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Abstract. In this study, we analyzed the bending vibration and stability of a multiple-

nanobeam system (MNBS) coupled in elastic medium and influenced by temperature 

change and compressive axial load. The MNBS is modeled as the system consisting of a 

set of m identical and simply supported nanobeams mutually connected by Winkler’s type 

elastic layers. According to the Euler - Bernoulli beam and nonlocal thermo-elasticity 

theory, the system of m coupled partial differential equations is derived and solved by 

means of the method of separation of variables as well as the trigonometric one. 

Analytical solutions for natural frequencies and critical buckling loads of elastic MNBS 

are obtained. The effects of nonlocal parameter, temperature change and the number of 

nanobeams on the natural frequencies and the buckling loads are investigated through 

numerical examples. Thus, this work can represent a starting point to examine dynamical 

behavior and design of complex nanobeam structures, nanocomposites and nanodevices 

under the influence of various physical fields. 
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1. INTRODUCTION   

The nonlocal continuum theory has recently been widely used for the study of the 

mechanical behavior of nanobeams such as bending, vibration and buckling. Such 

theoretical observations of nanostructures may be important for nanoengineering practice 
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in the development of new nanodevices. Other methods of nanostructure examination, 

such as experimental [1-3] or atomistic simulations [4-7] can be expensive, taking into 

consideration time or computational resources needed to gather important data about the 

mechanical behavior of nanostructures. Thus, the modified continuum theories are 

increasingly gaining in importance for the mathematical modeling of dynamical behavior 

of systems and structures on small-scales [8-10]. In this study, the nanobeam may 

represent various types of tube-like nanomaterials such as carbon nanotubes (CNT) [11], 

zinc-oxide nanotubes (ZnO) [12], boron-nitride (BN) nanotubes [13, 14], etc. 

According to the experimental analysis and atomistic theories, it has been shown that 

size-effects play an important role in describing the physical and mechanical properties of 

structures and systems on the nano-scale level. Due to the existence of such effects, the 

classical continuum theories need to be reformulated to take into account these small-

scale effects. Aforementioned can be done by introducing the nonlocality in the space 

domain, modifying the corresponding constitutive equation and introducing the material 

parameter which takes into account the effects of length scale and influence of inter-

atomic forces. One of the first scale-dependent continuum theories, which takes into 

account nonlocal effects, is proposed by Eringen and co-workers [15-17] also known as 

nonlocal elasticity theory. According to Eringen [18], the nonlocal theory gives great 

approximation for a large class of problems in nano-systems, where the influence of 

length-scales is very noticeable. The nonlocal elasticity theory in nanomechanics was first 

considered in the paper by Peddieson et al. [19] on the static behavior study of 

nanobeams. The authors have investigated the nonlocal Euler-Bernoulli beam deflection 

equation for different boundary conditions and applications on the micro actuators. Reddy 

and Pang [20] reformulated the equations of motion for Euler-Bernoulli and Timoshenko 

beam theories, by using the nonlocal theory, and applied them to evaluate static bending, 

vibrations, and buckling response of the nanobeams with various boundary conditions. 

Recently, nonlocal models for the Euler-Bernoulli, Timoshenko, Reddy and Levinson 

beam theories are formulated by Reddy [21] based on the Hamilton’s principle and 

nonlocal constitutive relation of Eringen.  

Thermal effects studies are important to round up the knowledge of the mechanical 

behavior of structures, regardless of scale. Zhang et al. [22, 23] derived equations of 

motion and stability equation for double-walled and multi-walled carbon nanotubes, 

respectively, and solved them by using the separation of variables method. The authors 

obtained analytical solutions for natural frequencies and critical axial buckling strain, and 

examined the effects of thermal and other physical and geometrical parameters on the 

dynamic and stability behavior of the proposed system. In the work by Janghorban [24], 

the static analysis of microbeams was conducted, based on the nonlocal thermal elasticity 

theory and using the differential quadrature (DQ) and harmonic differential quadrature 

(HDQ) methods. The author has presented a variety of numerical results to show the 

effects of temperature change on bending of microbeams, by choosing different 

combinations of aspect ratios and boundary conditions. Murmu and Pradhan [25, 26] have 

used a nonlocal constitutive relation in modeling of carbon nanotubes embedded in an 

elastic medium with thermal effects included. They obtained approximated solutions for 

the natural frequencies and the critical buckling force by using the differential quadrature 

method for simply supported carbon nanotubes. In addition, they performed numerical 

experiments for two types of the thermal expansion parameters corresponding to the 
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lower and higher environmental temperature. It has been concluded that in the case of low 

or room temperature, the nonlocal critical buckling load and the natural frequencies 

increase as temperature rises. In the case of higher temperatures, the nonlocal critical 

buckling load and the natural frequencies decrease for an increase of temperature.  

In this paper, we used the nonlocal thermo-elastic theory to investigate the free 

banding vibration and stability behavior of MNBS embedded in Winkler’s type of elastic 

medium. It is assumed that all nanobeams in MNBS are simply supported, and are with 

the same material and geometric properties. The set of m equations of motion is obtained 

by using the Newton second low and nonlocal thermo-elastic constitutive relation based 

on the Euler-Bernoulli beam theory. The closed form solutions for the natural frequencies 

and the critical buckling loads are derived by using the separation of variables method 

and the trigonometric method for different number of nanobeams in MNBS. Special 

attention is given to the effects of temperature changes and nonlocal parameter on the 

vibration and stability behavior of MNBS.  

By searching the literature, one can find that the dynamic behavior of systems, 

consisting of an arbitrary number of nanobeams, embedded in a certain type of medium, 

considering temperature effects, has not been investigated yet. This work can be used as 

an analytical benchmark study in the future research on vibration and stability behavior of 

other types of complex multi-nanostructure systems such as coupled photonic crystal 

nanobeam cavities [32] and nanocomposites [33]. 

2. PROBLEM  FORMULATION  

2.1. Constitutive relation  

In this section, we will consider the basic equations of nonlocal elasticity and viscoelasticity 

in the general and two-dimensional case. Eringen [15] derived a constitutive relation for 

nonlocal stress tensor at a point x in an integral form, based on the assumption that the stress at 

a point is a function of strains at all other points of an elastic body. The fundamental form of the 

nonlocal elastic constitutive relation for a three-dimensional linear, homogeneous, isotropic 

body is expressed as: 

   ),()(,)( xdVxCxxx klijklij
    (1a) 

 ,0)(, xjij  (1b) 

  ,
2

1
)( ,, ijjjiij uux   (1c) 

where Cijkl is the elastic modulus tensor for classical isotropic elasticity; ij and ij are 

stress and strain tensors, respectively, and ui is the displacement vector. With (|x  x'|, ) 

we denote the nonlocal modulus or attenuation function, which incorporates nonlocal 

effects into the constitutive equation at a reference point x , produced by the local strain 

at a source x'. The above absolute value of difference |x  x'| denotes the Euclidean 

metric. Parameter  is  = (e0a)/l , where l is the external characteristic length (crack 

length, wave length), a describes the internal characteristic length (lattice parameter, 
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granular size and distance between C-C bounds) and e0 is the constant appropriate to each 

material that can be identified from atomistic simulations or by using the dispersive curve of the 

Born-Karman model of lattice dynamics. However, some difficulties may arise in searching the 

analytical solutions for structural mechanics problems when the constitutive relation is in 

integral form. Thus, for the sake of simplicity, Eringen [18] proposed the constitutive relation in 

a differential form, which, for one-dimensional problem, is of the form: 
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where E and G are the elastic and shear modulus of the beam;  = (e0a)
2
 is the nonlocal 

parameter, xx is the normal nonlocal stress and xx = zw / x is the axial strain. In the 

present work, free vibration and the critical buckling load analysis of MNBS is carried out 

by assuming e0a to be in the range 0-2 [nm]. The nonlocal thermo-elastic constitutive 

relation is a combination of nonlocal elasticity and thermo-elasticity theory, as given in 

the paper [25]. For one-dimensional case, the nonlocal thermo-elastic constitutive relation 

is of the following form: 
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where x is the coefficient of thermal expansion in the direction of x axis,  is the change 

of temperature and  is the Poisson’s ratio.  For  = 0  there is no influence of temperature 

and we return to the constitutive relation of nonlocal elasticity.  

2.2. Equations of motion   

Now we consider the system of m axially loaded nanobeams, coupled through an 

elastic medium, as shown in Fig. 1. Further, we assume that MNBS is made of m identical 

nanobeams of the same length L, elastic modulus E and mass density , uniform cross-

section of area A and moment of inertia I . Each nanobeam is under the influence of the 

same compressive axial load F . In addition, for the i-th nanobeam we assume only the 

transverse deflection denoted as wi(x,t) where mi ...2,1 . Further, we limited our analysis 

only to the case where the nonlocal Euler-Bernoulli beam theory is used for simply 

supported boundary conditions. According to the way of coupling of the first and the last 

nanobeam in MNBS, we can distinguish between two different types of MNBS, 

“Clamped-Chain and “Free-Chain” system [29, 30]. In this work, we used only 

“Clamped-Chain” MNBS, in which the first and the last nanobeam are coupled with fixed 

base through Winkler’s type elastic layers of stiffness k0 and km, respectively, as shown in 

Fig. 1b. The coupling conditions are w0 = wm+1 = 0. Other nanobeams in MNBS are 

coupled through elastic layers of stiffness k0 = k1 = ... = ki = ... = km1 =  km = k  representing 

the Winkler’s type of elastic medium (see Fig. 1b). 

According to the D’ Alembert’s principle, from the equilibrium equation for differential 

element of the i-th nanobeam we can write the following differential equation: 
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where Mf and N are stress resultants defined as: 
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and the influence of the Winkler’s type elastic medium expressed as external load is: 

 1 1 1 1( ), ( ).i i i i i i i iq k w w q k w w        (6) 

Governing equations of motions can be expressed in terms of displacement wi(x,t) for 

nonlocal thermo-elastic constitutive relation Eq. (3). 

 

Fig. 1 The multiple-nanobeam system embedded in the Winkler’s type of elastic medium: 

a) The physical model of the system of multiple SWCNTs embedded in a polymer 

matrix with atoms of SWCNTs fixed in such a manner that can be represented by 

simply supported boundary conditions [31], b) Mechanical model of multiple-

nanobeam system coupled in the “Clamped-Chain” system 

Introducing Eqs. (4-6) into Eq. (3) we obtain the following system of equations of 

motion: 
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or in the dimensionless form: 
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where the dimensionless parameters are defined as: 
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The initial conditions in the general form and the boundary conditions in the dimensionless 

form for a simply supported i-th nonlocal Euler-Bernoulli nanobeam are given as: 
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3. SOLUTION OF THE EQUATION OF MOTION  

Assumed solution of the system of partial differential equations Eq. (8) is in the form 

of trigonometric series, and this solution must satisfy the given boundary conditions Eq. 

(10 b), as:  
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where 1j , ,...)2,1(  nnn  , Win(i = 1,2,...m) and n are the amplitudes and natural 

frequencies, respectively, in the dimensionless form. We substitute the assumed solution from 

Eq. (11) into the system of equations (8) and take into account the coupling conditions for 

"Clamped-Chain" systems in the dimensionless form 0 1( , ) ( , ) 0mw w  ζ τ ζ τ . Further, assume 

that all stuffiness of the elastic layers is equal K0 = K1 = ... = Ki = ... = Km1 = Km = K. Finally, 

we obtain the system of m algebraic equations as: 

 ,1,021  iWvWS nnnn  (12a) 
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or in the matrix form as: 
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where: 
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Analytical solution of the homogeneous system of algebraic equations (13) is available 

only for the case when MNBS is composed of identical nanobeams and coupling layers. 

Based on the methodology presented in the papers Karliĉić et al. [29, 30], solution of the i-

th algebraic equation can be assumed in the following form: 

 cos( ) sin( ) , 1, 2,... ,in cc ccW N i M i i m                      (15) 

Substituting Eq. (15) into the i-th algebraic equation of the system (13), we obtain two 

trigonometric equations, by assuming that constants M and N are not simultaneously equal 

to zero: 

 { cos[( 1) ] cos( ) cos[( 1) ]} 0, 2,... 1,n cc n cc n ccN v i S i v i i m            (16a) 

 { sin[( 1) ] sin( ) sin[( 1) ]} 0, 2,... 1,n cc n cc n ccM v i S i v i i m           (16b) 

wherefrom we obtain the following system of equations: 

 ( 2 cos ) cos( ) 0, 2,... 1,n n cc ccS v N i i m         (17a) 

 ( 2 cos ) sin( ) 0, 2,... 1,n n cc ccS v M i i m                 (17b) 

From the above system of equations we can conclude that, N  0, cos(icc)  0 or 

M  0, sin(icc)  0 when the system has an oscillatory behavior for i = 2,...m1. Finally, 

we can obtain the frequency equation: 

 .cos2 ccnn vS      (18) 
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where cc is unknown parameter determined by replacing the solutions from Eq. (15) in 

the first and the last equation of the system of equations (13). Using the methodology 

presented in the papers proposed by Rašković [27], Stojanović et al. [28] and Karliĉić et 

al. [29 and 30], we obtain the solutions for unknown parameter cc,s in “Clamped-Chain” 

systems as: 

 .,...,3,2,1,
1

, ms
m

s
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
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Introducing the expression for cc,s and Eqs. (14) into Eq. (18), and assuming axial 

compressive load 0F , we get the natural frequencies in the dimensionless form as: 
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The analytical form of the critical buckling load under the influence of temperature 

change can be obtained by introducing the expression for cc,s and Eqs. (14) into Eq. (18) 

and assuming that the natural frequencies of system n are equal to zero.  Then the 

critical buckling load is of the form: 
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Finally, in the case when the number of nanobeams in MNBS increases towards 

infinity i.e. taking m   into Eqs. (22) and (23), we obtain asymptotic or critical natural 

frequencies and critical buckling loads in the following form: 

 ,
24

,

n

nnn

m
sncc

N



 




  (22) 

 ,
2

4

, 



NF

nn

n

m
sncc 


  (23) 

Now, we can conclude that the asymptotic natural frequencies and the critical buckling 

loads represented by expressions (22) and (23), respectively, are dependent only on the 

system of material parameters and temperature change.  

4. NUMERICAL  RESULTS 

In order to examine the effects of material parameters, such as stiffness coefficient of 

elastic medium, temperature change and nonlocal parameter on natural frequencies and 

critical buckling loads of the nonlocal elastic MNBS, numerical examples are presented and 

discussed here. In addition, the influence of temperature change at low and high 

temperatures on the vibration and stability response of MNBS is studied. The physical and 

geometrical parameters used in numerical simulations are adopted from the paper by Murmu 

and Pradhan [25, 26]. In the following parametric study, we observe changes of the lowest 

natural frequency and the critical buckling load of the system for a single vibration mode. 
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Fig. 2 The influence of the nonlocal parameter and stiffness of the Winkler elastic medium 

on a) natural frequencies and b) critical buckling load for different number of nanobeams 

The first natural frequency and the critical buckling load of MNBS versus the nonlocal 

parameter and stiffness of the Winkler elastic medium, for different numbers of nanobeams, 

are shown in Fig. 2. As expected, an increase in the nonlocal parameter leads to a decrease 

of the natural frequency and the critical buckling load of the system. From the same figure, 

one can observe that the stiffness of the Winkler’s elastic medium K has a very strong 

“hardening” effect on the natural frequency and the critical buckling load. Further, one can 

see that an increase of the number of nanobeams (m = 3, 5, 10) in MNBS leads to a decrease 

of both the natural frequency and the critical buckling load towards certain critical values. 

This is in line with expressions (22) and (23) and the results obtained in papers by Karliĉić et 

al. [29, 30]. 

 

Fig. 3 The influence of the nonlocal parameter and temperature change at low or room 

temperatures on the first a) natural frequency and b) critical buckling load 



84 D. KARLIĈIĆ, S. OŽVAT, M. CAJIĆ, P. KOZIĆ, R. PAVLOVIĆ 

 

Fig. 4 The influence of the stiffness coefficients and temperature change at low or room 

temperatures on the first a) natural frequency and b) critical buckling load 

 

Fig. 5 The influence of the nonlocal parameter and temperature change at high 

temperatures on the first a) natural frequency and b) critical buckling load 

 

Fig. 6 The influence of the stiffness coefficients and temperature change at high 

temperatures on the first a) natural frequency and b) critical buckling load 

Figs. 3-6 shows the influence of temperature change  at low temperature 

(x = 1.610
6

K
1

) and high temperature (x = 1.110
6

K
1

)  environment (see Murmu 

and Pradhan [25, 26]) on the natural frequency and the critical buckling load for different 
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values of nonlocal parameter and stiffness coefficient of elastic medium. It should be noted that 

we consider the first natural frequency and the critical buckling load of MNBS composed of ten 

elastically connected nanobeams (m = 10) coupled in the “Clamped - Chain” system. To 

illustrate the effect of temperature change at low temperature environment with the natural 

frequency and the critical buckling load of MNBS, numerical experiments are carried out for 

different values of nonlocal parameter and stiffness coefficients and three different values of 

temperature change  = 0.50 and 100K. From Fig. 3 it can be observed that an increase of 

temperature change leads to an increase in both the natural frequency and the critical 

buckling load. Fig. 4 illustrates the influence of a changing stiffness coefficient of elastic 

medium with the natural frequency and the critical buckling load of MNBS for three 

different values of temperature change. From this figure, it is also found that the natural 

frequency and the critical buckling load are nearly linearly dependent on stiffness coefficient 

K. In addition, it can be observed that an increase of stiffness coefficient increases the 

natural frequency and the critical buckling load. Moreover, the influence of temperature 

changes is small, but not negligible. The similar behavior can be observed in the previous 

case presented in Fig. 3. Finally, one can conclude that the temperature change at low 

temperature environment causes an increase of the system’s stiffness, which leads to an 

increase of the natural frequencies and the buckling loads of the system. The obtained 

results are also in line with the results obtained in papers by Murmu and Pradhan [25, 26]. 

The effects of temperature change at higher temperature environment with the natural 

frequency and the critical buckling load of MNBS embedded in elastic medium where 

m = 10 and s = 1 are shown in Figs. 5 and 6. It can be noticed that temperature change has 

a different influence on the system’s natural frequency and its critical buckling load than 

in the case of low temperature environment. Here, one can notice that an increase of 

temperature change leads to a decrease of both the natural frequency and the critical buckling 

load. From the physical viewpoint, this means that the total stiffness of MNBS decreases for an 

increase of temperature. Regarding the influence of nonlocal parameter and stiffness coefficient 

of elastic medium on the vibration and stability response of MNBS it is similar as in the 

case of low temperature environment. 

Molecular dynamic simulation studies analyzing the dynamical and stability behavior 

of systems with a larger number of coupled nanobeams with thermal effects are not yet 

published in the literature. However, the authors have found MD simulation results for 

vibration and vibration of a single-walled carbon nanotube presented by Ansari et al. [34]. 

For MNBS it is well known that the lowest natural frequency and the buckling load of 

such system represent the fundamental frequency and critical buckling load and it is 

independent of the influence of a number of nanobeams in the system and chain coupling 

conditions, see Karliĉić et al. [33]. The fundamental frequency and the critical buckling 

load are equivalent to the natural frequency and the buckling load of a single nanobeam. 

Thus, our results for the lowest natural frequency and the critical buckling load of MNBS 

without thermal change can be used to validate them with the results obtained for free 

vibration of a single-walled carbon nanotube via molecular dynamics simulation in Ansari 

et al. [34]. This is also in line with expressions for asymptotic natural frequency given in 

Eq. (22). The mechanical properties of single-walled carbon nanotube considered in this 

comparative study are adopted from Ansari et al. [34]. Table 1 shows the fundamental 

natural frequencies obtained by using the molecular dynamic simulation and nonlocal 

continuum mechanics approach for different values of the aspect ratios L/D. From Table 
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1, it can be noticed that the results obtained by using the trigonometric method are in 

excellent agreement with the results presented by Ansari et al. [34].  

Table 1 Comparison fundamental frequencies (THz) presented analytical solution  

with results obtained in the Ansari et al. [34] 

Timoshenko beam theory 

Ansari et al. [34] 

Presented analysis 

(trigonometric solution) 

L/D MD 

simulation 

Classical 

theory 

Stress 

gradient 

theory 

Strain 

gradient 

theory 

Strain/ inertia 

gradient 

theory 

Nonlocal  

theory 

8.3 0.5299 0.5306 0.5302 0.5302 0.5299 0.5485 

10.1 0.3618 0.3606 0.3604 0.3604 0.3603 0.3707 

13.7 0.1931 0.1972 0.1971 0.1971 0.1971 0.2016 

17.3 0.1103 0.1240 0.1240 0.1240 0.1240 0.1264 

20.9 0.0724 0.0851 0.0851 0.0851 0.0851 0.0860 

24.5 0.0519 0.0620 0.0620 0.0620 0.0620 0.0630 

28.1 0.0425 0.0471 0.0471 0.0471 0.0471 0.0479 

31.6 0.0358 0.0373 0.0373 0.0373 0.0373 0.0379 

35.3 0.0287 0.0299 0.0299 0.0299 0.0299 0.0303 

39.1 0.0259 0.0244 0.0244 0.0244 0.0244 0.0247 

5. CONCLUSIONS 

In the present paper, the vibration and the stability properties of MNBS embedded in 

Winkler elastic medium for different number of simply supported nanobeams are studied. 

The system of m partial differential equations is derived using the D’ Alembert principle and 

nonlocal thermo-elastic constitutive relation. The possibility of using nanostructures such as 

CNTs, ZnO or BN nanotubes as nanoresonators, nanosensors and in other NEMS devices 

demands exploration of natural frequencies of single or multiple nanostructure systems. 

However, external field effects, such as temperature, or the influence of surrounding 

medium, can significantly shift the values of natural frequencies. Thus, such effect needs to 

be taken into account to obtain, as much as possible, realistic models to simulate the 

mechanical behavior of nano-scale systems. Nonlocal continuum theory, which considers 

size-effects, is one of the most convenient theories to deal with a large nano-scale system 

with various external field effects, easily included into a model.  The nonlocal Euler-

Bernoulli beam theory takes into account the length-scale i.e. nonlocal parameter, where 

thermal effects are also introduced through constitutive relation. The Bernoulli - Fourier and 

trigonometric methods are used to obtain closed form analytical solutions for thermal 

vibration and stability response of the proposed system. The influence of temperature 

changes and nonlocal parameter with natural frequencies and critical buckling loads are 

considered. In addition, the influence of stiffness of the elastic medium K,  on both of 

mechanical responses of MNBS, is investigated through numerical examples. It is found that 

the natural frequency and the critical buckling load of MNBS are strongly influenced by 

nonlocal and stiffness coefficients. Further, significant influence of the temperature change 

on the natural frequency and the critical buckling load can also be recognized. From the 

obtained results, one can conclude that the nonlocal parameter and the temperature change at 
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high temperature environment are having dampening properties on the natural frequency and 

the critical buckling load. On the other hand, an increase of stiffness coefficients of the 

elastic medium and temperature change at low temperature environment leads to an increase 

of total stiffness of MNBS and consequently to an increase of the natural frequency and the 

critical buckling load. 
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