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Abstract. The increasing urgency for sustainable transportation solutions necessitates a 

thorough examination of energy efficiency within railway systems. This study investigates 

the energy performance of Siemens Ventus (i.e., Siemens Desiro ML type) electric 

multiple units on Austria's Raaberbahn network, focusing on route-specific energy 

consumption and the optimization of regenerative braking. Utilizing data collected from 

January to May 2023, the research employs a robust methodology that integrates 

statistical analysis, curve-fitting, and geospatial modeling to assess energy trends along 

routes connecting Vienna, Bratislava, and Deutschkreutz. The findings reveal that 

terrain, operational practices, and external environmental factors significantly 

contribute to energy inefficiencies. Specifically, hotspots of energy overconsumption 

were identified, leading to the development of tailored optimization models for each 

route. The analysis also produced heatmaps that illustrate critical spatial and temporal 

patterns, which are essential for implementing targeted interventions aimed at enhancing 

energy efficiency. 
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1. INTRODUCTION 

In the nineteenth century, steam locomotives played an essential role in connecting 

societies and boosting economic growth by bridging distances and fostering economic 

interconnectivity like never before [1]. The steam era laid the groundwork for future 

transportation advancements. It should be mentioned that aviation, space exploration, and 

maritime navigation, which also represent significant advances in human mobility, have 

increased global transportation efficiency, safety, and accessibility. The most considerable 

improvement and development started primarily following the Industrial Revolution. 

These advancements have collectively changed how people navigate their world, making 

it more connected and accessible [2]. Furthermore, fixed-rail systems [3-6] have played an 

essential role in this transportation evolution due to their inherent efficiency and 

dependability. They improve capacity, reliability, and energy efficiency, thereby 

strengthening the infrastructure of modern transportation and logistics networks [7-9]. 

The European Union's emphasis on multimodal transportation systems, particularly 

railways, demonstrates a strategic approach to improving supply chain management. This 

focus reflects an appreciation for efficient, dependable transportation's critical role in the 

economy [1]. Railway transportation, known for its punctuality and environmental 

friendliness, is highly valued in mass rapid transit systems. It emphasizes the transition to 

more sustainable modes of transportation, which is critical in today's environmentally 

conscious society [7]. Furthermore, a customer satisfaction analysis in the context of 

railway transport reveals how passenger satisfaction significantly impacts the relevance of 

railway transport. This insight emphasizes the importance of understanding and meeting 

passenger needs to keep railway services competitive and appealing [10]. Research into 

green freight railway operations highlights the importance of traffic management and 

transportation engineering. This emphasis is critical in reducing the environmental impact 

of freight transportation while demonstrating a commitment to sustainable logistics 

practices [11]. Furthermore, the life cycle assessment of Belgian railway freight highlights 

the significant environmental considerations, particularly electricity use, involved in 

railway operations, emphasizing the importance of environmentally friendly practices in 

the industry [12]. 

The transportation of hazardous materials by railway raises several complex safety, 

human, and environmental concerns. Because of its complexity, it is an essential area of 

research for policymakers and stakeholders who must navigate these challenges to ensure 

safe and responsible transportation [13]. Furthermore, railway transportation addresses the 

dual challenges of traffic congestion and environmental degradation. Railways play an 

essential role in achieving a more sustainable future by promoting sustainable development 

in densely populated urban areas as well as long-distance passenger and freight transport 

[14]. Railways, with a lower carbon footprint in the supply chain decarbonization process 

than trucks, emerge as a more environmentally friendly option, emphasizing the 

significance of rail transport in the larger context of environmental sustainability [15]. The 

impact of high-speed railway construction on the sustainability of urban agglomerations 

highlights the sector's commitment to reducing environmental impacts, focusing on the 

railways' role in shaping sustainable urban landscapes [16]. 

The role of transportation sustainability in Chinese higher education demonstrates the 

societal impact of the railway system. It emphasizes the broad implications of 

transportation infrastructure for social development and well-being [14]. Globally, 
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transportation systems increasingly rely on electric traction and fixed-rail technology, 

indicating a shift toward more environmentally friendly and efficient modes of 

transportation. This shift is critical in addressing modern transportation challenges, such as 

increased energy efficiency and reduced environmental impact [17]. The advantages of 

electric traction batteries in terms of energy efficiency and performance highlight the 

advancements in transportation technology driving the transition to more sustainable 

mobility solutions [18]. Addressing the challenges of power quality and energy efficiency 

in railway transport electric traction systems, particularly in AC-electrified railway inter-

substation zones, is critical for improving their performance and sustainability [17]. 

The creation of theoretical frameworks for calculating rational modes of traction 

electrical equipment operation is critical for comprehending and mitigating the 

environmental effects of electric traction systems. Such frameworks are crucial for 

developing more sustainable transportation solutions [19]. The competition between 

electric and combustion traction highlights the environmental benefits of electric vehicles, 

emphasizing the significance of sustainable transportation in the larger context of 

ecological stewardship [20] – emphasizing the relevance of mechanical engineering 

[21,22]. Urban electric traction drives, with their emphasis on improving energy 

performance, reflect ongoing efforts to reduce the environmental impact of transportation, 

which aligns with global sustainability goals [23]. 

Because of the high electrical energy losses associated with traffic, DC traction railway 

networks are being scrutinized for increased energy efficiency and sustainability. This 

necessity drives traction drive control system efficiency research, mathematical models for 

onboard energy storage, and power quality. These research efforts are critical to the 

development of more environmentally friendly and efficient railway and electric traction 

systems [24-26]. Furthermore, strategies for reducing the environmental impact of AC 

traction substation electric energy quality are vital in minimizing electric traction systems' 

ecological footprint [27]. The study of electric motors for electric vehicles, encompassing 

efficiency, cost, reliability, innovation, and controllability, is crucial for comprehending 

the environmental impact of fixed-rail transportation and electric traction, pointing to the 

need for continuous innovation in this field [28]. Intermittent electrification and the 

analysis of the annual variation in energy consumption of commuting electric vehicles are 

strategic approaches to decarbonizing traction energy, reflecting the importance of 

sustainability in the evolution of transportation systems [28,29]. Enhancing transportation 

system sustainability through electrical traction transmission by influencing railway 

vehicle dynamics showcases the potential for reducing environmental impact through 

technological advancements [30]. 

The efficiency of electric vehicles is closely linked to the optimization of train 

schedules, utilizing the longitudinal dynamic electric vehicle model of Sun et al. [31] for 

this purpose. This optimization, including using data to identify battery health states (if 

there are batteries), aims to improve energy efficiency and scheduling, showcasing the 

potential for technological advancements to enhance transportation efficiency [32]. Driver 

assistance systems (DASs) impact railway punctuality and energy efficiency by providing 

real-time driving data to operators, enabling them to make more energy-efficient decisions. 

This system is a prime example of how technology can be leveraged to improve the 

sustainability of transportation [33-36]. The implementation of railway DAS employs 

distributed computer systems and network technologies to monitor, detect, and manage 

energy-saving modes in power supply systems, reflecting the role of innovation in 
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achieving energy efficiency in the railway sector [37]. Tao et al. [38] introduced a new 

energy optimization method for traction substations that addresses time-varying parameters 

and environmental characteristics in mechanism modeling. A data-driven model, dynamic 

programming, and MIMO-SOFNN (multi-input multi-output self-organizing fuzzy neural 

network) are used. Experimental analysis validates the model's accuracy, and the proposed 

method reduces energy consumption by 34.8% compared to Chinese freight railway 

company operation data. Yildiz et al. [39] proposed integrated train operation optimization 

to reduce traction energy and increase regeneration energy. The model optimized train 

speed trajectory and timetable to increase braking and accelerating train group overlap. 

The Istanbul M3 subway system is modeled and simulated using genetic and simulated 

annealing algorithms. The study found that the best train speed profile and timetable reduce 

traction energy consumption. Fischer et al. [40] discussed the detection of energy loss in 

electric railway hauling vehicles, as well as the importance of railway energy efficiency. It 

examines the current situation and potential improvements for more efficient energy use. 

Seven measurement series were conducted using scheduled Railjet trains between 

Hegyeshalom and Győr railway stations in Hungary. The article looks into optimizing 

regenerative braking energy by identifying energy-waste sources and reasons for 

consumption. The global energy crisis and the imperative for cleaner, "greener" energies 

underscore the importance of reducing electricity consumption in railways, highlighting 

the need for the transportation sector to adapt to changing energy landscapes [41]. 

All train energy consumption must be analyzed to save energy. A complex interplay of 

infrastructure, transportation organization, and environmental factors influences energy 

use in railway operations. This interplay underscores the multifaceted nature of energy use 

in transportation, highlighting the importance of a comprehensive approach to energy 

efficiency [16,42-44]. Regenerative electricity is a critical technology in the quest for 

energy savings, illustrating the potential for innovative solutions to enhance the 

sustainability of transportation systems [45-47]. Optimizing the timetable by considering 

the horizontal and vertical geometries of the railway tracks, as well as the planned (and/or 

actual) speed, represents a strategic approach to improving energy efficiency, underscoring 

the potential for planning and technological innovation to contribute to more sustainable 

transportation practices [45,48-50]. Combining these methods produces the best results, 

emphasizing the importance of a holistic approach to enhancing energy efficiency in the 

railway sector. 

The main focus of this paper is the analysis of energy consumption of electric multiple 

units. 

Based on the energy consumption optimization, four main categories were defined 

[40,51]: (i) condition of the permanent way and connecting infrastructure, as well as the 

rolling stock, (ii) recovered energy from regenerative braking, (iii) external factors (i.e., 

environmental factors, temperature, etc.), finally (iv) the human factor. 

It plays a pivotal role in shaping energy efficiency and consumption within the railway 

transport sector. Extensive research has been conducted to dissect the various factors 

influencing driving behavior and its subsequent impact on energy efficiency. Notably, 

studies have delved into the significance of driver experience [52], highlighting its 

correlation with driving performance and energy consumption patterns. Moreover, there 

exists a delicate balance between driving efficiency and service quality [53]. 

Understanding this trade-off is essential for devising strategies that optimize energy usage 

without compromising operational standards. Additionally, identifying and addressing 
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barriers to energy efficiency [54] is crucial for implementing effective measures across the 

rail industry. Further exploration into the intricacies of driver behavior reveals its profound 

implications for energy consumption. Studies focusing on heavy-haul iron ore trains [55] 

shed light on the substantial influence of driver actions on energy usage. Additionally, 

research into the physiological aspects of driving, particularly concerning monotonous 

tasks [56], underscores the need for strategies to mitigate fatigue and enhance driver 

engagement. Interventions are paramount in addressing the challenge of improving energy 

efficiency. Initiatives such as eco-driving training programs [57,58] offer promising 

avenues for instilling energy-conscious behaviors among drivers. Fischer et al. [40] 

determined that the train operator's driving style and habits are identified as the primary 

causes for the main part of the energy losses. (It is worth mentioning that Fuzzy 

methodology and evaluation techniques can also be applied in this field [59,60].) 

The original aim of this article was to analyze the driving style of train drivers and its 

impact on the electricity consumption of electric traction units and EMUs (see the (iv) point 

from the previous list). Unfortunately, the authors were not able to do this because the 

received database did not contain the coding of the train drivers. 

The authors decided to conduct a more detailed energy consumption analysis than they 

did in [40] as an innovative investigation. The main focus was to define typical 

consumption graphs (trends) on the analyzed routes (in this case, Vienna-Deutschkreutz, 

i.e., VD; and Vienna-Bratislava, i.e., VB) between January and May 2023, which would 

allow for the precise localization of the consumption outliers and their location. (The 

opposite direction routes have the abbreviations DV and BV, respectively). Only the 

Siemens Ventus (i.e., Siemens Desiro ML type) EMUs in service with Raaberbahn AG 

were included in the analysis (EMUs were, of course, exclusively used for passenger 

transport). Modern mathematical-statistical methods were used for the analysis. 

The structure of the current paper is as follows: Section 2 deals with the applied 

methods, Section 3 contains the results and discussion, and Section 4 is the conclusions. 

2. APPLIED METHODS 

In this article, data obtained from on-board computers of the Raaberbahn were provided 

in the following structure and detail for the VD and VB routes (see Fig. 1 and Table 1): 

1. Duration: January-May 2023 (i.e., five monthly series in total). 

2. Data series in bulk Excel files for Siemens Ventus multiple units only (for the five 

months, five Excel files were downloaded, containing all routes and all train numbers): 

a. 5-minute detail (sampling frequency) data with day:hour:minute accuracy, 

b. includes train number, current GPS coordinates, cumulative electricity consumed 

and recuperated, 

c. to the best of the authors' knowledge, Raaberbahn AG has provided the data of all 

trains operated during the given period, 

d. however, the data set did not include current speeds, accurate start and end times 

for accelerations and decelerations, nor did it include the identity of the drivers. 

3. The segment numbers of stations and stops on the routes were taken from Raaberbahn 

and ÖBB (Austrian State Railways) reports, the GPS coordinates were determined 

accordingly, and the results were used for further calculations. 
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4. The speed values allowed on each section were taken from ÖBB, Raaberbahn AG 

registrations and public data on the openrailwaymap.com website. 

The parameters that had to be calculated from the data (listed here; see Section 2.2 for 

a detailed explanation): 

1. Because of the bulk structure of the data, a train (i.e., a train with a given train 

number) does not run on only one section, so the first step in the classification was to 

associate it with a route. 

2. Since only GPS coordinates could identify each measurement point ("data row"), the 

actual distance traveled between two data points was needed. To handle this, a Python 

program was written. It was also necessary to determine the direction of traffic on the route. 

3. The data thus sorted had to be filtered in the final analysis (Section 2.1, Section 2.2, 

and Section 3) because a professional decision was made to consider acceleration and 

regenerative braking energies only in the ±2 km environment calculated by the section 

numbers (GPS coordinates) of the general station and stop locations, considering the 

direction of travel. This meant that the focus was primarily on acceleration energy 

consumption, with the accumulation-accumulation of regenerative braking energy values 

being considered synchronously. 

4. Statistical processing was performed considering the entire data set, as detailed in 

Section 2.2. 

 

Fig. 1 Segregating of sections into shorter subsections  
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Table 1 Details of the considered routes (the IDs are illustrated in Fig. 1) 

1A: Vienna – Bratislava (VB) 

1B: Bratislava – Vienna (BV) 

ID. Railway station 
Intermediate 

distance [m] 

Cumulative 

distance [m] 

V Vienna Hauptbahnhof (Vienna) 0 0 

2 Vienna Grillgasse 2858 2858 

3 Gramatneusiedl 16550 19408 

4 Götzendorf 7340 26748 

5 Burck a.d. Leitha 14559 41307 

6 Parndorf Ort 6356 47663 

7 Parndorf 1585 49248 

8 Neudorf 6120 55368 

9 Gattendorf 3230 58598 

10 Pama 5850 64448 

11 Kittse 4980 69428 

B Bratislava-Petrzalka (Bratislava) 1920 71348 

2A: Vienna – Deutschkreutz (VD) 

2B: Deutschkreutz – Vienna (DV) 

ID. Railway station 
Intermediate 

distance [m] 

Cumulative 

distance [m] 

V Vienna Hauptbahnhof (Vienna) 0 0 

12 Vienna Meidling 3637 3637 

13 Ebreichsdorf 27193 30830 

14 Ebenfurth 10713 41543 

15 Neufeld a. d. Leitha 2000 43543 

16 Müllendorf 7954 51497 

17 Wulkaprodersdorf 5705 57202 

18 Draßburg 5753 62955 

19 Baumgarten-Schattendorf 3282 66237 

20 Sopron 7787 74024 

D Deutschkreutz 9475 83499 

2.1. Data Ordering 

The distances were calculated using the Python GeoPy module. Previously, the 

Haversine formula was also applied, but the GeoPy module uses a geodesic line to 

determine the distance, which gives a more accurate result than the Haversine formula. 

However, due to the small distances involved, both are suitable for the task. 

In Sections 2.1 and 2.2, the Python program was employed: (i) SciPy and (ii) GeoPy. 

Preparations: 

1. Create a helper database (collect the following information in a database): 

a. GPS coordinates of train stops: approximate, not exact. GPS coordinates are 

centered at the stops. Adding reference points for better route separation 

thereafter. 
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b. GPS coordinates of routes: in the sandbox editor of the gpsvisualizer.com website, 

add reference points for the railway track. Later, calculate the cumulative distance 

to the reference points to obtain the length of the route and the distance to the 

stations from the starting point (comparison of reference points and station 

points.) 

c. Collection of distances between stations: based on information recorded by ÖBB 

and Raaberbahn. 

2. Generating configuration files: 

d. To automate the database file to be created later, generate configuration files 

containing the variables needed to run the program. 

Creating a database: 
1. Determining the nearest stops: compare the GPS data in the initial Excel file with the 

GPS coordinates of the stations in the helper database. For each point, the closest station 

can be obtained. 

2. Merge waiting times for end stations: In this case, the waiting times at end stations 

are merged for easier data processing afterward. 

3. For all data points, it is possible to know the names of the nearest stations so that it 

is possible to determine from what time of day to what time of day a given train has been 

on which route. 

4. Distance calculation for data points: for established route data points, the distance 

calculation for route reference points in the helper database is used to get the distance from 

the previous data point to the starting station. This operation was very time-consuming due 

to the distance calculation for thousands of reference points. As a solution, using the 

configuration files generated during the preparation, several routes and several trains were 

calculated in parallel. 

5. Other calculations: Calculation of cumulative consumption and regenerative energy 

for specific runs (routes). 

6. Calculation with IQR methodology: IQR, or interquartile range, is a statistical 

indicator of the variance of the data. The IQR is calculated as the difference between the 

lower and upper quartiles. The procedure for this was as follows: 

a. Sorting the data. 

 𝐶 = {𝐶1,𝐶2, … , 𝐶𝑛} (1) 

 𝐶1 ≤ 𝐶2 ≤ ⋯ ≤ 𝐶𝑛 (2) 

where {𝐶1,𝐶2, … , 𝐶𝑛} are the individual railway consumption values. 

b. Calculating the first and third quartiles: 

 Q1: the median of the lower 25% of the sorted data. 

 Q3: the median of the upper 25% of the sorted data. 

c. Interquartile range (IQR calculation): obtained from the difference between the 

first and third quartile range. 

 𝐼𝑄𝑅 = 𝑄3 − 𝑄1 (3) 

d. Determination of lower and upper bound: 

 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 𝑄1 − 1.5 ∙ 𝐼𝑄𝑅 (4) 

 𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 𝑄3 + 1.5 ∙ 𝐼𝑄𝑅 (5) 
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e. Filtering data: using the boundaries to filter out outliers. 

 𝐶𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = {𝑐 ∈ 𝐶|𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 ≤ 𝑐 ≤  𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑} (6) 

f. Calculating the average of the filtered data (no outliers are found here) 

 𝐶𝑎𝑣𝑟.  =
∑ 𝑐𝑖

𝑚
𝑖

𝑚
 ; 𝑐𝑖 ∈ 𝐶𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑  (7) 

where Cavr. is the average energy consumption, 𝑚 is the number of elements in the filtered 

data Cfiltered. 

7. Creating and exporting summary statistics tables to Excel: for a given month, a given 

number of trains and a given route, create statistics: minimum, maximum, mean (average), 

standard deviation, average IQR/km calculation per station interval. The Excel files also 

contain the data points per station in separate worksheets. There are two types of Excel file 

generation, one where data points are filtered by station distance ±2 km and one where 

there is no filtering at all so that all data points can be found. 

Fig. 2 represents the entire block scheme of the applied data ordering. 

 

Fig. 2 Block scheme of the applied data ordering 



10 S. FISCHER, B. HERMÁN, M. SYSYN, ET AL. 

2.2. Data Processing 

The data processing used in the research is described in detail below. Data processing 

is further performed on data points covering the given station distance of ±2 km. 

1. Generate statistical Excel files for specific routes: generate multiple worksheets. 

Calculate several parameters for given consumption values and regenerative values: 

minimum, maximum, mean (average), and standard deviation. On another worksheet, 

collect average IQR/km calculations for kWh+ and kWh– values. Values were determined 

for a given route, for each station and each train. 

2. Curve fitting: the curve fitting was done on the basis of the data from the previously 

generated Excel files of the average IQR/km worksheet. The fitting was done using the 

SciPy module available for Python (curve.fit function). Second, third- and fourth-degree 

polynomial regression functions were fitted to the points, and the Python module also 

provided a covariance matrix for each of them, based on which regression function was 

selected to fit the points better (the lower the covariance matrix value, the better the fit). 

In addition, the error bars were determined. 

3. Identification of point locations using a polynomial regression function fitted to the 

curve. For all the data points exported earlier to Excel, the polynomial regression function 

fitted to the curve and the error bands were applied to determine the location of the points. 

4. Data filtering: once the position of the points has been determined, it is now possible 

to filter which data points were overconsumption or too low regenerative braking energy 

for the average and outside the range of the specified one and two standard deviations. 

5. Graphing: Graphing the filtered data. For this purpose, the energy consumption and 

regenerative braking energy values measured on each route were taken into account. In this 

phase, only the data series calculated by the authors in kWh/km units were used. 

2.3. Limits of the Analysis of the Current Research 

In any case, it is essential to note and highlight any factors that do not follow clearly 

from the chapters in Section 2.1 and Section 2.2 (for clarification, see Section 4, too): 

 in the analyses, neither machine manual data nor other tractive force curves were 

used to calculate the acceleration and regenerative braking energies of Siemens 

Ventus trains and to take the measured values into account; 

 analyses using layout and vertical geometry data of the railway lines have not been 

discussed or used in this article; 

 the authors have not used official train timetables for their research on each route 

and in either direction, and they have neglected to take into account the through-

rolled axle-ton values; 

 the speeds allowed on each section are given for information only in Section 2.1, 

and are not included in the detailed analysis; 

 the technical condition (possibly poor or good) of the railway track and the 

associated infrastructure, overhead contact line network, etc., and of the traction 

units were also neglected; 

 the conducted and shown analyses use only the data series for January-May 2023, 

but the authors have not attempted to extrapolate using these to likely measurable 

values for other months, i.e., they have relied on factual data only; 
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 each month was treated as a unit (not merged), and the energy consumption 

(kWh+/km) and regenerative braking (kWh–/km) values were analyzed separately 

for each month, 

3. RESULTS AND DISCUSSION 

Based on the methodology presented in Section 2, Section 3 reports the results in a 

more detailed manner. Due to the fact that two routes, and within them two directions, were 

considered, it was not possible to present and report a complete overview of the 

considerable amount of data. The first step in the evaluation of the results was to examine 

the different consumption data. Fig. 3 shows the consumption data of four different routes 

(2 railway lines, considering back and forth directions) for three different trains (i.e., 4744-

300, 4744-301 and 4744-303). 

 

Fig. 3 Consumption data for different routes (BV, DV, as well as their opposite 

directions) considering four trains, the shown dashed lines are not real trend lines 

On the horizontal axis Fig. 3, the serial number of the measurement is shown (it 

indicates the number of data series in the data set; note that the order was not relevant in 

this case) and on the vertical axis, the energy consumption values. The sample number 

shown on the horizontal axis contains about 60 values for each route. The consumption 

values show a significant standard deviation for all three train numbers presented, 

indicating that the energy consumption of the trains varies significantly between 
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measurements. It varies between approximately 400 and 700 kWh, depending on the route 

and the vehicle. The VB section in subfigure A) shows medium consumption. There is also 

a significant standard deviation, with energy consumption peaks being less typical. The 

BV section is shown in subfigure B) of the figure. For all three vehicles, there is significant 

volatility. In subfigure C) of the figure, the VD section is shown, with the "smoothest" 

measured values. Although there is still a significant standard deviation, the consumption 

trends are less hectic than in subfigure D). The highest consumption is the red line 

(4744-300 vehicles) with occasional higher peaks, approaching 700 kWh. The section DV, 

which is the section with the highest volatility, is shown in subfigure D). The consumption 

data show a wider range with significant peaks for all three train numbers. The results show 

that there are specific energy demands on routes, which are likely to depend on the route's 

inclination in the vertical plane, number of stops, train speed, etc. To further examine the 

differences, the results are analyzed separately by month as shown in Fig. 4. 

 

Fig. 4 Average consumption values by route in different months in 2023 

Fig. 4 shows energy consumption data (in kWh dimension) assigned to different routes, 

broken down by month, from January to May. The routes analyzed are BV: blue bars; VB: 

red bars; DV: grey bars; VD: yellow bars. The results show that the highest average 

consumption on the BV route in January was 578.54 kWh. The lowest consumption 

recorded on the VD route in March was 450.32 kWh. Overall, the BV route has the highest 

fuel consumption, and the VD route has the lowest consumption. Consumption is 

decreasing on the BV and DV routes. Consumption on the VB and VD routes is relatively 

stable with minor fluctuations. Of the routes, BV is generally the most energy-consuming, 

while VD consumes the least energy. Considering the same route back and forth, BV vs. 

VB: the most significant difference is in January (90.40 kWh) and the smallest in March 

(22.62 kWh). This could be due to several reasons, e.g., higher loads in one direction, 

heavier vehicles, or more electricity needed in one direction due to different topography. 

When comparing the energy consumption between DV vs. VD, DV shows a higher energy 

consumption in all months compared to VD. The highest difference is observed in March 
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(53.83 kWh), while the lowest difference is observed in May (30.65 kWh). All routes show 

a decrease in energy consumption from January to May, primarily due to better weather 

conditions. Monthly and route-level analysis of regenerative braking energy is done by 

means of Fig. 5. The BV route shows a particularly favorable regenerative energy use, 

especially in May. VD is the only route where a decrease is observed, which may indicate 

that traffic conditions or route characteristics do not support constant energy recovery. In 

the future, it may be worthwhile to investigate and optimize regenerative energy 

production, for example, by improving braking strategies or traffic management. When 

analyzing the differences between the routes, BV vs. VB, the differences between January 

and May are minimal, around 5-7 kWh. This suggests that the production of renewable 

energy is almost the same in both directions. On the other hand, the difference between DV 

vs. VD is more significant than the previous one, about 8-15 kWh per month. The DV route 

generates more regenerative energy, which may be due to higher braking or vertical 

inclination (e.g., more slopes in this direction; see Section 2.3 and Section 4). 

 

Fig. 5 Regenerative energy values by route in different months in 2023 

Fig. 6 shows the variation of energy used between different months and routes. On the 

BV route, energy consumption was initially very volatile (winter period), but by the spring 

part, it had stabilized, and the standard deviation decreased. On the DV route, it showed a 

low standard deviation, indicating that energy consumption is predictable and steady. The 

slightly increasing variation (standard deviation) on the VD line requires further 

investigation to understand the reasons for the variability of energy use (e.g., vehicle load, 

line management characteristics, weather, etc.; see Section 2.3 and Section 4).  

For further analysis of energy use, the variance of regenerative energy was also 

analyzed as given in Fig. 7. Fig. 7 shows the BV section in blue, where the variance is 

initially very high (54.68% in January) but decreases significantly (24.36% by May), 

indicating an improving trend. This is probably due to better weather conditions. VB (red 

line) is one of the best routes for energy recovery. DV (grey line): the variance is initially 

low (7.39%) but reaches a peak in April (38.52%) and then "returns" in May (10.89%). VD 

(yellow line) shows a similar trend to DV, with a peak in April (47.09%). By May, 
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however, it "returns" to a lower level (10.08%). The April spikes on the DV and VD routes 

may indicate irregular conditions (e.g., weather, traffic, etc.; see Section 2.3 and Section 4) 

that are worth investigating. The analysis shows that the specificities of the routes have a 

substantial impact on the variability of energy recovery. Table 2 shows the ten different 

trains in different months and routes. 

 

Fig. 6 Spread of consumption by road for different months 

 

Fig. 7 The spread of the regenerative energy generated in the different months per road 
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Table 2 shows the consumption of each train, with a monthly and route-by-route 

breakdown of deviations from the average consumption of the fleet. In each case, the 

average consumption of the fleet for the month and route were used to compare. No data 

is available for the grey-shaded part; the green-shaded part had a deviation of 2.5% or less. 

The trains marked in yellow are those where there was an average deviation of between 

2.5% and 5% from the average consumption. Orange indicates a deviation of 5-10%, and 

red indicates a deviation of 10% or more. It is important to note that individual outliers 

were not filtered out in the evaluation. The performance of the 4746-313 vehicles is shown 

to be the worst among the fleet. Exceptionally high values (e.g., overconsumption in 

January and March) indicate significant energy efficiency problems that require urgent 

intervention. This vehicle should be a priority for fleet optimization. Other poorly 

performing trains are 4746-309 and 4746-315. These discrepancies may already be related 

to the drivers. However, no information on the drivers of each train was available during 

the analysis. Therefore, for the reasons mentioned above, a more detailed examination of 

this is not evaluated. 

Table 2 Evolution of average consumption of different trains by month and route 

 

 

For a more accurate evaluation, each section is examined separately. For each stage, 

the energy consumed, the regenerative energy and the energy balance are analyzed. Fig. 8 

shows the consumption data associated with the route analysis. 

In Fig. 8, the data points for each section are presented. In each case, the distance 

traveled is on the horizontal axis, and the energy used is on the vertical axis. In the sub-

plots of Fig. 8, the numbering and the additional vertical lines represent the station markers, 

which are related to the designations defined in Table 1. For the simplicity of the 

presentation, the results of three measurements are shown; later calculations have been 

made with the entire measurement database. The values from the different trains are shown 

in different colors: blue for 4744-300, grey for 4744-301 and yellow for 4744-303. The red 

line indicates the proportional average consumption. The dot plot shows that several values 

are significantly above or below the average. Furthermore, it can be seen that there is no 

clearly identifiable section where consumption is significantly above or below the average. 

The next step in the analysis is to analyze each station separately. 

BV VB DV VD BV VB DV VD BV VB DV VD BV VB DV VD BV VB DV VD

4744-300

4744-301

4744-303

4744-304

4746-308

4746-309

4746-310

4746-312

4746-313

4746-315

March  April MayTrain 

Number

January February 



16 S. FISCHER, B. HERMÁN, M. SYSYN, ET AL. 

 

Fig. 8 Consumption data associated with railway stations on different routes 

The section to be analyzed is the section between Bratislava and Vienna (BV), which 

includes 9 stops between the two capitals. It is important to note that trains do not always 

stop at all stops, but energy consumption is presented in aggregate. Unfortunately, it is not 

possible from the available data to identify precisely at which station a train has spent 

exactly how much time. The primary aim is to observe the average consumption of each 

section and to discover and identify the factors that influence it. In the following, the 

method will be illustrated by means of an example, and for ease of reference, not all the 

data will be used (see Fig. 9). 

Fig. 9 shows the energy consumption of train 4744-300 on the BV route as a function 

of distance traveled, with three different values: MIN (green), the lowest consumption 

value over a range; MAX (red), the highest consumption value over a range; and AVR 

(blue), the average consumption over a range. There is a significant difference between the 

maximum and minimum values, indicating that the energy efficiency of some routes may 

vary significantly. Fig. 10 shows the energy consumption of three different trains 

(4744-300, 4744-301, 4744-303) on the BV route as a function of distance traveled. 

For all trains, energy consumption starts from a higher value (around 12 kWh/km) and 

then decreases rapidly within the first 10-20 km. After this decrease, the consumption 

stabilizes and settles at around 6-7 kWh/km for the later sections. It is important to note 

that the increased consumption in some places may be due to the route conditions and that 

delays during the start-up may also contribute to the higher value at the beginning of the 

measurement. Fig. 11 shows the regenerative energy consumption (in kWh) of three 
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different trains (4744-300, 4744-301, 4744-303) on the BV route as a function of distance 

traveled. 

 

Fig. 9 Consumption values for BV route – train #300 

 

Fig. 10 Consumption values for BV route in kWh/km for three different trains 

In general, there are no significant differences in the values of regenerative energy. The 

increase becomes faster from about the middle of the route to the end of the route (50 km), 

which may indicate that there are more maneuvers requiring braking on this section (e.g., 

more curved sections or sections with more stops; see Section 2.3 and Section 4). The next 

step in the analysis is to perform curve fitting for the average energy consumption. 
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Fig. 11 Regenerative energy values for the BV route in kWh/km for three different trains 

 

Fig. 12 Curve fittings for the BV route 

Curve fitting was performed for the values measured per route in the approach. Fig. 12 

plots the evolution of consumption (red line: kWh+), regenerative energy (Regenerative 

energy (kWh–): green line), and total consumption (net consumption: Consumption_sum 

(kWh+): yellow line) as a function of distance traveled (m) for a specific section after curve 

fitting. Thus, all three polynomials are assigned to the given path, and the total length can 

be analyzed. All that is needed is a coordinate and a consumption (and or regenerative 

energy) value, and it is possible to see how the train performs compared to the average. 
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Such curve fitting has been performed for each month and each direction (Fig. 13). It 

is important to note that the IQR method has been applied to the data used for curve fitting 

(see Section 2.1, part 6). 

 

Fig. 13 Consumption curve fits for a January month on different routes (x means the 

distance in meter dimension) 

Fig. 13 shows the energy consumption of trains on different routes (BV, VB, DV, VD) 

as a function of distance traveled in kWh/km. The curves in Fig. 13 give the expected 

energy consumption as the distance increases. It can be seen that the different routes can 

be modeled with significantly different regression functions, and it is necessary to treat 

each of them separately. The regression functions for different months for the same route 

have a more minor, but not negligible, difference. 

Fig. 14 shows the evolution of regenerative braking energy in kWh/km for four 

different routes as a function of distance traveled: BV (blue); DV (red); VB (green); and 

VD (purple). 

Fig. 14 provides a model of how regenerative energy recovery varies with distance 

along each route. As before, there are significant differences between the regression 

functions, so it is appropriate to use a different one for each distance. The following step 

of the analysis was to determine the deviations from the curve fits defined for the different 

months and routes (Figs. 15-16). 

Fig. 15 shows the energy consumption (kWh/km) for the BV route as a function of 

distance traveled (m). The horizontal axis shows the distance traveled (in meters), and the 

vertical axis indicates the energy consumption (kWh/km). The analysis is for January data 

and only shows points that are outside the ±2×σ (standard deviation) band. The graph 

shows two grey bars indicating the limits of the standard deviation (±1×σ and ±2×σ). It has 

to be mentioned that considering Student-distribution the ±1×σ means 68.03%; hence, the 

±2×σ means approx. 95% confidence interval in the case of 100 values, which is only an 

approximation). These can be used to examine which values are considered normal and 

which are outliers, respectively. Points that are located outside the ±2σ band are shown as 

colored points on the graph. The graph shows data from different trains with different color 

codes. It can be observed that the outliers in energy consumption are not necessarily related 
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to a specific train. The black curve in the graph shows the predetermined trend (as shown 

in the previous sections) between energy consumption and distance. The outliers indicate 

that energy consumption is significantly higher for certain trains. 

 

Fig. 14 Regenerative energy curve fits for January on different routes (x means the 

distance in meter dimension) 

 

Fig. 15 Energy consumption diagram for the BV route, 2023 January, only the points 

which are out of the 2× band ( means the standard deviation) 

Fig. 16 shows the energy (kWh/km) from regenerative braking on the BV route in 

January. The figure plots energy data as a function of distance (m) and shows only points 

outside the ±2×σ (standard deviation) band. The regenerative energy (kWh/km) values are 

on a smaller scale (0.5-3.0 kWh/km) than the energy consumption data. In this case, the 

number of values outside the ±2×σ bands is much lower. The outliers in this case mean that 

for some trains, the energy recovered is significantly lower than expected. 
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Fig. 16 Regenerative braking energy diagram, for the BV route, 2023 January, only the 

points which are out of the 2× band ( means the standard deviation) 

Fig. 17 visualizes the overconsumption values back mapped. All months of the BV 

route are included in the figure. In the heat map, red markers show the most frequently 

overconsumed area, while yellow markers show still critical parts. Areas that are not 

marked where overconsumption was not significant. 

Tables 3 and 4 summarize the overconsumption values for each route and station. 

 

Fig. 17 Energy over consumption heat map for the BV route (the value 1.0 is related to 

the highest value, i.e., 17.02%, in Table 3 as a reference) 
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Table 3 The overconsumption values expressed as percentages associated with the 

nearest stations of various routes (VB and BV) 

VB [%] BV  [%] 

Vienna 

Hauptbahnhof 
2.82 

Bratislava 
5.01 

Vienna Grillgasse 18.40 Kittse 8.11 

Gramatneusiedl 2.15 Pama 12.74 

Götzendorf 0.75 Gattendorf 4.89 

Bruck-Leitha 0.36 Neudorf b.Parndorf 17.02 

Parndorf Ort 0.18 Parndorf 1.74 

Parndorf 1.33 Parndorf Ort 3.70 

Neudorf b.Parndorf 1.75 Bruck-Leitha 0.19 

Gattendorf 3.13 Götzendorf 0.00 

Pama 6.17 Gramatneusiedl 0.05 

Kittse 3.93 Vienna Grillgasse 0.00 

    Vienna Hauptbahnhof 0.00 

Table 4 The overconsumption values expressed as percentages associated with the 

nearest stations of various routes (VD and DV) 

VD [%] DV  [%] 

Vienna 

Hauptbahnhof 
4.90 Deutschkreutz 7.22 

Vienna Meidling 6.61 Sopron 5.46 

Ebreichsdorf 0.83 Baumgarten-Schattendorf 2.82 

Ebenfurth 0.52 Drassburg 0.12 

Neufeld-Leitha 1.28 Wulkaprodersdorf 0.75 

Müllendorf 0.35 Müllendorf 3.61 

Wulkaprodersdorf 22.49 Neufeld/Leitha 0.64 

Drassburg 0.47 Ebenfurth 6.03 

Baumgarten-

Schattendorf 
0.41 Ebreichsdorf 8.37 

Sopron 0.00 Vienna Meidling 0.40 

Deutschkreutz 0.00 Vienna Hauptbahnhof 0.67 

In Tables 2 and 3, the odd-numbered columns display the routes and their 

corresponding stops, while the even-numbered columns present overconsumption values 

expressed as percentages. These percentages represent the relative magnitude of outliers 

associated with a given station. For ease of identification, each overconsumption value has 

been linked to the nearest station. It is important to note that this does not necessarily 
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indicate that the overconsumption occurred precisely at the station but rather somewhere 

along the route leading up to that station. Furthermore, only values falling outside the 2×σ 

standard deviation range were considered in the calculations. This approach facilitates the 

identification of segments that appear to be critical. 

4. CONCLUSIONS 

The aim of the research was to improve railway energy efficiency by developing route-

specific strategies. This study utilized a unique methodology to analyze the energy 

consumption of various railway routes and the utilization of regenerative braking energy. 

The analysis covered four routes (BV, VB, DV and VD, respectively) over a five-month 

period (January to May 2023). The results revealed significant variations in energy 

consumption driven by terrain characteristics, speed profiles, and stop frequencies. The 

findings also indicated substantial differences in energy consumption and regenerative 

feedback across the routes. Understanding and decoding the causes of individual cases of 

overconsumption is a complex process. 

To address this complexity, the research analyzed not only aggregated consumption 

data but also processed a large volume of route-specific and direction-specific data. The 

study modeled the spatial (location-based) and temporal (monthly) patterns of energy use 

and regenerative feedback. Route-specific consumption models were developed using the 

Interquartile Range (IQR) method and curve-fitting techniques to evaluate the data. These 

models enabled the quantification and prediction of energy consumption patterns for 

individual routes. Deviation bands were established to identify outliers. Overconsumption 

cases were flagged when values exceeded the upper deviation limit, while cases of low 

regenerative feedback were analyzed when values fell below the lower limit. This allowed 

the localization of outliers by route and station. 

The spatial distribution and temporal trends of energy consumption were also analyzed 

using integrated heatmap-based visualizations, facilitating the spatial identification of 

critical segments. To implement this approach, it is sufficient to associate consumption (or 

regenerative) values with coordinates along the analyzed routes. This makes it possible to 

evaluate how a given train performs compared to average values on the respective route. 

It is essential to emphasize that further investigations and analyses are required for the 

evaluation of consumed and regenerated electrical energy. These investigations should 

account for the following complex and parallel factors, which are part of future research: 

 Continuous monitoring of schedules and deviations from the timetable. 

 Simultaneous analysis of the railway track's geometric and elevation profiles. 

 Accurate consideration of train loads, including the continuous calculation and 

recording of boarding and alighting passengers at each station. 

 Evaluation of locomotive driving styles, supported by the collection and analysis of 

driver-specific data in compliance with the General Data Protection Regulation. 
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