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Abstract. The study aims at analyzing the performance of a ferrofluid-based infinitely 

long rough porous slider bearing which makes use of thin film lubrication at nanoscale. 

The stochastic model of Christensen and Tonder has been employed to analyze the 

effect of surface roughness while the Neuringer-Rosensweig’s model has been adopted 

to study the magnetization effect. The pressure distribution in the bearing system has 

been obtained by solving the associated stochastically averaged Reynolds type equation. 

The results indicate that although the transverse roughness is supposed to affect the 

bearing system adversely, the situation remains fairly better in the case of thin film 

lubrication at nanoscale. In fact, the consideration of thin film lubrication at nanoscale 

results in an all round improved performance, even for lower strength of the magnetic 

intensity. However, the couple stress adds a little more to this positive effect. 
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1. INTRODUCTION 

The squeeze film phenomena develop when two surfaces approach each other at a 

normal velocity. Due to the noticeably good behavior of the squeeze film, it is often used 

in different fields of real life such as machine tools, gears, rolling elements, hydraulic 

systems, engines, clutch plates, etc.  

Nowadays, quite a great number of theoretical and experimental inventions are made 

on the bearing design systems as well as on the lubricating substances in order to enhance 

the efficiency of the bearing performances. One of the major inventions is the use of 

ferrofluid as a lubricant in the bearing systems. Many authors (Rosensweig [1], Popa et al. 
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[2], Nada and Osman [3], Urreta et al. [4], Huang et al. [5], Patel et al. [6]) have discussed 

the performance and applications of ferrofluids in different bearing systems. These 

investigations established that the bearing performance characteristics are enhanced due 

to the magnetic fluid effects. 

Another major invention has been made in the research of thin film lubrication. Since 

1990s, the thin film lubrication has been well discussed as a new lubrication regime. The 

transition from the thin film lubrication to the boundary one, the transition from the 

elastohydrodynamic lubrication to the thin film lubrication, the failure of liquid film at 

nanoscale and the mechanism of the thin film lubrication were analyzed by Luo [7], Luo 

et al. [8], and Luo and Wen [9]. Shen et al. [10] studied the performance of liquid crystal 

additives in the construction of thin film. Zhang et al. [11] investigated the thin film 

lubrication characteristics in two phase fluid. It was found that the existence of couple 

stress enhanced the load carrying capacity.  

The study of roughness, which develops after some run-in and wear, remains of primary 

concern for designing the bearing system and the bearing system failure. Christensen and 

Tonder [12-14] proposed a more general method of studying the performance of both the 

roughness patterns (transverse as well as longitudinal). Gupta and Deheri [15] deployed the 

method of Christensen and Tonder to analyze the performance of a rough spherical bearing. 

Chiang et al. [16] theoretically discussed the combined effect of couple stresses and surface 

roughness on the instability thresholds of a rough short journal bearing lubricated with 

non-Newtonian fluids by adopting the theory of Christensen and Tonder. In their study, 

the couple stress escorted with longitudinal roughness to provide an increase in the stability 

threshold speed. On the ground of Christensen and Tonder’s results, Patel and Deheri [17] 

investigated the characteristics of lubrication at nanoscale on the performance of a 

transversely rough slider bearing. It was observed that the load carrying capacity increases 

due to the thin film lubrication at nanoscale and the existence of couple stress. Deresse and 

Sinha [18] dealt with a thermal and roughness effect on different characteristics of the finite 

rough tilted pad slider bearings. It was established that for non-parallel slider bearings the 

load carrying capacity due to the combined effect was less than the load capacity due to 

roughness effect for both the roughness models. Vakis and Polycarpou [19] developed a 

model to study the mixed nano lubrication regime expected during light contact or “surfing”, 

recording in magnetic storage. In fact, they investigated an advanced rough surface 

continuum based contact and sliding model in the presence of a molecularly thin lubricant. 

Patel and Deheri [20] dealt with the effect of various porous structures on the Shliomis 

model based ferrofluid lubrication of the thin film squeezed between the rotating rough 

curved circular plates. It was established that the Kozeny-Carman’s model remained more 

suitable for bearing design as compared to the Irmay’s one. Further, the Shliomis model 

based ferrofluid lubrication performed relatively better than the Neuringer-Rosensweig one. 

Patel and Deheri [21] analyzed the effect of transverse surface roughness on the behavior of 

a magnetic fluid based short bearing considering thin film lubrication at nanoscale. It was 

observed that the thin film lubrication at nanoscale led to a sustained improvement in 

bearing performance characteristics even for lower values of magnetization parameter. 

The aim of the present study is to analyze the performance characteristics of a magnetic 

fluid based rough long bearing considering the thin film lubrication at nanoscale.        
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2. ANALYSIS  

The geometrical configuration of the bearing system is presented in Fig. 1. The 

bearing system is infinite in z direction. The slider moves with uniform velocity u in x 

direction. The length of the bearing is L and the breadth B is in z direction.  

 
Fig. 1 Configuration of the bearing system 

 

The bearing surfaces are considered to be transversely rough. In view of the study of 

Christensen and Tonder [12-14], thickness h(x) of the lubricant film is taken as  

 h(x)   h( ) sx h   (1) 

where  (x)h represents the mean film thickness and hs denotes the deviation from the mean 

film thickness characterizing the random roughness of the bearing surfaces. Deviation hs is 

considered to be stochastic in nature and governed by the probability density function: 
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where c denotes the maximum deviation from the mean film thickness. Mean , standard 

deviation   and parameter , which is the measure of symmetry of random variable hs, 

are defined by the relationships as discussed by Christensen and Tonder [12-14]. The 

details are dealt with there in. 

The magnetic field is oblique to the stator as taken by Agrawal [22]. More details of 

on the effect of various forms of magnitude of the magnetic field have been incorporated 

by Prajapati [23], Bhat [24] and Patel and Deheri [25]. According to these discussions, 

the magnitude of the magnetic field is considered as:  
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where k is a suitably chosen constant from dimensionless point of view (Bhat [24]), so as 

to produce a magnetic field of required strength. 

Under the usual assumptions of hydrodynamic lubrication the related stochastically 

averaged Reynolds equation (Bhat [24], Prajapati [23], Luo et al. [26], Patel and Deheri 

[27, 28]) takes the form: 
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while C represents the characteristic length which contributes to the couple stress effect, p 

is film pressure 0 denoting  the  magnetic  susceptibility, μ is  the  free  space  permeability, 

 being  the  lubricant  viscosity and  is the material constant responsible for couple stress 

effect. 

The associated boundary conditions are p = 0 at x = 0 and x = L. 

The dimensionless quantities are as following: 
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where h is infinitesimal increment in the thickness and  being a film thickness ratio. 

Making use of the above said boundary conditions, the dimensionless pressure distribution is 

obtained as: 
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The non-dimensional load carrying capacity of the bearing system, one can find as: 
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where pLBw  is the load carrying capacity. 

3. RESULTS AND DISCUSSIONS  

The linearity of the expression in Eq. (6) with respect to the magnetization parameter 

suggests that an increase in the magnetization would lead to an increased load carrying 

capacity. 

It is also seen that the load carrying capacity increases by * 
(1  sin(1))/2  as compared 

to the traditional lubricant based bearing system. This is due to the fact that the viscosity 

of the lubricant gets increased due to magnetization. The effect of film thickness parameter 

Hm on the load carrying capacity presented in Figs. 2-6 as well as Table 1 make it clear that 

the load carrying capacity decreases as Hm  increases. This decrease being more in the case 

of variance associated with roughness. It is interesting to note that the load carrying capacity 

increases with increase in the standard deviation associated with roughness. However, the 

effect of variance on the load carrying capacity with respect to Hm is not that sharp. 
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Fig. 2 Variation of load carrying capacity with respect to Hm and   

 

Fig. 3 Variation of load carrying capacity with respect to Hm and   

 

Fig. 4 Variation of load carrying capacity with respect to Hm and   

 

Fig. 5 Variation of load carrying capacity with respect to Hm and   
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Fig. 6 Variation of load carrying capacity with respect to mH  and m  

Table 1 Variation of load carrying capacity with respect to Hm and   

W Hm=0.95 Hm=1.00 Hm=1.05 Hm=1.10 Hm=1.15 

-0.01   0.037685 0.028927 0.020168 0.011410 0.002652 

-0.005  0.038416 0.029812 0.021207 0.012603 0.003998 

0  0.039132 0.030678 0.022224 0.013771 0.005317 

0.005  0.039833 0.031527 0.023220 0.014914 0.006607 

0.01  0.040519 0.032357 0.024195 0.016033 0.007871 

Figs. 7-10 and Table 2 dealing with the influence of characteristic length suggest that 

the effect of couple stress is to enhance the load carrying capacity. However, the effect of 

variance on the load carrying capacity with respect to characteristic length is at the best 

nominal. The profile of augmented load due to standard deviation is given in Figs. 11-14. 

It is appealing to note that here even the porosity increases the load carrying capacity 

when thickness is considered at nanoscale for the long bearing system. 

 

Fig. 7 Variation of load carrying capacity with respect to   and   
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Fig. 8 Variation of load carrying capacity with respect to   and   

 

Fig. 9 Variation of load carrying capacity with respect to   and   

 

Fig. 10 Variation of load carrying capacity with respect to  and m 

Table 2 Variation of load carrying capacity with respect to   and   

W   = 2.0   = 2.25   = 2.5   = 2.75   = 3 

-0.01  0.053634 0.043273 0.031951 0.020592 0.010063 

-0.005  0.054084 0.043906 0.032783 0.021623 0.011279 

0  0.054525 0.044525 0.033597 0.022633 0.012470 

0.005  0.054957 0.045132 0.034394 0.023621 0.013636 

0.01  0.055380 0.045725 0.035174 0.024589 0.014777 
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Also, equally interesting is the fact that the effects of variance and skewness on the 

load carrying capacity run approximately opposite to the usual film thickness considered 

for magnetic fluid lubrication. Probably, this may be happening due to the characteristics 

of nanoscale film thickness. 

The positive effect of variance gets enhanced due to the positively skewed roughness 

which can be seen in Figs. 15-17. The fact that the aspect ratio introduces a strong impact 

on the load carrying capacity, when considered with respect to porosity at the nanoscale 

film thickness, is presented in Fig. 18. 

 

Fig. 11 Variation of load carrying capacity with respect to   and   

 

Fig. 12 Variation of load carrying capacity with respect to   and   

 

Fig. 13 Variation of load carrying capacity with respect to   and   
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Fig. 14 Variation of load carrying capacity with respect to   and m  

 

Fig. 15 Variation of load carrying capacity with respect to   and   

 

Fig. 16 Variation of load carrying capacity with respect to   and   

 

Fig. 17 Variation of load carrying capacity with respect to   and   
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Fig. 18 Variation of load carrying capacity with respect to   and m  

Some of the figures presented above indicate that there are various parameters bound 

to increase the load carrying capacity and therefore, probably, this may turn out to be a 

very useful and effective bearing system from industry point of view   

It is surprising to see the effect of porosity in increasing the load carrying capacity, 

when the thin film lubrication is considered at nanoscale. 

Lastly, a comparison of current investigation with the observation of Patel and Deheri 

[21] indicates that the load carrying capacity enhances by around 18-20% when thin film 

lubrication is considered at a nanoscale. Also, it is clear that here the two roughness 

parameters, skewness and variance, affect the performance more sharply. 

4. CONCLUSION  

The results presented here suggest that this type of bearing system may be selected for 

a long run because here even the porosity tends to increase the load carrying capacity 

which is starkly different from the usual behavior of porosity on other bearing systems. In 

general, the situation remains better in the case of positively skewed roughness even if the 

couple stress effect is nominal. This investigation further reveals that the magnetization 

may provide a suitable measure for an enhanced performance when the thin film 

lubrication is considered at nanoscale. Even the positive effect of standard deviation may 

be channelized to good use.  
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