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Abstract. Understanding the behavior of nonlinear vibrations in stringer-stiffened shell 

structures is crucial for enhancing the stability and efficiency of advanced aerospace and 

marine systems. These systems often exhibit complex responses due to geometric and 

material intricacies, which require analytical methods capable of effectively capturing 

critical dynamics. This study presents three efficient analytical methods for deriving 

closed-form expressions for the nonlinear frequency of such systems: the adaptive 

location point-based He’s formulation (ALPF), the square error minimizing-based 

frequency formulation (SEMF), and the Hamiltonian-based frequency-amplitude 

formulation (HFAF). These methods offer efficient and straightforward solutions for 

analyzing nonlinear oscillators without requiring complex iterative procedures. The 

nonlinear frequency of the stringer-stiffened shell is determined using each method and 

validated against both exact analytical solutions and numerical results. The results show 

that the first two methods yield high accuracy for small amplitudes, while their accuracy 

decreases at higher amplitudes. In contrast, the Hamiltonian-based method maintains 

high accuracy over a wider range of amplitudes. The original He's formulation is 

recognized for its simplicity and computational efficiency, making it a practical tool for 

rapid frequency estimation in stringer-stiffened shell systems. This comparative study 

offers guidance for selecting appropriate analytical tools for nonlinear vibration analysis 

of complex mechanical and physical systems. 
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1. INTRODUCTION 

The nonlinear vibration behavior of cylindrical shells constitutes a critical topic in civil 

and mechanical engineering. The importance of nonlinear vibrations has grown due to their 

impact across various fields, including physical sciences, engineering, and mechanical 

systems. Consequently, engineering design processes are increasingly focused on the 

dynamic behavior of beams and shells. In particular, the nonlinear vibration of cylindrical 

shells plays a vital role in mechanical engineering, especially in aerospace and marine 

applications. Stringer-stiffened shells play a foundational role in the design of aircraft, 

spacecraft, and ships, which are frequently subjected to dynamic loading conditions. A 

deeper understanding of their nonlinear response can significantly enhance performance 

and structural integrity. This study aims to address the need for efficient and accurate 

methods to predict the nonlinear frequency of stringer-stiffened shells. Such methods are 

essential for improving structural safety and reliability in engineering applications. 

The dynamic behavior and stability of shell structures have been thoroughly studied 

due to their critical role in modern engineering applications. Gavrilenko and Matsner [1] 

examined the buckling characteristics of stringer shells, highlighting the influence of 

stiffening elements on structural stability. Naghsh et al. [2] utilized a meridional finite strip 

method to analyze free vibrations of various shell structures. Golchi et al. [3] explored 

thermal buckling and free vibration of functionally graded (FG) truncated conical shells 

with stringer and ring stiffeners. Bich and Ninh [4] pioneered this area by investigating 

nonlinear vibrations in imperfect stiffened sandwich toroidal shells under thermo-

mechanical loading. They later extended their work [5] to eccentrically stiffened toroidal 

shell segments on elastic foundations. Recent research by Liu et al. [6] focused on nonlinear 

traveling-wave vibrations of ring-stringer stiffened cylindrical shells, highlighting the 

complexity introduced by wave propagation. A significant body of research has been 

dedicated to the exploration of rotational and thermal effects on the shell’s nonlinear 

dynamics. Liu et al. [7] analyzed nonlinear forced vibrations in rotating cylindrical shells 

under multi-harmonic excitations in thermal environments. Vahidi et al. [8] investigated 

the nonlinear vibration, stability, and bifurcation of rotating axially moving conical shells, 

providing insight into the dynamic instabilities induced by axial motion and rotation. 

Mohammadrezazadeh and Jafari [9] proposed vibration suppression in laminated 

composite cylindrical shells employing magneto strictive strips. Recent advancements 

include high-fidelity modeling and simulation techniques for stiffened cylindrical shells 

under various loading scenarios. Bochkarev et al. [10] studied panel flutter in stiffened 

shallow shell structures. Foroutan and Dai [11] investigated nonlinear dynamics in spiral-

stiffened FG toroidal shells with variable thickness. Azzara et al. [12] analyzed rotor 

dynamic responses of stiffened cylindrical structures using high-order shell models. Zhang 

et al. [13] explored frequency responses in porous hyperplastic Mooney-Rivlin cylindrical 

shells under radial harmonic forces. Du et al. [14] developed a semi-analytical method for 

the vibration control in cylindrical shell structures. Chen et al. [15] examined the 

correlation between welding parameters and vibro-acoustic behavior in stiffened 

cylindrical shells. Tan et al. [16] introduced innovative sandwich composite shell structures 

and established a framework for nonlinear geometric and dynamic analyses. Khoddami 

Maraghi et al. [17] investigated free vibrations of truncated conical sandwich shells with 

auxetic core and polymeric nanocomposite face sheets reinforced with graphene 

nanoplatelets. Despite substantial progress, further research is needed to account for multi-
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physical interactions, enhance model accuracy, and develop efficient computational 

techniques for design and optimization. 

Solution methods for nonlinear differential equations are typically categorized into 

numerical and analytical approaches. The free vibration and stability of stringer-stiffened 

shells have been the subject of various numerical investigations [2, 18, 19]. In this context, 

developments in finite element methods for laminated shell structures [20], as well as in 

isogeometric finite element formulations [21], have provided highly efficient numerical 

tools relevant to such analyses. However, solving nonlinear problems with high accuracy 

presents a considerable challenge, and obtaining exact analytical solutions is often even 

more complex. To overcome these limitations, researchers have developed several 

advanced approximate analytical techniques. These methods include the harmonic balance 

method (HBM) [22, 23], the energy balance method (EBM) [24, 25], the homotopy 

perturbation method (HPM) [26], the Li–He’s modified homotopy perturbation method 

(LI-HE HPM) [27], the Hamiltonian approach (HA) [28, 29], the variational iteration 

algorithms (VIM) [30, 31], the global error minimization (GEM) [32, 33], the modified 

algebraic method (MAM) [34, 35], and the variational approach (VA) [36]. In recent 

studies, the HA [37], the HPM [38], and the global residue harmonic balance method 

(GRHBM) [39] have been employed to determine the nonlinear frequency of stringer-

stiffened shells. Despite their effectiveness, each method has notable limitations when 

applied to complex geometries like stringer-stiffened shells. The HA often requires 

complex energy formulations and extensive algebraic manipulation, making it 

computationally demanding and less suitable for systems involving damping or external 

forces. The HPM, despite its flexibility, relies on iterative series expansions and the 

construction of a suitable homotopy. This process can be arduous and time-consuming for 

higher-order nonlinear systems. Furthermore, the accuracy of the model tends to decrease 

at large amplitudes. The GRHBM is recognized for its precision; however, it requires 

balancing multiple harmonics and computing global residuals, which leads to high 

algebraic complexity and necessitates the use of symbolic computation tools. 

Despite significant progress in the field, existing analytical methodologies continue to 

face challenges in balancing simplicity, accuracy, and applicability to the strongly 

nonlinear dynamics of stringer-stiffened shells, particularly at large vibration amplitudes. 

The cubic-quintic nonlinearities resulting from geometric and material effects demand 

rapid, non-iterative solutions that retain accuracy across a wide amplitude range. This study 

proposes three novel analytical methods: the Adaptive Location Point-based He’s 

Formulation (ALPF), the Square Error Minimizing-based Frequency Formulation (SEMF), 

and the Hamiltonian-based Frequency-Amplitude Formulation (HFAF), to derive closed-

form expressions for the nonlinear frequency of stringer-stiffened shells. These approaches 

are optimized for simplicity and computational efficiency, effectively overcoming the 

complexity of earlier methods while maintaining high accuracy. Their performance is 

validated through comparisons with exact solutions and numerical simulations. The 

proposed methods offer practical tools for engineers and researchers studying nonlinear 

vibrations in complex shell structures. 
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2. MATHEMATICAL MODEL 

As illustrated in Fig. 1, a circular cylindrical shell is stiffened by uniformly distributed 

external stringers. The supports consist of ribs, modeled as one-dimensional elastic 

elements, which are evenly spaced along the shell. To determine the displacements and 

vibration frequencies, it is assumed that rib height is much smaller than the shell's radius 

of curvature. Moreover, interaction between the ribs in the two directions is neglected.  

 

Fig. 1 A schematic view of a stringer-stiffened shell structure 

To study the dynamics of the orthotropic stringer-stiffened shell under large 

displacements, the following governing equations are employed [40]: 
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in which, w and φ denote the lateral displacement and the Airy stress function, respectively. 

R represents the shell radius, and h is its thickness. ρ0 and ρ1 are the densities of the shell 

and stringer materials, respectively. N denotes the number of stringers, and F is the cross-
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sectional area of a stringer. E and E1 represent the elastic modulus of the shell and stringer 

materials, respectively. Additionally, v denotes Poisson's ratio. The coefficients Di (i = 1, 

2, 3) are material-dependent parameters associated with the stiffened shell, as reported in 

[41]. For simply supported boundary conditions (SS BCs), the displacement w can be 

approximated as follows [38]:  
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where m and n denote the wave numbers in the axial and circumferential directions, 

respectively. Using Eqs. (1) and (6), the Airy function is obtained as follows: 
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By considering u(t) = f1(t)/R and applying the Galerkin method, the governing 

differential equation for the dynamics of the stringer-stiffened shell is derived as: 
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where the coefficients βi (i = 1, 2, 3, 4) are defined as follows:  
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and the coefficients εi (i = 1, 2, …6) are defined in [41]. For doubly clamped boundary 

conditions (CC BCs), the displacement w can be approximated as follows:  
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Following the outlined procedure, the values βi for CC BCs are determined as follows: 
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where the coefficients εi (i = 1, 2, …6) can be found in [41]. The governing nonlinear 

differential equation presented in Eq. (8) is highly nonlinear due to the presence of cubic-

quintic nonlinear restoring force terms, as well as displacement-dependent dynamic terms 

such as u2ü and uu̇2. These terms introduce a strong amplitude dependence into the system's 
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response, further complicating the governing equation. In the following section, 

approximate analytical solutions are derived for Eq. (8), considering the initial conditions: 
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Although Eq. (8) is specifically derived for a stringer-stiffened shell structure, it also 

represents the governing dynamic differential equation of other structural systems. For 

example, by setting β4 = 0, the equation reduces to the form encountered in tapered beams 

[42]. Similarly, setting β1 = 0 yields the well-known Duffing equation, which is widely 

used in engineering and physics applications, such as modeling undamped FG beams [43]. 

Therefore, the analytical methods proposed herein are not limited to the specific geometry 

considered but can be more broadly applied to estimate the nonlinear frequency of a wide 

range of conservative systems. 

3. ANALYTICAL SOLUTIONS FOR NONLINEAR VIBRATION OF THE STRINGER-STIFFENED 

SHELL 

This section derives closed-form expressions for the nonlinear frequency of the 

stringer-stiffened shell governed in Eq. (8), by proposing three straightforward and non-

iterative approximate analytical methods. For validation purpose, the exact nonlinear 

frequency is also derived. Each method assumes a trial solution of the form u(t) =Acos(ωt), 

which satisfies the initial conditions specified in Eq. (12) and approximates the periodic 

behavior of the oscillator. 

3.1 Adaptive Location Point-based He’s Formulation (ALPF) 

In this paper, we propose a new method, namely the adaptive location point-based He’s 

formulation (ALPF), to improve He’s frequency–amplitude formulation. In the original 

method, a fixed location point is selected based on He’s recommendation. In contrast, 

ALPF introduces a procedure for selecting the location point, according to the system’s 

amplitude and physical parameters. This adaptation improves the accuracy of the estimated 

frequency, especially in systems with strong nonlinearities or amplitude-dependent 

behavior. Importantly, ALPF retains the simplicity and computational efficiency of the 

original method. To illustrate the method, consider the differential equation of a nonlinear 

oscillator given by: 
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The above equation can be rewritten as 
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He [44, 45] demonstrated that the frequency of the nonlinear oscillator given in Eq. 

(13) can be easily approximated as follows: 
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where ū is the location point, defined as ū = kA. This formulation has been widely applied 

to various types of nonlinear oscillators. The method is computationally simple, making it 

suitable for quick frequency estimations. However, one of the main challenges in applying 

He’s method is selecting an appropriate value for the location point [27]. It is more 

appropriate to express the value of k as a function of both the amplitude and system 

parameters. To implement the proposed ALPF method, Eq. (15) is substituted into Eq. (13), 

allowing the latter to be rewritten in the following form:    
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If the frequency obtained from Eq. (15) is regarded as the exact frequency, then the 

right-hand side of Eq. (16) reduces to zero. By applying the Galerkin technique and using 

cos (ωt) as the weighting function, the following equation is derived:  
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where T = 2π/ω. This equation can be solved to determine the value of k. For the present 

problem, Eq. (8) can be rewritten as: 

 
 2 2 3 5

1 2 3 4
0.

u u uu u u u
u u

u

       
  
 
 

 (18) 

Following Eq. (15), the nonlinear frequency is approximated as: 
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When ū = kA, we have 
21 ,u A k   and 2.u kA   Substituting these values 

into Eq. (19) yields the approximate nonlinear frequency as follows:  
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and the approximate solution as: 
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Using the specific value 3 2k  recommended in [46], the approximate nonlinear 

frequency can be expressed as follows:  
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To obtain a more accurate frequency, Eq. (8) is reformulated using the proposed ALPF 

approach as follows: 
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If the frequency obtained from Eq. (18) is the exact frequency, then the right-hand side 

of Eq. (23) becomes zero. Based on Eq. (17), we obtain: 
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Substituting Eq. (21) into Eq. (24) and solving the resulting equation yields the 

following expression for k:  
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Eq. (25) provides an appropriate location point that depends on both the amplitude and 

the system parameters. By substituting the value of k, calculated from Eq. (25), into Eq. 

(20), the approximate frequency denoted as ωALPF is determined using the proposed ALPF 

method.  

3.2 Square Error Minimizing-based Frequency Formulation (SEMF)  

      The square error minimizing-based frequency formulation (SEMF), proposed in [47], 

is a mathematical refinement of He's frequency formulation. It provides a modified 

approach that enhances the accuracy of the approximate frequency by minimizing a square 

error function. The error function E(ω2), corresponding to Eq. (13), is defined as follows: 

 2 2( ) ( ) ( ) ( ) .E F u A u t    (27) 

We define the mean square error as follows:  



 A Fast Insight into Nonlinear Frequency Estimation of Stringer-Stiffened Shells with High Accuracy 9 

  
/4

2
2 2 2

0

( ) ( ) ( ) ( ) .
T

E F u A u t dt    (28) 

To minimize the error, it is required that  

  
/42 2

2 2 4 2

2 2

0

( )
( ) 2 ( ) ( ) ( ) ( ) ( ) 0.

( ) ( )

T
dE d

F u A u t F u A u t dt
d d


 

 
     (29) 

By solving Eq. (29), an approximate expression for the nonlinear oscillator frequency 

given in Eq. (13) is obtained as [47]:   
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For the present problem, Eq (30) can be formulated as follows  
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By substituting u(t)=Acos(ωt) into Eq. (31), the following expression is obtained: 
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After simplification, the expression for the nonlinear frequency of the stringer-stiffened 

shell can be written as: 
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and the approximate solution as 
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This method achieves a balance between accuracy and simplicity by optimizing the 

error and demonstrates robustness for amplitudes ranging from small to moderate. It should 

be noted that the frequency derived in Eq. (33) can also be obtained using the HA [37], the 

HPM [38], and the first-order GRHBM [39].    

3.3 Hamiltonian-based Frequency-Amplitude Formulation (HFAF)  

      The Hamiltonian-based method [48] utilizes energy conservation to estimate the 

frequency. For the nonlinear oscillator given in Eq. (13), the Hamiltonian constant H is 

defined as follows:  

 

2
1

( ),
2

du
H P u

dt

 
  

 
 (35) 

where ( ) ( ) .P u F u du  For a conservative system, the Hamiltonian remains constant 

during the entire oscillation process. Therefore, we have: 

 

2
1

( ) ( ) 0.
2

du
P u P A

dt

 
   

 
 (36) 

By substituting the approximate solution u(t)=Acos(ωt) into Eq. (36), the corresponding 

residual function is obtained as follows: 

      2 2 21
sin ( ) cos( ) .

2
R t A t P A t P A      (37) 

By defining two average residuals  

 
1 /4

1 1 1

1 0

4
cos( ) ,

T

R R t dt
T

   (38) 

 
2 /4

2 2 2

2 0

4
cos( ) ,

T

R R t dt
T

   (39) 

the Hamiltonian-based nonlinear frequency is obtained as [48]: 

 
2 2

2 2 1 1 2

1 2

,HFAF

R R

R R

 






 (40) 

where ω1 and ω2 are typically chosen as ω1 = 1 and ω2 = 2. The Hamiltonian formulation 

of the present problem is expressed as  

 

2 2

2 2 4 6

1 2 3 4

1 1 1 1 1
.

2 2 2 4 6

du du
H u u u u

dt dt
   

   
       

   
 (41) 

Considering the initial conditions given in Eq. (12) and applying Eq. (37), the residual 

function is constructed as follows: 
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     

   

2 22 2 2 2

1 2

4 4 6 6

3 4

1 1 1
( ) sin( ) sin( ) cos ( ) cos ( ) 1

2 2 2

1 1
cos ( ) 1 cos ( ) 1 .

4 6

R t A t A A t t A t

A t A t

       

   

     

   

 (42) 

Assuming ω1 = 1 and ω2 = 2, the corresponding average residuals are obtained as 

follows: 

  4 2 4 6 2

1 1 2 3 4

2 1 7 19 1
.

15 3 30 105 3
R A A A A A   

    
      (43) 

 4 2 4 6 2

2 1 2 3 4

8 1 7 19 4
.

15 3 30 105 3
R A A A A A   

    
      (44) 

Following Eq. (40), the Hamiltonian-based expression for the nonlinear frequency of 

the stringer-stiffened shell is obtained as: 

 
2 4

2 3 4

2

1

70 49 38
,

70 28
HFAF

A A

A

  




 



 (45) 

and the approximate solution as: 

 

2 4

2 3 4

2

1

70 49 38
( ) cos .

70 28
HFAF

A A
u t A t

A

  



  
 
 
 

 (46) 

This method performs well at large amplitudes due to its foundation in energy 

principles. Its energy-based formulation enables more accurate capture of nonlinear effects 

within this range. 

3.4 Exact Nonlinear Frequency   

      To obtain the exact nonlinear frequency of the stringer-stiffened shell, the Hamiltonian 

form derived in Eq. (41) is employed. Using the initial conditions given in Eq. (12), and 

considering that the Hamiltonian remains constant in a conservative system, the following 

relation is obtained: 

 

2 2

2 2 4 6 2 4 6

1 2 3 4 2 3 4

1 1 1 1 1 1 1 1
.

2 2 2 4 6 2 4 6

du du
u u u u A A A

dt dt
      

   
         

   
 (47) 

Eq. (47) can be rewritten as follows: 

 
     2 2 4 4 6 6

2
2 3 4

2

1

1 1

2 3 .
1

A u A u A u
du

dt u

  



    
 

 
 

 (48) 

Solving Eq. (48) for dt, we obtain: 
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     

2

1

2 2 4 4 6 6

2 3 4

1
.

1 1

2 3

u
dt du

A u A u A u



  


 

    

 (49) 

Since the period of the oscillator is four times the duration required to move from 0 to 

A, we have 

 

     

2

1

2 2 4 4 6 60
2 3 4

1
4 .

1 1

2 3

A

exact

u
T du

A u A u A u



  




    
  (50) 

Therefore, the exact nonlinear frequency of the stringer-stiffened shell is obtained as 

follows: 

 

     

2

1

2 2 4 4 6 60
2 3 4

2
.

1
4

1 1

2 3

exact
A

u
du

A u A u A u






  




    


 (51) 

This integral typically requires numerical evaluation or the use of elliptic functions, 

serving as a benchmark for approximate methods. 

4. RESULTS AND DISCUSSION 

This section evaluates the nonlinear frequencies of a stringer-stiffened cylindrical shell 

using the proposed methods. The results are presented for SS BCs and are validated through 

comparisons with both exact and numerical solutions. Tables 1-3 report the nonlinear 

frequencies and relative errors for non-dimensional amplitudes A ranging from 0.01 to 3. 

The parameter sets are as follows: Table 1 (case1: β1 = 0.5, β2 = 2, β3 = 0.2, β4 = 0.1); Table 

2 (case 2: β1 = 0.1, β2 = 1, β3 = 0.5, β4 = 0.2); and Table 3 (case 3: β1 = 0.9, β2 = 1.5, β3 = 

2.5, β4 = 3.5), reflecting increasing degrees of nonlinearity. The results are compared with 

the exact solutions and with those reported in [40] using the HPM. To facilitate clearer 

comparison, the relative errors reported in Tables 1-3 are also illustrated in Fig. 2 as a 

function of amplitude. It can be observed that for small amplitudes (A ≤ 0.2), all methods 

exhibit high accuracy, with errors below 0.1% across all parameter sets. This behavior is 

expected, as the cubic and quintic terms in Eq. (8) contribute minimally at low A, making 

the system nearly linear. The results of ALPF and SEMF methods are identical to the exact 

solution for A ≤ 0.1, while the Hamiltonian-based method shows slight deviations (e.g., 

0.09% error at A = 0.2 in Table 1), likely due to its sensitivity to higher-order nonlinear 

terms. At large amplitudes (A ≥ 1), the errors increase, particularly for He's method, which 

reaches 10.26% at A = 3 in Table 3. In contrast, the ALPF and SEMF show improved 

performance, with errors up to 5.89% at A = 3, benefiting from their error minimization 

strategies. The Hamiltonian method consistently outperforms the others, maintaining errors 

below 3.92% at A = 3, as its energy-based framework more effectively captures the 

nonlinear dynamic behavior. It is noteworthy that both the ALPF and SEMF methods 
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accurately predict the frequencies obtained by the HPM, while offering a simpler 

computational procedure. Furthermore, the  

Table 1 Comparison of the frequencies obtained by the proposed three methods with 

exact ones for β1 = 0.5, β2 = 2, β3 = 0.2, β4 = 0.1. 

A 
present 

ωHPM  [38] 
ωexact ωHe  ωALPF ωSEMF  ωHFAF  

0.01 1.4142 1.4142  1.4142  1.4142  1.4142 1.4142  

0.1 1.4130 1.4130  1.4130  1.4130  1.4133  1.4130  

0.2 1.4093 1.4093  1.4093  1.4093  1.4106  1.4093  

0.8 1.3544 1.3516  1.3524  1.3524  1.3683  1.3524  

1 1.3347 1.3285  1.3304  1.3304  1.3522  1.3304  

1.4 1.3162 1.2979  1.3041  1.3041  1.3356  1.3041  

1.8 1.3411 1.3037  1.3176  1.3176  1.3545  1.3176  

2 1.3719 1.3229  1.3416  1.3416  1.3801  1.3416  

2.5 1.4985 1.4156  1.4488  1.4488  1.4900  1.4488  

3 1.6820 1.5597  1.6089  1.6089  1.6537  1.6089  

Table 2 Comparison of the frequencies obtained by the proposed three methods with 

exact ones for β1 = 0.1, β2 = 1, β3 = 0.5, β4 = 0.2. 

A 
present 

ωHPM  [38] 
ωexact ωHe  ωALPF ωSEMF  ωHFAF  

0.01 1.0000 1.0000  1.0000  1.0000  1.0000  1.0000  

0.1 1.0016 1.0016  1.0016  1.0016  1.0016  1.0016  

0.2 1.0066 1.0066  1.0066  1.0066  1.0063  1.0066  

0.8 1.1175 1.1163  1.1186  1.1186  1.1121  1.1186  

1 1.1926 1.1902  1.1952  1.1952  1.1843  1.1952  

1.4 1.4110 1.4049  1.4204  1.4204  1.3965  1.4204  

1.8 1.7215 1.7095  1.7423  1.7423  1.7024 1.7423  

2 1.9093 1.8930  1.9365  1.9365  1.8885  1.9365  

2.5 2.4621 2.4281  2.5036  2.5036  2.4378  2.5036  

3 3.1145 3.0499  3.1623  3.1623  3.0851  3.1623  

Table 3 Comparison of the frequencies obtained by the proposed three methods with 

exact ones for β1 = 0.9, β2 = 1.5, β3 = 2.5, β4 = 3.5. 

A 
present 

ωHPM  [38] 
ωexact ωHe  ωALPF ωSEMF  ωHFAF  

0.01 1.2248 1.2248  1.2248  1.2248  1.2248  1.2248  

0.1 1.2297 1.2297  1.2297  1.2297  1.2297  1.2297  

0.2 1.2452 1.2451  1.2452  1.2452  1.2453  1.2452  

0.8 1.6689 1.6500  1.6709  1.6709  1.6619  1.6709  

1 1.9571 1.9197  1.9586  1.9586  1.9460  1.9586  

1.4 2.7040 2.6016  2.6861  2.6861  2.6777  2.6861  

1.8 3.5965 3.3897  3.5248  3.5248  3.5378  3.5248 

2 4.0750 3.8032  3.9641 3.9641 3.9928  3.9641 

2.5 5.3237 4.8620  5.0873  5.0873  5.1637  5.0873  

3 6.6127 5.9344  6.2230  6.2230  6.3534  6.2230  
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computational time required to evaluate the frequency using the proposed methods is 

minimal, demonstrating their high efficiency. For instance, for the case of A = 3 in Table 

1, the computation times on a system with an Intel Core i7-7500U CPU and 12 GB RAM,  

   

 

Fig. 2 The relative error with respect to amplitude for the three proposed methods 

under various system parameters, (a) case 1, (b) case 2, and (c) case 3 

using MATLAB, are approximately 0.1 ms, 0.03 ms, and 0.006 ms for the ALPF, SEME, 

and HFAF methods, respectively. In comparison, the exact method requires about 1.3 ms 

due to the necessity for numerical integration. 

Fig. 3 illustrates the periodic solutions obtained by the proposed methods in comparison 

with the numerical solution. All methods demonstrate acceptable accuracy and successfully 

capture the periodic behavior of the stringer-stiffened shell. Compared to previous studies, 

the proposed methods offer simpler alternatives to iterative approaches such as HPM [38] 

and GRHBM [39], which involve complex series expansions and exhibit limitations at 

large amplitude values. Accurate frequency prediction is essential for avoiding resonance 

in stiffened shells, thereby enhancing safety in applications such as aircraft and submarines. 

He’s method, due to its simplicity and errors below 2% for A ≤ 1, is particularly suitable 

for rapid design iterations during preliminary engineering analyses. The Hamiltonian-

based method, with errors remaining below 4% for all amplitude levels, is better suited for 

critical applications that demand high precision, such as spacecraft panels subjected to 
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large dynamic loads. These methods enable engineers to optimize shell designs more 

efficiently, reducing costs and improving structural integrity.  

   

   

   

Fig. 3 Comparison of the analytical solutions with the numerical solution for various 

system parameters and amplitudes, (a) case 1, A = 0.5, (b) case 1, A = 2.3, (c) case 2, 

A=0.5, (d) case 2, A = 2, (e) case 3, A = 0.5, and (f) case 3, A = 2 

Using the frequency-amplitude relationship derived from the Hamiltonian-based 

frequency-amplitude method, Fig. 4 illustrates the variation of the frequency ratio (ωNL/ωL) 

with respect to amplitude under various system parameters. In this figure, when the effect 
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of one parameter is studied, the other three parameters are fixed at unity. It is observed that 

parameters β1 and β2 have a similar effect. As their values increase, the frequency ratio 

decreases. In contrast, parameters β3 and β4 exhibit the opposite trend. An increase in these 

parameters results in an increase in the nonlinear to linear frequency ratio. 

   

       

Fig. 4 The effect of system parameters (a) β1, (b) β2, (c) β3, and (d) β4 on the variation of 

frequency ratio with respect to the amplitude  

Fig. 5 presents a sensitivity analysis of the frequency ratio with respect to various 

system parameters under different amplitudes. As expected, at small amplitudes (here A = 

0.1), the frequency ratio is equal to unity, indicating the negligible effect of nonlinear terms. 

Figs. 5a and 5b show that, for various amplitudes, an increase in the parameters β1 and β2 

results in the frequency ratio approaching unity, thereby reducing the impact of 

nonlinearities. Specifically, Fig. 5a indicates that for moderate amplitudes (here A = 0.5 

and A = 1.5), the frequency ratio may be either greater or less than unity, depending on the 

value of β1. For instance, at A = 1.5, the frequency ratio is approximately 1.2 when β1 = 2, 

while it decreases to nearly 0.9 when β1 = 5. However, at higher amplitudes, the ratio 

exceeds for all values of β1. It is important to note that, as defined in Eq. (8), the parameter 

β1 quantifies the contribution of displacement-dependent terms. Therefore, it may be 

concluded that the influence of these terms on the nonlinear frequency of stringer-stiffened 

shell becomes significant at larger amplitudes. Furthermore, Figs. 5c and 5d reveal that the 
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frequency ratio increases with higher values of β3 and β4, indicating the role of cubic-

quintic nonlinearities in the nonlinear frequency response of the structure.  

Using the expressions derived for the nonlinear frequency of the stringer-stiffened shell, 

the influence of geometric parameters can be readily examined. For instance, Fig. 6 

illustrates the effects of the number of stringers N and the amplitude A on the nonlinear 

frequency under both SS and CC BCs. The geometrical and material properties of the shell 

are as follows [49]: radius R = 242 mm, thickness h = 0.65 mm, length L = 609 mm, Elastic 

modulus E = 68.95 Gpa, Poisson's ratio ν = 0.3, and density ρ = 2714 kg/m3. The depth and 

width of the stringers are taken as 7.02 mm and 2.55 mm, respectively, with the assumption 

that the shell and stringers are made of the same materials. As shown in Fig. 6, increasing 

the number of stringers leads to a higher nonlinear frequency due to the corresponding 

increase in structural stiffness. Additionally, as the amplitude increases, the frequency 

initially decreases and then increases. This initial drop in frequency persists up to higher 

amplitude levels for CC BCs compared to SS ones. Fig. 7 further demonstrates that the 

nonlinear frequency increases with increasing shell thickness h. Similarly, the effects of 

other geometric parameters can be systematically explored using the derived expressions.         

   

   

Fig. 5 The variation of frequency ratio with respect to (a) β1, (b) β2, (c) β3, and (d) β4 

under various amplitudes 
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Fig. 6 The effects of the number of stringers N and amplitude A on the frequency of a 

stringer-stiffened shell when m = n = 1. (a) SS BCs, (b) CC BCs 

     

Fig. 7 The effects of the number of stringers N and shell thickness h on the frequency of a 

stringer-stiffened shell under SS BCs. m = n = 1  

5. CONCLUSION  

This study developed three analytical methods: adaptive location point-based He’s 

formulation (ALPF), square error minimizing-based frequency formulation (SEMF), and 

Hamiltonian-based frequency-amplitude formulation (HFAF), to derive closed-form 

expressions for the nonlinear frequency of stringer-stiffened cylindrical shells. These 

methods were validated against both exact and numerical solutions. For small vibration 

amplitudes, they exhibited errors les than 0.1%, while for larger amplitudes, the 

Hamiltonian-based method maintained an error within to 3.92%. Compared to iterative 

techniques such as the homotopy perturbation method, the proposed methods offer 

efficiency and ease of application. The models effectively address the cubic-quintic 

nonlinearities characteristic of stiffened shells, offering practical tools for fast and accurate 

frequency prediction. These findings are particularly relevant to aerospace structures, 

spacecraft panels, and marine hulls, where avoiding resonance is essential for ensuring 

structural safety.  
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It is important to note that the present study focused on the vibration response in a single 

dominant mode and neglected damping effects. These assumptions were adopted to 

facilitate the development of simple, fast, and non-iterative analytical expressions for the 

nonlinear frequency of stringer-stiffened shells. While this approach effectively captures 

the primary nonlinear behavior, it does not account for potential multi-mode interactions 

or energy dissipation mechanisms, which may influence the dynamic response in more 

complex scenarios. These limitations suggest valuable directions for future research, 

including the extension of the proposed methods to multi-mode systems and the 

incorporation of damping effects for a more comprehensive dynamic analysis. 
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