 

sample sets are obtained by VMD decomposition and calculation of energy entropy, with 

300 sets per sample set and a total of 1200 sets. From each group, 250 groups are randomly 

selected, of which 600 groups are used as the training sample set and 400 groups are used 

as the test sample set. Set the population size of IWOA N=20, the maximum value of 

iterations M=50, amax=2, amin=0, Q-learning discount factor γ=0.5, m=3, the value of nodes 

of ELM hidden layer is set to 100. The parameters of the ELM network weights and 

thresholds are optimized by the IWOA. Table 5 shows the results of diagnosing four fault 

states using the IWOA-ELM method. The accuracy of fault diagnosis for the training 

samples is 98.83%, and for the test samples, it is 97.5%. These findings indicate that the 

method successfully identify all four fault states of rolling bearings. 

(a)   

(b)  

Fig. 7 The time-domain waveforms of rolling bearing fault types: (a) Case 1; (b) Case 2 
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(a)  

(b)  

(c)  
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(d)  

Fig. 8 Modal components and frequency distribution diagrams obtained after fault 

decomposition: (a) Normal; (b) Ball fault; (c) Inner race fault; (d) Outer race fault 

Table 5 Diagnostic performance results for samples in diverse fault scenarios, divided 

into training and test groups. 

4.2.2. Experiment 2 Validation 

In the data collected, we selected 120,000 vibration signal samples from normal and 

three bearing inner rings with different degrees of failure (sampling time: 10 seconds). The 

vibration signals were divided into 400 segments, each containing 300 points. Fig. 7 shows 

the time-domain waveform of the raw vibration signal. Decompose the vibration signal of 

rolling bearings using VMD, with the decomposition number K and the penalty factor α 

value of 4 and 1992, respectively. Fig. 9 displays the modal components and their 

frequency plots for inner ring of the bearing after fault decomposition at damage levels of 

0.18 mm and 0.53 mm. Since the normal state and the 0.36 mm fault diameter have been 

discussed, we will not elaborate further here. As shown in Fig. 9, the energy associated 

with the inner ring failure is primarily focused on in the mid-frequency range. Furthermore, 

for the same section of the bearing, the amplitude corresponding to specific frequencies 

increases with the degree of damage. This comparison shows that as a bearing transitions 

from a normal state to a failed state, the primary energy in its spectrum is gradually 

transferred from low frequency band to middle frequency band. Subsequently, we 

calculated the energy entropy of IMF based on VMD decomposition of normal state signals 

and three types of fault vibration signals in the inner ring. 

Bearing 

status 

Training Number/testing 

samples 

 BF IRF ORF Training 

accuracy 

Testing 

accuracy 

N 150/100 149/99 1/1 0/0 0/0 99.33% 99% 

BF 150/100 1/1 147/97 1/2 1/0 98% 97% 

IRF 150/100 0/0 0/2 148/95 2/3 98.67% 95% 

ORF 150/100 0/1 0/0 1/1 149/98 99.33% 98% 
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(a)  

(b)  

Fig. 9 Frequency domain diagrams show inner ring damage with diameters of: 

(a) 0.18 mm and (b) 0.53 mm 

Finally, 1200 sets of feature samples were obtained through VMD decomposition and 

energy entropy calculation, including 300 sets for each of the three different fault degrees 

and normal states. Randomly select 250 groups from each group, with 600 groups as 

training samples and 400 groups as testing samples. Set the population size of IWOA to 

N=20, the maximum iterations number M=50, amax=2, amin=0, Q-learning discount factor 

γ=0.5, m=3, the ELM activation function is a sigmoid function, and the number of hidden 

layer nodes is 100. The weights and thresholds of ELM are optimized through IWOA. The 

results of using IWOA-ELM to diagnose normal state and three different degrees of fault 

samples in the bearing inner race are shown in Table 6. The diagnosis accuracy reached 

99% for the training samples and 96.75% for the test samples. This discrepancy may be 

attributed to certain failure feature parameters being less distinct at varying degrees of 
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failure damage, making it challenging to differentiate between states. However, with the 

increase of the degree of failure, salient characteristics of the characteristic parameters of 

the failure state become more obvious. 

Table 6 Comparison diagnostic results on training and testing samples across multiple 

fault severity levels 

4.3 Comparison of Different Fault Diagnosis Models 

In order to verify the effectiveness of optimization algorithm in improving the accuracy 

of fault diagnosis, we compared it against several other methods, including SVM, ELM, 

PSO-ELM, GWO-ELM, and WOA-ELM. The population sizes for IWOA, WOA, and 

GWO were all set to 30, with a maximum of 100 iterations. The PSO algorithm was 

configured with a population size of 30 and executed for 100 iterations, setting the 

maximum particle velocity to 0.8 and the minimum particle velocity to -0.8, and the inertia 

weight to 0.9. For extreme learning machines, g(x) was the sigmoid function and there 

were 100 hidden layer nodes. In the case of the SVM, the penalty coefficient was chosen 

as C=2 and the kernel width coefficient was set as g=0.2. The diagnostic results of different 

fault diagnosis methods for Case 1 and Case 2 are shown in Table 7 and Table 8, 
respectively. The convergence curves and comparison between predicted and actual results 

are shown in Fig. 10 and Fig. 11, respectively. 

Comparing the results in Tables 7 and 8, the IWOA-ELM model achieved the highest 

fault identification accuracy for both different types and levels of bearing fault diagnosis  

Table 7 Diagnosis results of different fault diagnosis methods for Case 1 

Table 8 Diagnosis results of different fault diagnosis methods for Case 2 

Bearing status Number of samples N IRF − 0.18  IRF − 0.36  IRF − 0.53  Training accuracy 

Testing accuracy 

N 150/100 149/99 0/0 1/0 0/1 99.33% 99% 

IRF-0.18 

IRF-0.36 

IRF-0.53 

150/100 0/1 145/90 5/9 0/0 96.67% 90% 

150/100 0/0 0/0 150/100 0/0 100% 100% 

150/100 0/1 0/0 0/1 150/98 100% 98% 

Model Training accuracy rate Testing accuracy rate 

IWOA-ELM 98.83% 97.5% 

WOA-ELM 98.67% 95.5% 

GWO-ELM 98.33% 95% 

PSO-ELM 98.17% 95% 

ELM 98.17% 90.5% 

SVM 92% 91.25% 

Model Training accuracy rate Testing accuracy rate 

IWOA-ELM 99% 96.75% 

WOA-ELM 98.17% 96% 

GWO-ELM 98% 94.75% 

PSO-ELM 98.17% 94.75% 

ELM 98% 92.75% 

SVM 96.17% 94.5% 
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in the training set samples. This suggests that the model effectively leverages the training set, 

resulting in optimal training outcomes. The test set samples further validate this conclusion, 

as the IWOA-ELM  model also achieves the highest diagnostic accuracy. Furthermore, 

comparing the fault diagnosis results with and without optimization shows that the optimized 

method consistently outperforms the unoptimized approach in terms of accuracy. In addition, 

while the ELM diagnostic model surpasses the SVM model on the training set, the SVM 

model performs better on the test set. This discrepancy highlights the differing applicability 

of these methods to various forms of fault diagnosis, leading to varying diagnostic results. 

However, this does not affect the diagnostic conclusions. The convergence curves of the 

different diagnostic models in Figs. 10 and 11 show that the IWOA-ELM diagnostic model 

gets better fitness values relative to the optimized ELM diagnostic model by other algorithms 

at the same number of iterations. 

(a)  

(b)  

Fig. 10 Comparison of different fault diagnosis models under Case 1: 

(a) The convergence curves; (b) Comparison of test set prediction results 
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(a)  

(b)  

Fig. 11 Comparison of different fault diagnosis models under Case 2:  

(a) The convergence curves; (b) Comparison of test set prediction results 

5. CONCLUSION 

The setting of parameters has a significant impact on the performance of recognition 

algorithms for rolling bearing fault diagnosis. In response to this issue, the paper introduces 

an improved whale optimization algorithm into rolling bearing fault detection and proposes 

a fault diagnosis model based on the IWOA-ELM algorithm. Firstly, the VMD method is 

used to decompose the vibration signals of rolling bearings, and the energy entropy values 

of IMF decomposed for different scenarios are calculated. Furthermore, multiple 

optimization strategies are used to improve the performance of the WOA algorithm, and it 

is combined with ELM to optimize the input layer weights and hidden layer thresholds. 

Comparing the improved algorithm with SVM, ELM, GWO-ELM, PSO-ELM, and WOA-
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ELM algorithms, the diagnostic results show that the rolling bearing fault diagnosis method 

based on IWOA-ELM can effectively improve the convergence speed and have a higher 

recognition rate. The idea proposed in this paper of optimizing ELM related parameters 

through improved optimization algorithms to enhance the performance of rolling bearing 

fault diagnosis can provide some reference for future research on rolling bearing fault 

diagnosis. 
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