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Abstract. To address the challenge that single-scenario solutions often fail to adequately 

handle the complex and dynamic mixed environments that drivers regularly navigate, 

this study aims to leverage learning-based algorithms to design energy management 

control strategies tailored to the unique characteristics of different driving scenarios. 

The goal is to achieve precise matching and efficient execution of the driving strategies. 

The main research focus of this study is developing a scene-level hierarchical energy 

management control strategy (SHEMS) framework for hybrid electric vehicles in mixed 

driving environments. In the car-following scenario, to address the challenges of reward 

function design and the impact of environment and driver habits, an adaptive strategy 

learning strategy with imitation learning is proposed. To overcome issues of suboptimal 

expert knowledge and the curse of dimensionality, optimization factors are added. For 

the intersection scenario, aiming at the challenge of reward sparsity caused by the 

scarcity of traffic signals and safety incentives, an additional reward mechanism is 

innovatively proposed to enrich the reward function. The experimental results 

demonstrate that the SHEMS significantly reduces fuel consumption. Specifically, the 

PPO, A2C, A3C, and DQN-based strategies achieved 7.52%, 5.29%, 9.6%, and 5.93% 

reductions, respectively. Taking the DQN algorithm as an example, the emissions of 

harmful gases CO, HC, PM and NOx are reduced by 18.3%, 14.23%, 16.94%, and 

20.9%, respectively, after layering. 
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1. INTRODUCTION 

Among various factors influencing vehicle energy consumption, the driving behavior 

patterns of drivers have been widely recognized to have a significant impact of up to 30 % 

on the fuel economy of vehicles [1-3]. Further in-depth research by the National Renewable 

Energy Laboratory in the United States has further consolidated this finding, revealing that 

the implementation of reasonable and efficient driving behavior strategies can achieve a 

significant effect of around a 20 % reduction in fuel consumption [4, 5].When addressing 

the energy management control strategy problem in the intersection scenario, Yu et al. [6] 

utilized car-following models and real-time optimal control to optimize the trajectories of 

connected and automated vehicles (CAVs), thereby minimizing the total fuel consumption 

of each CAV during the current control period. The fuel economy of hybrid electric 

vehicles is closely related to the vehicle's speed distribution, which directly affects the 

required total energy consumption [7]. The latest research surveys have shown that by 

combining energy management control techniques and speed planning, energy 

consumption can be effectively reduced, achieving a 15 % energy-saving effect [8]. It not 

only helps enhance the market attractiveness of products, but also can bring more 

substantial economic benefits [9]. Hu et al. [10] developed an integrated optimal controller 

for hybrid electric vehicles equipped with vehicle-infrastructure communication, which 

achieved up to 16.9% improvement in fuel efficiency on rolling terrain. Liu et al. [11] 

employed a combination weighting method and K-means clustering to develop an eco-

driving evaluation model based on multi-source data. In this case, calculating the reference 

speed curve to avoid idling before the intersection can ensure relatively good energy-saving 

performance [12]. 

In recent years, with the rapid development of artificial intelligence technology, many 

studies have introduced learning-based methods into the energy management control 

strategy problem, which have also demonstrated the strong adaptability and nonlinear 

system optimization capabilities of learning-based methods [13-16]. Yeom et al. [17] 

cleverly integrated deep reinforcement learning and model predictive control techniques, 

significantly improving the energy efficiency and economics of electric vehicles. This 

innovative hybrid approach, particularly the precise optimization of the speed control 

strategy for electric vehicles through the model predictive control algorithm, not only 

brings technological innovation to the current electric vehicle field, but also provides 

valuable theoretical guidance and practical examples for the future planning of 

autonomous. Addressing the dual objective of reducing fuel consumption during the 

driving process and simultaneously enhancing driving comfort. He et al. [18] developed a 

multi-objective intelligent eco-driving strategy for plug-in hybrid electric vehicles based 

on a multi-head deep Q-network deep reinforcement learning approach, which achieves 

energy consumption optimization while ensuring autonomous driving safety. Ozatay et al. 

[19] proposed a simplified reinforcement learning method, which learns the trends and 

characteristics of the driver's reference speed online and dynamically adjusts the speed 

limit to increase the driver's likelihood of following the reference speed. 

In the frontier field of exploring hierarchical energy management control strategies, 

Wang et al. [20] took an important step forward by carefully conceiving and designing an 

online control strategy for hybrid electric vehicles. SHEMS aims to comprehensively 

improve fuel economy, significantly reduce exhaust emissions, and simultaneously ensure 

a high standard of driving safety. At the low-level execution layer of the strategy, the focus 
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is on the optimization of power allocation between the internal combustion engine and the 

battery module, ensuring the rationality and efficiency of energy flow through precise 

control. At the high-level decision-making layer, the intelligent system is fully responsible 

for the accurate control and optimization of the vehicle's speed. Guo et al. [21] combined 

energy management control strategies with reinforcement learning algorithms, proposing 

a hierarchical control framework-based efficient and coordinated optimization strategy for 

autonomous hybrid power tracked vehicles, which achieved simultaneous optimization of 

precise path tracking and energy management. Aiming at safety and comfort, Liu et al. 

designed an algorithm with a two-layer structure. The upper-level controller uses a grey 

neural network to predict the future speed trend of the lead vehicle, while the lower-level 

adopts an adaptive equivalent consumption minimization strategy to implement the 

hierarchical energy management control strategy [22]. Peng et al. [23] proposed a multi-

lane hierarchical optimization algorithm based on a predictive control framework, which 

plans the optimal speed and lane-changing behavior by considering the vehicle's power 

demand, driving comfort, and safety at the upper level. At the lower level, dynamic 

programming is used to design the energy management by tracking the optimal speed. Li 

et al. [24] studied a data-driven optimal energy management control strategy for plug-in 

hybrid electric vehicles, which has good performance and computational efficiency in 

speed planning and energy management. This algorithm also has a hierarchical structure 

and introduces two data-driven algorithms based on high-fidelity neural networks as the 

evaluation model and system model for speed optimization, reducing the requirement for 

complex powertrain system models. 

Although there has been extensive research on energy management control and driving 

style, in the context speed optimization for long-distance urban roads, are relatively limited 

[25-27]. Chen et al. proposed an assistance system that uses a model predictive control 

design to create a simplified powertrain model-based advisor system, which not only 

provides speed profiles but also real-time recommendations for advanced driving modes 

such as cruising and coasting [28]. Considering the diversity of driver behavior, Ma et al. 

proposed a novel fuel-efficient driving strategy and investigated its impact on the fuel 

efficiency of a human-driven vehicle fleet. In mixed traffic, where multiple vehicles share 

the road, the strategy of the vehicles is realized through vehicle connectivity and 

longitudinal dynamic control, thereby significantly reducing the vehicle's fuel consumption 

by avoiding unnecessary braking and acceleration operations [29]. 

From the current research on energy management control strategies, a significant trend 

is that a large number of studies have focused on optimization strategies for specific 

scenarios, such as intersection management and energy management control strategies for 

highways [30-32]. However, drivers' daily commutes often traverse through complex and 

ever-changing mixed scenarios, and solutions for a single scenario may prove inadequate 

in addressing comprehensive road conditions, thus failing to ensure the optimality and 

adaptability of the strategies. Therefore, in the construction of intelligent transportation 

systems, the development of an algorithm that can flexibly cope with mixed driving 

scenarios has become increasingly urgent and important. This paper addresses this 

challenge by delving into the energy management control strategy for hybrid electric 

vehicles in mixed scenarios, and innovatively proposing SHEMS. The core of this method 

lies in the customization of energy management control strategies according to the 

characteristics of different driving scenarios, thereby achieving precise matching and 

efficient execution of the strategies. 
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The specific contributions of this paper are as follows:  

1. Facing the actual situation of hybrid electric vehicles driving in mixed scenarios, 

SHED framework for mixed scenarios has been constructed.  

2. Regarding the challenge of reward function design, in the car-following scenario, an 

adaptive policy learning strategy based on imitation learning and a vehicle car-following 

strategy incorporating driving style are proposed. Considering the challenges of non-

optimality of expert knowledge and high-dimensional features, an optimization factor 

addition strategy is also proposed. 

3.To address the sparsity of the reward function in the intersection scenario, a method 

of adding supplementary rewards to compensate for the sparse reward function and a state 

prediction calibration method are proposed to solve the problems of sparse reward 

functions and the uncertainty of the traffic scenario and the learning environment of the 

intelligent agent. 

The remaining parts of the paper are as follows: Section 2 is the problem description, 

which includes the modeling of hybrid electric vehicles. Section 3 addresses the influence 

of the traffic environment and driver habits on the driving strategy, and proposes an 

adaptive policy learning method based on imitation learning and a vehicle car-following 

strategy incorporating driving style. Section 4 discusses the energy management control 

strategy in the intersection scenario. Section 5 verifies the algorithm advantages from both 

simulation and hardware-in-the-loop experiments. Section 6 summarizes the entire paper 

and looks ahead to the future. 

2. PROBLEM DESCRIPTION 

2.1 HEV Modeling 

The research focuses on a parallel HEV with a P2 configuration, as depicted in Fig.1. 

The P2 HEV model offered by the Matlab/Simulink 2020b community is utilized and 

modified in the control component to enhance simulation precision and repeatability. Table 

1 contains detailed information about the model parameters. 

Table 1 Other parameters of the vehicle 

Symbol Parameter Values 

Engine Maximum power 92 kW 

 Maximum torque 175 Nm 

 Maximum speed 6500 rpm 

Motor Maximum power 30 Kw 

 Maximum torque 200 Nm 

 Maximum speed 6000 rpm 

Battery Capacity 5.3 Ah 

 Voltage 266.5 V 
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Fig. 1 Vehicle transmission configuration 

2.1.1 Vehicle Dynamics Modeling  

The longitudinal force balance equation of the vehicle is shown in Eq. (1). The equation 

is divided into four parts: rolling resistance Ff, aerodynamic drag Fw, slope resistance Fi, 

and inertial force Fa.  

 

{
 
 

 
 
𝐹 = 𝐹𝑓 + 𝐹𝑤 + 𝐹𝑖 + 𝐹𝑎
𝐹𝑓 = 𝑊𝑓 = 𝐺 ⋅ 𝑓

𝐹𝑤 =
1

2
𝜌 ⋅ 𝐴𝑓 ⋅ 𝐶𝐷 ⋅ 𝑣

2

𝐹𝑖 = 𝐺 ⋅ 𝑖
𝐹𝑎 = 𝛿 ⋅ 𝑚 ⋅ 𝑎

 (1) 

where G represents the vehicle weight, f is the rolling coefficient, ρ indicates the air density, 

Af represents the frontal area of the vehicle, CD donates the drag coefficient, i is the slope 

angle, δ means the rotational mass conversion factor, and a indicates the longitudinal 

acceleration of the vehicle. 

The power of the hybrid electric vehicle is provided by the engine and the electric 

motor, which can be calculated as: 

 𝑃dem = (𝑃𝑒𝑛 + 𝑃𝑏𝑎𝑡 ⋅ 𝜂𝑚)𝜂𝑇 (2) 

where Pen represents the engine power, Pbat is the battery power, 𝜂𝑚 donates the electric 

motor efficiency, and 𝜂𝑇 indicates the transmission efficiency. 

2.1.2 HEV Components Modeling  

The engine modeling adopts a static MAP approach. Based on the engine's speed and 

torque parameters, the corresponding fuel consumption at that speed and torque can be 

directly obtained from the MAP chart. In this paper, the transient response can be 

neglected, and the specific formula is:  
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 𝑚𝑓𝑢𝑒𝑙 = ∫ 𝑚̇𝑓𝑢𝑒𝑙(𝑇𝑒𝑛𝑔𝑖𝑛𝑒 , 𝜔𝑒𝑛𝑔𝑖𝑛𝑒)
𝑡

0
𝑑𝑡 (3) 

where mfuel and 𝑚̇𝑓𝑢𝑒𝑙 represent the fuel consumption and the fuel consumption rate, 

respectively, and 𝜔𝑒𝑛𝑔𝑖𝑛𝑒  is the engine speed. The harmful gas emissions from the engine 

are modeled with the RSM model. 

The electric motor has two operating modes: motor drive mode and regenerative 

braking mode, which functions as a traction motor and a generator, respectively. The power 

output is represented as:  

 𝑃𝑚𝑜𝑡𝑜𝑟 = {

𝑇𝑚𝑜𝑡𝑜𝑟𝜔𝑚𝑜𝑡𝑜𝑟

𝜂𝑚𝑜𝑡𝑜𝑟
,                𝑇𝑚𝑜𝑡𝑜𝑟 ≥ 0

𝑇𝑚𝑜𝑡𝑜𝑟𝜔𝑚𝑜𝑡𝑜𝑟𝜂𝑚𝑜𝑡𝑜𝑟 , 𝑇𝑚𝑜𝑡𝑜𝑟 < 0
 (4) 

where Pmotor, ωmotor, and ηmotor indicate the electric motor output power, output speed, and 

efficiency, respectively. 

The rate of change of the state of charge (SOC) is given by: 

 𝑑𝑆𝑂𝐶 =
𝐼𝑏𝑎𝑡𝑡𝑒𝑟𝑦(𝑡)

𝑄𝑏𝑎𝑡𝑡𝑒𝑟𝑦
= −

𝐸𝑜𝑐−√𝐸𝑜𝑐
2 −4𝑅𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦

2𝑅𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑄𝑏𝑎𝑡𝑡𝑒𝑟𝑦
 (5) 

where Pbattery represents the battery charge and Qbattery is the total battery capacity. 

2.1.3 Driver Modeling  

The forward simulation modeling approach is applied, which requires the establishment 

of a driver model to obtain the acceleration and braking signals. The driver model is 

constructed based on PID control, by adjusting the PID parameters to calculate the pedal 

opening based on the target vehicle speed and the actual vehicle speed, as shown in Eq. 

(6):  

 {
𝛷𝑟𝑒𝑞 = 𝐾𝑝 ∙ 𝑒(𝑡) + 𝐾𝑖 ∙ ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡

𝑒(𝑡) = 𝑣𝑇𝑎𝑟 − 𝑣                                                
 (6) 

where, e represents the deviation between the target vehicle speed and the actual vehicle 

speed, and Kp, Ki, and Kd mean the parameters of the PID controller, respectively. 

2.2 Strategy Assumptions and Scenario Classification 

To make the problem more specific and complete the task better, the following 

assumptions are made: 

(1) The connected and automated vehicle (CAV) can communicate in real-time with 

the infrastructure on the roadside during driving, and the vehicle can obtain traffic 

information, location information, and signal light information at intersections through 

communication technology. 

(2) Traffic violations by pedestrians and interference from non-motorized vehicles are 

not considered. 

(3) The state of the yellow light is not considered. 

 In the smart connected traffic environment, the traffic lights at the intersection have 

the ability to communicate with the vehicles, and the communication range threshold 

between the signal light and the vehicle can be represented as Rc. When the distance is less 
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than Rc, the signal light needs to provide timing information, and the strategy at the 

intersection is triggered. When the distance is greater than Rc, the strategy at the intersection 

is not needed, and the vehicle drives under its own car-following behavior. When there is 

no leading vehicle and no intersection ahead, the vehicle is in a free-driving state. In 

summary, the scenario classification strategy of this paper is as follows: 

 {

𝐸𝑐𝑜 − 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑐𝑒𝑛𝑒𝑠:                                       𝑅 < 𝑅𝑐
𝐸𝑐𝑜 − 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑓𝑜𝑟 𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑠𝑐𝑒𝑛𝑒𝑠:                                                  𝑅 ≥ 𝑅𝑐

𝐸𝑐𝑜 − 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑓𝑜𝑟 𝑓𝑟𝑒𝑒 − 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑠𝑐𝑒𝑛𝑒𝑠:   
𝑛𝑜 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑜𝑟
𝑛𝑜 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎ℎ𝑒𝑎𝑑

 (7) 

2.3 SHED Modeling under Reinforcement Learning 

In the free-driving scenario, the following vehicle's speed should not exceed the 

maximum speed limit of the lane the leading vehicle is in, nor should it exceed the 

maximum constraint speed of the vehicle. Once the following vehicle accelerates to the 

maximum permitted speed, it should enter a stable speed control mode and maintain that 

speed until a different traffic situation is encountered. 

The speed limit is given by: 

 𝐹𝐹𝑟𝑒𝑒 = 𝑣𝑙𝑖𝑚(𝑘) − 𝑣(𝑘) (8) 

 𝑣𝑙𝑖𝑚(𝑘) = 𝑚𝑖𝑛(𝑣𝑙𝑎𝑛𝑒 , 𝑣𝑚𝑎𝑥) (9) 

The value of vlim(k) is selected as the smaller of the two speeds, which are the lane speed 

limit vlane and the maximum allowed speed of the following vehicle vmax, over the time step 

k. 

The reward function for the strategy in the free-driving scenario is as follows: 

 𝑅𝑓𝑟𝑒𝑒𝑑𝑜𝑚 = 𝛼1𝐹𝑢𝑒𝑙 + 𝛼2𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 + 𝛼3𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (10) 

If FFree is negative, the reinforcement learning reward function is directly set to -1 to 

receive a negative reward. Security represents the condition where there is no collision with 

other traffic environments. 

The reinforcement learning state vector is: 

 𝑆𝑡_𝑓𝑟𝑒𝑒𝑑𝑜𝑚 = [𝑉𝑒𝑔𝑜 , 𝐷𝑒𝑔𝑜 , 𝑖, 𝑆𝑂𝐶, 𝐷𝑉2𝑆]
𝑇
 (11) 

where Vego indicates the reference vehicle speed, Dego represents the distance to the leading 

vehicle, i means the road slope, SOC donates the state of charge of the battery, and Dv2s is 

the distance to the destination. 

Under the typical scenario condition, the car-following model algorithm can integrate 

environmental characteristics and driver behavior characteristics while ensuring safety. By 

incorporating energy management and pollutant emissions, the following reward function 

is obtained: 

 𝑅𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 = 𝑅𝑓𝑟𝑒𝑒𝑑𝑜𝑚 + 𝐹𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 (12) 

The reinforcement learning state vector is: 

 𝑆𝑡_𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 = [𝑉𝑒𝑔𝑜 , 𝐷𝑒𝑔𝑜 , 𝑉𝑝𝑟𝑒 , 𝑎𝑝𝑟𝑒 , 𝐷ℎ , 𝑖, 𝑆𝑂𝐶, 𝐷𝑉2𝑆]
𝑇
 (13) 
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where, Vpre represents the speed of the leading vehicle, apre indicates the acceleration of the 

leading vehicle, Dh means the distance to the leading vehicle. 

In the intersection scenario, the optimization function is composed of objectives for 

safety, energy management, and harmful substance emission reduction. The reinforcement 

learning reward function is as follows: 

  𝑅𝑠𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 = 𝛽1𝐹𝑢𝑒𝑙 + 𝛽2𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 + 𝛽3𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛+𝛽4𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝑙𝑖𝑔ℎ𝑡 + 𝐹(𝑠𝑡 , 𝑎𝑡) (14) 

The reinforcement learning state vector is: 

 𝑆𝑡 = [
𝑉𝑒𝑔𝑜 , 𝐷𝑒𝑔𝑜 , 𝑉𝑝𝑟𝑒 , 𝑎𝑝𝑟𝑒 , 𝐷ℎ , 𝑖, 𝑆𝑂𝐶, 𝐷𝑉2𝑆,

𝑡𝑟_𝑟𝑒𝑚 , 𝑡𝑔_𝑟𝑒𝑚, 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑖𝑛, 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑎𝑥
]
𝑇

 (15) 

That is the hierarchical scenario structure for the SHED algorithm. 

The flow chart of the algorithm is shown in Fig. 2. The energy management control 

strategies can be divided into three typical scenarios: free-driving, car-following, and 

intersection. In the free-driving scenario, the factors affecting consist of fuel consumption, 

driving safety, and emissions. The reward function only considers these three factors. For 

the typical car-following scenario, the strategy is built upon the free-driving case, with 

additional factors such as the adaptive factor, mutual information, high-dimensional 

features, and driver's style. The corresponding reinforcement learning state vector is 

expanded accordingly. Under the intersection scenario, the strategy extends the free-

driving case by incorporating an additional reward that combines self-supervised internal 

reward functions, calibration formulas, and traffic signal status. The reinforcement learning 

state vector is further expanded to capture these intersection-specific elements. 

3. ADAPTIVE VEHICLE FOLLOWING STRATEGY BASED ON IMITATION LEARNING 

The adaptive strategy learning approach that combines imitation learning, as well as an 

imitation learning strategy that incorporates the driver's style are proposed. The factors 

influencing vehicle car-following can be broadly categorized into two aspects: The impact 

of the environment itself on the driver's behavior and the inherent influence of the 

individual driver's behavioral habits on the car-following strategy. 

3.1 Environmental Factors Influencing Driver Behavior: Adaptive Strategy 

Learning 

For complex and ambiguous environments, imitation learning strategies, which 

overcome the obstacle of manually specifying an appropriate reward function, have the 

potential to outperform reinforcement learning strategies [33-35]. In real-world tasks, 

drivers may exhibit multi-intent behavior when following a lead vehicle, and different 

drivers have varying driving habits [36,37]. These diverse driving habits make it 

challenging to select a suitable reward function. The car-following model with adaptive 
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Fig. 2 Scene-level hierarchical energy management control strategy 

factor that addresses the inherent phenomenon of environmental influences on driver 

behavior is introduced in this section. The main idea is to construct an adaptive GAN 

framework based on the principles of GAN, which trains the car-following policy directly 

without estimating the reward function. As is shown in Eq. (16): 
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 𝑚𝑖𝑛
𝜋
  𝑚𝑎𝑥
𝐷∈(0,1)𝑠×𝐴

 𝔼𝜋[𝑙𝑜𝑔 𝐷(𝑠, 𝑎)] + 𝔼𝜋𝐸[𝑙𝑜𝑔(1 − 𝐷(𝑠, 𝑎))] − 𝜆𝐻(𝜋) (16) 

where, 𝜋𝐸 represents the expert policy，𝜋 indicates the policy that needs to be learned, D 

serves as the discriminator, and 𝐻(𝜋) means the causal entropy, which is shown in Eq. 

(17): 

 𝐻(𝜋) ≜ 𝐸𝜋[− 𝑙𝑜𝑔 𝜋( 𝛼 ∣ 𝑠 )] (17) 

Despite the adaptive policy is model-free, it still requires interacting with the 

environment during training. Due to the presence of stochastic factors, the resulting 

trajectories can exhibit significant variations across different individuals. Even the same 

individual may make different decisions when facing the same situation, leading to the 

generation of multiple distinct policies. 

In this scenario, a set of expert policies: 𝜋𝐸 = {𝜋𝐸
0, 𝜋𝐸

1 ,… } and the process of generating 

expert trajectories: 𝑠0 ∼ 𝜌0𝑐 ∼ 𝑝(𝑐), 𝜋 ∼ 𝑝(𝜋 ∣ 𝑐)0𝑎𝑡 ∼ 𝜋(𝑎𝑡 ∣ 𝑠𝑡), 𝑠𝑡+1 ∼ 𝑃(𝑠𝑡+1 ∣
𝑎𝑡 , 𝑠𝑡) are defined, where the adaptive variable 𝑐 with a prior probability distribution 𝑝(𝑐) 
are also introduced. The goal of the algorithm is to recover the policy 𝜋(𝑎 ∣ 𝑠, 𝑐), under the 

adaptive variable 𝑐. To ensure a tighter coupling between the adaptive factor and the policy, 

and to increase their correlation, we incorporate mutual information into the optimization 

function.  

 

𝐼(𝑐; 𝜏) = 𝐻(𝑐) − 𝐻( 𝑐 ∣ 𝜏 )

= 𝐻(𝑐) + ∫  
𝑐
 ∫  
𝜏
 𝑝(𝑐, 𝜏) 𝑙𝑜𝑔 𝑝(𝑐, 𝜏) 𝑑𝑐𝑑𝜏

= 𝐻(𝑐) + ∫  
𝑐
 ∫  
𝜏
 𝑝(𝑐)( 𝜏 ∣ 𝑐 ) 𝑙𝑜𝑔 𝑝( 𝑐 ∣ 𝜏 ) 𝑑𝑐𝑑𝜏

= 𝐻(𝑐) + 𝔼𝑐∼𝑝(𝑐),𝑎∼𝜋( ⋅∣∣𝑠, 𝑐 )[𝑙𝑜𝑔 𝑝(𝑐|𝜏)]]

 (18) 

Incorporating the adaptive factor into the optimization objective function, the equation 

can be formulated as: 

 𝑚𝑖𝑛
𝜃−𝜓

 𝑚𝑎𝑥
𝜔
 𝔼𝜋𝜃[𝑙𝑜𝑔 𝐷𝜔(𝑠, 𝑎)] + 𝔼𝜋𝐸[𝑙𝑜𝑔(1 − 𝐷𝜔(𝑠, 𝑎))] − 𝜆1𝐼(𝑐; 𝜏) − 𝜆2𝐻(𝜋𝜃) (19) 

Given the difficulty of computing the posterior probability p(c|τ)  during the 

optimization process, the Q-value is applied directly as a replacement, as shown in the 

following equation: 

 𝐿1(𝜋, 𝑄) ≤ 𝐼(𝑐; 𝜏) (20) 

 𝑚𝑖𝑛
𝜃−𝜓

 𝑚𝑎𝑥
𝜔
 𝔼𝜋𝜃[𝑙𝑜𝑔 𝐷𝜔(𝑠, 𝑎)] + 𝔼𝜋𝐸[𝑙𝑜𝑔(1 − 𝐷𝜔(𝑠, 𝑎))] − 𝜆1𝐿1(𝜋, 𝑄) − 𝜆2𝐻(𝜋𝜃) (21) 

3.2 Surpassing Expert-Level Performance and Learning High-Dimensional 

Features 

In the car-following task, the limitations of the expert trajectories input to the network 

can lead to the situation where the error of the learned policy exceeds that of the expert 

policy. For the car-following task, it is difficult to define a suitable reward function. From 

the perspective of the policy, the problem becomes relatively more straightforward. The 

car-following task model from the policy standpoint is shown in Eq. (22): 
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 𝜂(𝜋𝜃) = 𝔼𝑠~𝜀𝐴[𝑟(𝑠)] (22) 

The objective optimization function can be transformed as follows: 

 
𝑚𝑖𝑛
𝜃−𝜓

 𝑚𝑎𝑥
𝜔
 𝔼𝜋𝜃[𝑙𝑜𝑔 𝐷𝜔(𝑠, 𝑎)] + 𝔼𝜋𝐸[𝑙𝑜𝑔(1 − 𝐷𝜔(𝑠, 𝑎))]

−𝜆𝜃𝜂(𝜋𝜃) − 𝜆1𝐿1(𝜋𝜃 , 𝑄𝜓) − 𝜆2𝐻(𝜋𝜃)
 (23) 

where 𝜆 represents a hyper-parameter. The reinforcement function for policy optimization 

consists of two components: the surrogate reward and the discriminator, which aims to 

mimic the expert. This approach allows to overcome the limitation of imitation learning. 

To effectively learn strategies for high-dimensional inputs, the original GAIL 

framework has been improved as shown in Eq. (24). To address traditional GAN networks 

suffer from issues such as gradient vanishing and mode collapse, the objective function has 

been further enhanced by incorporating Wasserstein GAN techniques, as follows: 

 
𝑅𝐹 = &𝑚𝑖𝑛

𝜃−𝜓
 𝑚𝑎𝑥
𝜔
 𝔼𝜋𝜃[𝐷𝜔(𝑠, 𝑎)] − 𝔼𝜋𝐸[𝐷𝜔(𝑠, 𝑎)]

−𝜆𝜃𝜂(𝜋𝜃) − 𝜆1𝐿1(𝜋𝜃 , 𝑄𝜓) − 𝜆2𝐻(𝜋𝜃)
 (24) 

where the discriminator network 𝐷𝜔 and the posterior approximation network are treated 

as separate networks. 

3.3 Optimizing Car-Following Model by Integrating Driver's Driving Style 

During vehicle operation, it is important to consider not only the impact of the driving 

environment on the model, but also the need to satisfy the driver's comfort and safety in 

the car-following task. In this section, the essential characteristics of driving behavior is 

explored under different driving modes, taking into account the vehicle's own dynamics. 

The optimization strategy also incorporates the driver's stylistic characteristics in the car-

following task. The driver is the core of the vehicle-road-traffic system. Although the car-

following behavior describes the relationship between the lead and the following vehicles, 

its essence is a description of the driver's behavior in a given traffic environment. 

3.3.1 Driver Style Clustering Analysis  

To establish a personalized car-following model, the driving data that can reflect the 

driver's style should be classified based on different driving styles. Combining the inter-

vehicle distance and the velocity of the lead vehicle, the Time-To-Collision Inverse (TTCI) 

is defined as follows:  

 𝑇𝑇𝐶𝐼 =
∆𝑣

𝑑
 (25) 

where, ∆𝑣 represents the difference in velocity between the following vehicle and the lead 

vehicle, and d donates the distance between the vehicles. In summary, the behavior features 

consist of the time-to-collision (TTC), time headway, and the absolute values of 

acceleration and deceleration indirectly reflect the driver's style. The driver's style can be 

broadly categorized into two main groups: conservative and aggressive. The K-means 

clustering strategy [38] can be used to cluster the driving data into these two driving style 

categories. 
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3.3.2 Integrated Car-Following Strategy Considering Driver Style Features 

Given that individuals have different perceptions of comfort, studying the car-following 

model alone is clearly insufficient. In this section, integrating the driver's style into the car-

following strategy is introduced, which enables the car-following model to have 

personalized characteristics, improving the overall car-following task. This strategy can 

effectively solve the multi-objective optimization problem in the car-following task. 

Drivers with the same style tend to maintain similar time head-ways in typical car-

following scenarios, but drivers with different styles can have significant differences in 

time headway. The formula for the inter-vehicle distance can be expressed as:  

 ∆𝑑𝑑𝑒𝑠 = 𝑣𝑓𝑡ℎ + 𝑑0 (26) 

where vf is the traveling speed of the following vehicle, th represents the progression of 

time, and d0 means the safe distance when the vehicle is traveling at very low speeds. 

The goal of vehicle car-following is for the driver to adjust the vehicle's speed to match 

the speed of the lead vehicle, and maintain the inter-vehicle distance around the desired 

value. Inter-vehicle Distance Error ∆𝑑𝑒𝑟𝑟(𝑘) is defined as: 

 ∆𝑑𝑒𝑟𝑟(𝑘) = ∆𝑑 − ∆𝑑𝑑𝑒𝑠 (27) 

where ∆𝑑𝑒𝑟𝑟(𝑘) → 0, ∆𝑣(𝑘) → 0. 

To provide comfort to passengers during car-following, the absolute values of both 

acceleration and jerk should also be minimized as much as possible. jk, which represents 

the rate of change of acceleration is defined as: 

 𝑗(𝑘) =
𝑎(𝑘)−𝑎(𝑘−1)

∆𝑡
 (28) 

where |𝑎(𝑘)| → 0, |𝑗(𝑘)| → 0. 

When solving the optimization problem, certain constraints must be satisfied. To avoid 

colliding with the lead vehicle, the inter-vehicle distance must satisfy the minimum 

distance constraint. Ensuring the following vehicle remains in the car-following scenario, 

this distance should be less than the maximum car-following distance. The minimum and 

maximum values of velocity, acceleration, and jerk must also be constrained. Model 

predictive control can handle multi-variable and constrained problems, making it suitable 

for incorporating the car-following model within an MPC framework. Based on the 

principles of MPC, the cost function can be defined as: 

 
𝐽(𝜉(𝑘), 𝑢(𝑘 − 1), 𝛥𝑢(𝑘)) = &∑ ∥∥𝜂( 𝑘 + 𝑖 ∣ 𝑘 ) − 𝜂ref ( 𝑘 + 𝑖 ∣ 𝑘 )∥∥𝑄

2𝑁𝑃
𝑖=1

+∑ ∥ 𝛥𝑢( 𝑘 + 𝑖 ∣ 𝑘 ) ∥𝑅
2𝑁𝑐−1

𝑖=1

 (29) 

where 𝜼𝐫𝐞𝐟(𝑘 + 𝑖 ∣ 𝑘)  represents the reference vector, and Q and R are the weighted 

matrices for the control and target variables, respectively, where R is a one-dimensional 

vector with a value of 10, and Q is a fourth-order square matrix, respectively, which, in the 

car-following task, can be defined as follows: 

 
𝜂𝑟𝑒𝑓( 𝑘 + 𝑖 ∣ 𝑘 ) = [𝛥𝑑𝑑𝑒𝑠( 𝑘 + 𝑖 ∣ 𝑘 ) 0 0 0]𝑇

𝛥𝑢( 𝑘 + 𝑖 ∣ 𝑘 ) = 𝑗( 𝑘 + 𝑖 ∣ 𝑘 )𝛥𝑡
 (30) 
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The optimization objective and the constraints for the model predictive control are 

defined as: 

 𝑠. 𝑡.

{
 

 
𝑑0 ≤ 𝛥𝑑(𝑘) ≤ 𝑑𝑚𝑎𝑥 ,

𝑣𝑚𝑖𝑛 ≤ 𝑣(𝑘) ≤ 𝑣𝑚𝑎𝑥
𝑎𝑚𝑖𝑛 ≤ 𝑎(𝑘) ≤ 𝑎𝑚𝑎𝑥
𝑗𝑚𝑖𝑛 ≤ 𝑗(𝑘) ≤ 𝑗𝑚𝑎𝑥

 (31) 

Considering driving styles, the aggressive strategy should have safety and comfort, 

while the conservative driving strategy should have higher safety and comfort. The final 

cost function is defined as: 

 
𝐹𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 = 𝑚𝑖𝑛

𝜃−𝜓
 𝑚𝑎𝑥
𝜔
 𝔼𝜋𝜃[𝑙𝑜𝑔 𝐷𝜔(𝑠, 𝑎)] − 𝔼𝜋𝐸[𝐷𝜔(𝑠, 𝑎)] − 𝜆0𝜂(𝜋𝜃)

−𝜆𝐼𝐿𝐼(𝜋𝜃 , 𝑄𝜗) − 𝜆2𝐻(𝜋𝜃) − 𝜆3𝐽(𝜉(𝑘), 𝑢(𝑘 − 1), 𝛥𝑢(𝑘))
 (32) 

4. REINFORCEMENT LEARNING OPTIMIZATION OF ENERGY MANAGEMENT CONTROL 

STRATEGIES IN INTERSECTION SCENARIOS 

The factors affecting the driving control strategy at intersections can be divided into 

two main aspects. The first is the impact of sparse reward functions on the driving control 

strategy, and the second is the impact of the complexity and uncertainty of intersections on 

the driving control strategy. To address these issues, two approaches: Self-supervised 

additional reward function and calibration equation for adjusting the training direction are 

proposed. 

4.1 Reconstruction of the Safety Reward Function 

During the actual training process, the safety reward function often suffers from 

sparsity, which is detrimental to the learning of the intelligent agent. Given the above 

issues, it is crucial to redesign the safety reward function considering the potential impact 

of the current behavior on future states. In the context of intelligent and connected vehicles, 

the vehicle itself can receive information about the phase and distance of the next traffic 

light. Drivers generally expect the next traffic light to be green, allowing them to quickly 

pass through the intersection. Based on the remaining time of the red light and the duration 

of the green light, the speed boundaries at the intersection can be determined as: 

 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑎𝑥 = 𝑚𝑖𝑛 {
𝑉𝑙𝑖𝑚𝑖𝑡 ,

𝐷𝑉2𝑆 ÷ [𝑡𝑟_𝑟𝑒𝑚 + 𝑘(𝑡𝑔_𝑐𝑦𝑐𝑙𝑒 + 𝑡𝑟_𝑐𝑦𝑐𝑙𝑒)]
} (33) 

 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑖𝑛 = 𝐷𝑉2𝑆 ÷ [𝑡𝑟_𝑟𝑒𝑚 + 𝑡𝑔_𝑐𝑦𝑐𝑙𝑒 + 𝑘(𝑡𝑔_𝑐𝑦𝑐𝑙𝑒 + 𝑡𝑟_𝑐𝑦𝑐𝑙𝑒)] (34) 

where, Vlimit represents the speed limit of the road. DV2S indicates the distance to the stop 

line at the intersection. tr_cycle shows the remaining red light time. tg_cycle means the duration 

of the green light. tr_rem is the duration of the red light. 𝑘 = 0,1,2… ,∞ represents the delay 

period. When the vehicle can pass through the next red-green light during the green light 

time TW, k = 0. If the lower bound of the green light speed boundary exceeds the road 

speed limit, it means the vehicle cannot pass through the next red-green light. In this case, 

we can adjust the delay period 𝑘 to select a suitable green light. 
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Similarly, when the traffic light is green, the speed boundary can be derived as: 

 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑎𝑥 = {

𝑉𝑙𝑖𝑚𝑖𝑡, 𝑘 = 0                                                                                     

𝑚𝑖𝑛 {
𝑉𝑙𝑖𝑚𝑖𝑡,

𝐷𝑉2𝑆 ÷ [𝑡𝑔_𝑟𝑒𝑚 + (𝑘 − 1)(𝑡𝑔_𝑐𝑦𝑐𝑙𝑒 + 𝑡𝑟_𝑐𝑦𝑐𝑙𝑒) + 𝑡𝑟_𝑐𝑦𝑐𝑙𝑒]
}
  

 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑎𝑥 {
𝑘 = 0                 
𝑘 = 0,1,2… ,∞

 (35) 

 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑖𝑛 = 𝐷𝑉2𝑆 ÷ [𝑡𝑔_𝑟𝑒𝑚 + 𝑘(𝑡𝑔_𝑐𝑦𝑐𝑙𝑒 + 𝑡𝑟_𝑐𝑦𝑐𝑙𝑒)]  

where, tg_rem is the remaining green light time. 

If the ego vehicle's speed exceeds the speed boundaries, there is a risk of running the 

red light. The traffic light reward function can be represented as a piece-wise function: 

 𝑟𝑙𝑖𝑔ℎ𝑡 =

{
  
 

  
 𝛽1 + 𝑙𝑛(𝑣(𝑛) − 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑎𝑥)

2
, if 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑎𝑥 < 𝑣(𝑛) and 𝛽1 < (𝑣(𝑛) − 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑎𝑥)

2

(𝑣(𝑛) − 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑎𝑥)
2
,                if 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑎𝑥 < 𝑣(𝑛) and (𝑣(𝑛) − 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑎𝑥)

2
≤ 𝛽1

0,                                                   if 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑖𝑛 ≤ 𝑣(𝑛)  ≤  𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑎𝑥                                  

(𝑣(𝑛) − 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑖𝑛)
2
,               if 𝑣(𝑛) < 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑖𝑛 and (𝑣(𝑛) − 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑖𝑛)

2
≤ 𝛽2

𝛽2 + 𝑙𝑛(𝑣(𝑛) − 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑖𝑛)
2
, if 𝑣(𝑛) < 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑖𝑛 and 𝛽2 < (𝑣(𝑛) − 𝑉𝑙𝑖𝑔ℎ𝑡_𝑚𝑖𝑛)

2

 (36) 

where, 𝛽1  and 𝛽2  represent the boundary points of the green light speed boundary, 

respectively. When the vehicle speed exceeds the green light speed boundary, we can 

calculate a negative reward based on the proposed traffic light reward function, rather than 

only calculating a sparse reward when the vehicle runs the red light.  

4.2 Design of Additional Reward Functions 

The reward function is the guiding direction for the entire task, determining the 

objectives the agent needs to achieve. The reward function can be simply designed as a 

combination of fuel consumption, safety, and pollution emissions. Additional reward 

functions to train the neural network are designed innovatively, guiding the vehicle's 

actions and enabling the hybrid-electric vehicle agent to have the capability of self-

exploration, while preventing actions that the agent may regret later. The general approach 

to improving the reward function is: 

 𝑟′(𝑠𝑡 , 𝑎𝑡) = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝐹(𝑠𝑡 , 𝑎𝑡) (37) 

where, F(st,at) represents additional reward. 𝑟(𝑠𝑡 , 𝑎𝑡) = 𝛽1𝑟𝐹𝑢𝑒𝑙 + 𝛽2𝑟𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 +

𝛽3𝑟𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛  is basic reward function. The recursive equation for the expected cumulative 

reward of the revised reward function can be expressed as: 

 𝑄𝑛𝑒𝑤
𝑧 (𝑠𝑡 , 𝑎𝑡) = 𝑟

′(𝑠𝑡 , 𝑎𝑡) + 𝛾𝐸𝑟𝑡,𝑠𝑡,1 − 𝐸[𝑄𝑛𝑒𝑤
𝑧 (𝑠𝑡+1, 𝑎𝑡+1)] (38) 

According to Eq. (38), after modifying the reward function, the new Q-value of the 

Markov Decision Process can be derived as:  

 

𝑄𝑛𝑒𝑤
𝜋 (𝑠𝑡 , 𝑎𝑡) = 𝔼𝑟𝑖≥𝑡,𝑠𝑖>𝑡~𝐸 [∑ 𝛾𝑖−𝑡𝑇

𝑖=𝑡 𝑟𝑖
′
(𝑠𝑖 , 𝑎𝑖)]

= 𝔼𝑟𝑖≥𝑡,𝑠𝑖>𝑡~𝐸[∑ 𝛾𝑖−𝑡𝑇
𝑖=𝑡 (𝑟(𝑠𝑡 , 𝑎𝑡) + 𝐹(𝑠𝑡 , 𝑎𝑡))]

= 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) + 𝔼𝑟𝑖≥𝑡,𝑠𝑖>𝑡~𝐸[∑ 𝛾𝑖−𝑡𝑇
𝑖=𝑡 𝐹(𝑠𝑡 , 𝑎𝑡)]

 (39) 
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As discussed, a self-supervised strategy to compute the additional rewards is designed, 

allowing the agent to self-explore and complete the ecological tasks at intersections. Self-

supervised learning can be viewed as a subset of unsupervised learning, where the agent 

learns from the inherent relationships in the data without the need for extensive labeled 

datasets. In the SHEMS, the rewards need to be constructed through the automatic 

generation of pseudo-labels. Specifically, the agent predicts the next state based on the 

current state and action, and combines the predicted state with the current state to construct 

the 𝐿𝑜𝑠𝑠 function. The addition of the self-supervised module gives the model a certain 

level of generalization capability. The self-supervised internal reward functions are shown 

in Eq. (40) and Eq. (41), where the Model refers to a generic deep learning prediction 

model: 

 𝑆𝑡+1
∗ = 𝑀𝑜𝑑𝑒𝑙(𝑠𝑡 , 𝑎𝑡) (40) 

 𝐹(𝑠𝑡 , 𝑎𝑡) = 𝑙𝑜𝑠𝑠(𝑆𝑡+1, 𝑆𝑡+1
∗ ) (41) 

The essence of reinforcement learning lies in the ability to predict the next action based 

on the current state. By executing the action for the next time step, the agent obtains the 

state for the following time step. The uncertainty in the environment will directly impact 

the agent's choice of actions, and the agent's actions will also directly influence the state 

vector. The key to maintaining a stable state is the accuracy of the action values. The 

accuracy of the action values is regarded as a factor in the calibration formula: 

 𝑟𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑅𝑀𝑆𝐸(𝑎𝑡+1, 𝑎𝑡+1
∗ ) (42) 

where 𝑎𝑡+1
∗  ,which represents the action for the next time step, can be calculated by the 

formula 𝑎𝑡+1
∗ = model2(𝑎𝑡 , 𝑠𝑡). A represents the true action values. By integrating the 

reinforcement learning calibration and the additional rewards generated through self-

supervision, a new additional reward function is updated as Eq. (43): 

 𝐹(𝑠𝑡 , 𝑎𝑡) =
𝑙𝑜𝑠𝑠(𝑆𝑡+1, 𝑆𝑡+1

∗ )
𝑅𝑀𝑆𝐸(𝑎𝑡+1, 𝑎𝑡+1

∗ )⁄  (43) 

The final reward function for the self-supervised reinforcement learning calibration 

method is shown in Eq. (44): 

 𝑅𝑠𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 = 𝛽1𝐹𝑢𝑒𝑙 + 𝛽2𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 + 𝛽3𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 + 𝛽4𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝑙𝑖𝑔ℎ𝑡 +

𝐹(𝑠𝑡 , 𝑎𝑡) (44) 

5. EXPERIMENTAL RESULTS 

5.1 Results of the Car-Following Experiment 

5.1.1 Data Process 

In this study, the car-following model training utilized the high-resolution Waymo open 

dataset [39]. Given the measurement errors of the equipment, which may have a significant 

impact on the analysis of trajectory data, it is necessary to establish an appropriate noise 

filtering mechanism in the numerical calculation process. We opted to apply the widely-
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used Savitzky-Golay filter [ 40], which calculates the smoothed data by employing 

polynomial fitting and interpolation methods to address this issue. As expresses in Eq. (45):  

 𝑔𝑖 = ∑ 𝑐𝑛𝑓𝑖+𝑛
𝑛𝑅
𝑛=−𝑛𝐿

 (45) 

where, fi+n represents the smoothed signal, nL denotes the number of data points to the left 

of the current data point, nR indicates the number of data points to the right of the current 

data point, and cn means the weight values. 

The specific data processing approach involves using a second-order Savitzky-Golay 

filter to filter each speed data point. The acceleration and deceleration are calculated based 

on the filtered speed data. Further, an additional smoothing method is employed to 

eliminate any residual noise. 

5.1.2 Results of the Simulation Experiments 

To verify the accuracy and reasonableness of the car-following results, an analysis of 

the simulation outcomes is conducted. 80 % of the Waymo data is selected as the training 

set to train the model, and the remaining 20 % of the data is designed for testing. The 

training parameters are shown in Table 2. 

Table 2 Car-following model training parameters 

Parameters Value 

Learning rate 0.001 

Discount Factor 0.99 

Training Episodes 400 

Analysis of the time-speed and time-distance curves presented in Fig. 3, depicting three 

distinct operating scenarios, reveals that the proposed algorithm exhibits highly satisfactory 

car-following behavior. Critically, the algorithm consistently maintains the following 

vehicle within a safe distance envelope relative to the leader. Furthermore, it demonstrates 

a dynamic and responsive capability, as the following vehicle's speed continuously adapts 

to fluctuations in the leading vehicle's speed. This observed performance effectively 

confirms the model's operational validity. To quantitatively assess and clearly illustrate the 

differences in speed tracking accuracy between the following vehicle and the leading 

vehicle across the evaluated models, the Sum of Squared Errors (SSE) was calculated for 

each dataset. The comparative results highlight significant performance variations: the 

average SSE values for the Optimal Speed Model, the IDM (Intelligent Driver Model), the 

Stimulus-Response Model, and the Safe Distance Model are 24.2, 15.08, 7.52, and 3.1, 

respectively. Crucially, the proposed model achieves a substantially lower SSE of 2.89. 

This demonstrably smaller error value underscores the superior effectiveness of the novel 

approach in accurately replicating the nuanced car-following strategies characteristic of 

expert human driving. 
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(a) 

  
(b) 

  
(c) 

Fig. 3 Time-distance and Time-velocity plots for car-following behavior: (a) Steady-state 

condition; (b) Acceleration condition; (c) Deceleration condition 

To further evaluate the conformity of the car-following model with the expert 

algorithm, the time-speed and time-distance curves for the algorithm proposed in this 

chapter, the expert algorithm, and the leading vehicle are presented in Fig. 4. The proposed 

algorithm is closer to the leading vehicle in certain regions compared to the expert 

algorithm. In some road segments, the proposed algorithm even surpasses the expert 

algorithm, and the consistency between the vehicle speed and the leading vehicle is also 

more closely aligned than the expert algorithm.  
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(a) 

  
(b) 

  
(c) 

Fig. 4 Comparison of the algorithm in this paper to an Expert-Level algorithm: 

(a) Steady-state condition; (b) Acceleration condition; (c) Deceleration condition 

In order to quantify the results shown in Fig. 4, the speed difference between the vehicle 

model trained with the two different algorithms and the leading vehicle are calculated, as 

shown in Table 3. To more clearly illustrate the performance gap between the proposed 

algorithm and the expert algorithm, the average values of the speed differences are 

calculated for each case with 0.38, 0.0026, 0.21. The results indicate that the algorithm 

developed in this chapter can sometimes outperform the expert algorithm. 
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Table 3 Quantitative comparison of speed metrics between the algorithm in this paper 

and an expert-level 

 Steady-state condition 

(m/s) 

Acceleration condition 

(m/s) 

Deceleration condition 

(m/s) 

Time (s) Expert Paper Difference Expert Paper Difference Expert Paper Difference 

0 0.099 0.148 0.049 0.000 0.050 0.050 0.752 -0.071 -0.823 

0.5 0.049 0.248 0.200 0.573 0.112 -0.461 -0.032 -0.780 -0.748 

1 -0.001 0.298 0.299 -0.773 0.120 0.893 -0.832 -1.135 -0.303 

1.5 -0.001 0.347 0.348 -0.021 0.110 0.131 -0.355 -0.851 -0.496 

2 -0.050 0.396 0.446 0.204 -1.210 -1.414 -0.177 -0.780 -0.603 

2.5 0.049 0.446 0.397 -0.001 1.210 1.211 -0.390 -0.851 -0.461 

3 0.000 0.544 0.544 -0.240 -1.410 -1.170 -0.774 -0.993 -0.218 

3.5 0.100 0.541 0.442 0.891 -1.220 -2.111 -0.832 -1.348 -0.516 

4 0.199 0.538 0.339 -0.376 1.630 2.006 -0.142 -0.922 -0.780 

4.5 0.150 0.637 0.487 -0.509 1.800 2.309 -0.567 -0.922 -0.355 

5 0.200 0.537 0.338 -1.233 -1.500 -0.267 -0.893 -1.206 -0.313 

5.5 0.299 0.587 0.288 1.598 0.430 -1.168 -0.761 -0.496 0.265 

6 0.300 0.588 0.288 -1.054 -1.100 -0.046 -0.176 -0.355 -0.179 

6.5 0.349 0.639 0.290 -0.177 0.200 0.377 -0.113 -0.271 -0.158 

7 0.300 0.590 0.290 -0.200 1.200 1.400 -0.170 -0.229 -0.059 

7.5 0.398 0.640 0.242 -0.101 0.800 0.901 -0.170 -0.350 -0.180 

8 0.399 0.640 0.242 1.679 -1.000 -2.679 -0.228 -0.294 -0.066 

8.5 0.399 0.640 0.241 0.075 -0.200 -0.275 -0.026 -0.166 -0.140 

9 0.351 0.838 0.487 -0.211 0.120 0.331 -0.108 -0.265 -0.158 

9.5 0.450 0.839 0.389 0.514 0.760 0.246 -0.315 -0.315 0.000 

10 0.297 0.941 0.644 0.644 1.23 0.586 -0.600 -0.600 0.000 

10.5 0.309 0.730 0.421 0.421 -2.1 -2.521 -0.550 -0.500 0.050 

11 0.136 0.660 0.524 0.524 0.79 0.266 -0.500 -0.200 0.300 

11.5 0.192 0.966 0.774 0.774 -0.82 -1.594 -0.600 -0.300 0.300 

12 0.200 0.814 0.614 0.614 -3.06 -3.674 -0.470 -0.300 0.170 

5.2 Simulation Results in a Mixed Scenario 

The simulation is conducted on a PC with an i5-12400 CPU and 16 GB of memory, 

running in MATLAB and SUMO environments. The following vehicle is modeled as a 

plug-in hybrid electric vehicle (PHEV) with intelligent connected vehicle (ICV) 

capabilities. The initial conditions for the vehicle are a battery SOC of 0.65 and a full fuel 

tank. The simulation results with the proposed car-following algorithm are presented in 

Fig. 5. The blue solid line represents the speed of the leading vehicle, while the red dashed 

line depicts the speed of the following vehicle after the optimization of the car-following 

algorithm. The speed-tracking results demonstrate that the proposed algorithm is able to 

closely follow the leading vehicle's velocity profile. 
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Fig. 5 Speeds of the lead vehicle and the following vehicle 

After the implementation of the global car-following algorithm, the strategy at 

intersections is further integrated, resulting in the engine torque distribution under the given 

driving conditions, as shown in Fig. 6. The torque distribution of the engine, generator, and 

electric motor in the non-hierarchical case are presented in Fig. 6(a). In contrast, the torque 

distribution of the engine, generator MG1, and electric motor MG2 under the hierarchical 

control strategy is illustrated in Fig. 6(b). 

(a)  

(b)  

Fig. 6 Engine torque, MG1 torque, and MG2 torque: (a) Before layering; (b) After layering 

The SOC trajectory under the given driving conditions is illustrated in Fig. 7. The 

overall trend shows a decrease in SOC over time. In the non-hierarchical case, the battery 
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SOC exhibits a significant drop around the 1100-second mark. In contrast, the hierarchical 

control strategy is able to maintain a more stable SOC profile throughout the driving cycle. 

(a)     (b)  

Fig. 7 Comparison of battery SOC before and after hierarchical control: (a) Before 

layering; (b) After layering 

As shown in Table 4, under similar initial and final SOC conditions, the fuel 

consumption per 100 kilometers is reduced across different reinforcement learning 

algorithms when the hierarchical control strategy is employed, compared to the non-

hierarchical approach. The bar chart in Fig. 8 provides a clearer visualization of these fuel 

consumption improvements. The figure shows that the hierarchical control strategy 

resulted in reductions of 7.52 %, 5.29 %, 9.6 %, and 5.93 % in fuel consumption, 

respectively, when compared to the non-hierarchical case. 

As shown in Table 5, with DQN algorithm as an example, the strategy with hierarchical 

control resulted in reductions of 18.3 %, 14.23 %, 16.94 %, and 20.9 % in the emissions of 

various harmful pollutants such as CO, HC, PM, NOx, compared to the non-hierarchical 

approach. 

 

Fig. 8 Fuel consumption comparison for different algorithms 
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Table 4 Fuel consumption per 100 km for different algorithms with similar initial and 

final SOC 

Strategy Initial/Final 

SOC 

Fuel consumption per 

100 km (L/00 Km) 

Depletion 

rate 

PPO SHEMS (offline) 0.65/0.51 5.314  

PPO SHEMS (HIL) 0.65/0.51 4.917 7.52 % 

A2C SHEMS (offline) 0.65/0.51 5.212  

A2C SHEMS (HIL) 0.65/0.502 4.936 5.29 % 

A3C SHEMS (offline) 0.65/0.514 5.34  

A3C SHEMS (HIL) 0.65/0.51 4.826 9.6 % 

DQN SHEMS (offline) 0.65/0.489 5.23  

DQN SHEMS (HIL) 0.65/0.495 4.92 5.93 % 

Table 5 Pollutant emissions with the DQN algorithm 

Pollutant DQN strategy  

(Before layering) 

DQN strategy  

(After layering) 

Decrement rate 

Before and after 

layering 

Dynamic 

programming 

CO 10.25 8.34 18.3 % 8.24 

HC 2.81 2.41 14.23 % 2.40 

PM 0.098 0.0814 16.94 % 0.0809 

NOx 2.68 2.12 20.9 % 2.14 

5.3 Hardware-in-the-Loop Experiment 

5.3.1 Hardware-in-Loop Experiment 

To verify the effect of the strategy in real controllers, we have built a Hardware-in-the-

Loop (HIL) platform. As shown in Fig. 9, the experimental system consists of a hybrid 

power model, a driver operation system, a virtual scenario system, a sensor system, an NI 

real-time system, and a vehicle control unit. The virtual scenario system provides the driver 

with a realistic driving environment, making the driving experience more similar to reality. 

Furthermore, it provides traffic environment information, road information, and 

geographic location information through data interaction. The main function of the vehicle 

control system is to implement the proposed strategy and output control parameters to the 

actuators. The driver's operation information is all fed back to the steering system, while 

the vehicle's speed status information and the status of the electromagnetical system are 

provided by the real-time simulation system. 
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Fig. 9 HIL test bench 

The integrated system is shown in Fig. 10(a). In Fig. 10(b), the data acquisition system 

is combined with the driver operation system, displayed below the driver. Based on the 

existing configuration and technical conditions, CAN communication technology is 

applied to achieve data interaction, and real-time data of the steering wheel angle, 

acceleration, and brake pedal is obtained. These data are input into the Vehicle Control 

Unit (VCU). 

(a)  (b)  

Fig. 10 Integrated system and driver operating system: (a) integrated system; (b) Driver 

operating system 
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5.3.2 Hardware-in-the-Loop Experiment Data Analysis 

To further validate the hierarchical strategy proposed in this work, Hardware-in-the-

Loop (HIL) experiments based on the test driving cycle are conducted. The validation 

process is composed of three key aspects: verifying the vehicle following algorithm, 

analyzing the SHEMS, and validating the harmful emissions reduction. As shown in Fig. 

11, the vehicle following performance can be observed. From the figure, it is evident that 

the vehicle is able to closely follow the lead vehicle without any collision incidents, 

demonstrating good driving safety. 

 

Fig. 11 Performance of vehicle following in HIL 

The range of SOC variations during the simulation and HIL tests is shown in Fig. 12. 

The blue line represents the battery SOC changes under the offline simulation, while the 

red line shows the battery SOC changes in the HIL test. From the figure, it can be seen that 

both strategies are able to maintain a good range of battery SOC under the real-time 

operation. The battery performance and state remain in a favorable condition, indicating 

that the battery is functioning normally, which ensures the overall reliability and stability 

of the strategy. 

 

Fig. 12 Performance of battery SOC changes in HIL 

The comparative plots of the engine torque, engine MG1 torque, and electric motor 

MG2 torque under the test driving cycle are depicted in Fig. 13. The inset plot displays the 

detailed view of the local variations. It can be concluded that there are some differences 
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between the HIL  test data and the offline simulation data. However, these differences are 

within a reasonable range. Overall, the variations in the real-time environment between the 

two sets of data are not significant, and the alignment between them is relatively satisfied. 

(a)  

(b)  

(c)  

Fig. 13 Performance in HIL: (a) Engine torque, (b) MG1 torque (c) MG2 torque 

As shown in Table 6, by comparing the emissions of harmful substances between 

simulation and HIL testing using the DQN algorithm, it can be summarized that the layered 

DQN algorithm significantly reduced pollutant emissions in the HIL experiment, with the 

emissions approaching the levels achieved under the dynamic programming approach. 
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Furthermore, the results from the HIL testing closely matched those from the simulation, 

with only minor differences. 

Table 6 Comparison of emissions of harmful substances between simulation and HIL 

under DQN algorithm  

Harmful gasses DQN (before 

layering) 

Simulation/HIL 

DQN (after 

layering) 

Simulation/HIL 

Dynamic 

programming 

Simulation/HIL 

CO 10.25/10.02 8.43/8.31 8.24/8.23 

HC 2.81/2.95 2.41/2.40 2.40/2.40 

PM 0.098/0.094 0.0814/0.0801 0.0809/0.0810 

NOx 2.68/2.67 2.12/2.13 2.14/2.13 

6. CONCLUSION 

The SHEMS refers to driving techniques and strategies that aim to reduce the 

environmental impact of vehicles by improving vehicle operation and driving behavior. 

Based on a learning-based approach, a layered ecological driving strategy targeting a 

hybrid electric vehicle is proposed, with the objectives of driving safety, energy 

management, and pollutant emission reduction. Simulation and HIL testing are conducted 

to evaluate the proposed ecological driving strategy, and the performance is assessed. The 

main research work of this paper is as follows: 

The driving scenarios for the SHEMS can be classified into free driving, car-following, 

and intersection scenarios and the optimization objectives are formulated for each scenario. 

To account for the impact of traffic conditions and driver behavior on driving strategies, 

an imitation learning–based approach is introduced as an innovative solution. This strategy 

constructs an adaptive learning framework, which not only reduces the complexity of 

reward function design, but also enables the model to exceed expert demonstrations and 

capture high-dimensional environmental features. The simulation verification shows that 

the algorithm performs excellently in car-following, vehicle distance maintenance, and 

speed regulation. The average differences between the expert algorithm and the proposed 

algorithm are 0.38 m/s, 0.0026 m/s, and 0.21 m/s under steady-state, acceleration, and 

deceleration conditions, respectively. 

For the complex intersection scenario, two strategies are proposed creatively, which 

consists of incorporating an additional reward mechanism and a self-supervised 

reinforcement learning module to effectively compensate for the sparsity of the ecological 

driving reward function. To address the challenges posed by the changing intersection 

environment, a reinforcement learning calibration strategy is introduced to correct the 

algorithm, significantly improving its efficiency. The reward function not only converges 

rapidly but also has a denser reward distribution. Based on the simulation results, the 

strategy proposed in this paper has significant advantages in terms of reward value, battery 

SOC, and engine operation. Under different algorithms, the fuel consumption is 

significantly reduced through the layered strategy, with reductions of 7.52 %, 5.29 %, 

9.6%, and 5.93 % for the PPO, A2C, A3C, and DQN strategies, respectively. Taking the 

DQN algorithm as an example, the emissions of harmful gases CO, HC, PM and NOx, are 
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reduced by 18.3 %, 14.23 %, 16.94 %, and 20.9 %, respectively, after layering. The HIL 

experiment further verifies the safety and effectiveness of the strategy, demonstrating the 

algorithm's efficiency in reducing harmful gas emissions. 
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