
FACTA UNIVERSITATIS  
Series: Mechanical Engineering  
https://doi.org/10.22190/FUME250520021R 

© 2025 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND 

Original scientific paper 

ACTIVE DISTURBANCE REJECTION CONTROL AND  

MODEL-FREE CONTROL TUNED VIA FICTITIOUS 

REFERENCE ITERATIVE TUNING 

Raul-Cristian Roman1, Radu-Emil Precup1,2, Emil M. Petriu3 

1Politehnica University of Timisoara,  

Department of Automation and Applied Informatics, Timisoara, Romania 
2Romanian Academy – Timisoara Branch,  

Center for Fundamental and Advanced Technical Research, Timisoara, Romania 
3University of Ottawa,  

School of Electrical Engineering and Computer Science, Ottawa, Canada 

Abstract. This paper presents a comparative analysis of two data-driven algorithm 

combinations: the first-order Active Disturbance Rejection Control-Fictitious Reference 

Iterative Tuning (ADRC-FRIT) and the first-order Model-Free Control-Fictitious 

Reference Iterative Tuning (MFC-FRIT). The objective of both data-driven combinations 

is to ascertain the tunable parameters through the resolution of an optimization problem 

and to streamline the heuristic procedures involved. The data-driven algorithms are 

empirically validated through experimental trials utilizing the 3D laboratory equipment 

in which the x-, y-, and z-axes are controlled. 
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1. INTRODUCTION 

In recent years, the utilization of data-driven algorithms [1] in the control domain has 

seen a gradual increase. Within contemporary control systems, data-driven algorithms 

assume an increasingly pivotal role by using empirical data to design controllers with 

minimal reliance on explicit mathematical models, which is important in coping with 

complex processing including active those involved in active structures [2]. Rather than 
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designing precise system equations, these methodologies derive patterns and dynamics 

directly from input-output (I/O) data, thereby facilitating adaptation to intricate or 

uncertain environments. This method is particularly advantageous in contexts where 

traditional modeling proves impractical due to nonlinearities, noise, or high dimensionality. 

By seamlessly integrating tools from machine learning and optimization, data-driven 

control delivers flexible and robust solutions tailored to real-world applications, including 

robotics, energy systems, and autonomous vehicles. According to the authors, Active 

Disturbance Rejection Control (ADRC) [1,3,4], Model-Free Control (MFC) [1,5,6], 

Model-Free Adaptive Control [1,7], Virtual Reference Feedback Tuning [1,8], Iterative 

Feedback Tuning [1,9], Fictitious Reference Iterative Tuning (FRIT) [1,10], or Iterative 

Learning Control [11,12] are among the most frequently utilized data-driven algorithms. 

ADRC is a feedback control strategy designed to handle uncertainties and external 

disturbances without relying on an accurate mathematical model of the process. At its core, 

ADRC augments the system’s state with an estimated total disturbance, which 

encompasses both unknown dynamics and external inputs. This estimate is updated in real 

time by an observer and then actively canceled in the control law, resulting in improved 

robustness and disturbance rejection. Usually, due to its simplicity, the Extended State 

Observer (ESO) is preferred. Thanks to its model-agnostic design and straightforward 

tuning rules, ADRC has been successfully applied in fields ranging from robotics to process 

industries, where precise modeling proves challenging. Due to its model-independent 

framework and straightforward tuning guidelines, ADRC has been proficiently utilized 

across various domains. In the realm of tower crane systems, as indicated in [3], two 

configurations of ADRC integrated with the fuzzy logic technique are proposed, ensuring 

control loop stability as per fuzzy control system stability, with ADRC parameters 

determined through the metaheuristic Grey Wolf Optimizer. In [13], the second-order 

ADRC is combined with the sliding mode technique to enhance control loop performance, 

proposing ADRC stability while optimal controller parameters are ascertained via the 

metaheuristic slime mould algorithm (SMA) with validation on tower crane systems. 

According to [14], first-order ADRC is mixed with the FRIT to identify optimal tunable 

parameters using the metaheuristic African Vultures Optimization Algorithm (AVOA), 

accompanied by a proposed stability mechanism for ADRC, also validated on tower crane 

systems. For 3D crane systems in [15], comparisons are drawn between the first and second 

orders of ADRC algorithms. Direct Current (DC)-DC buck converters in [16] feature a 

general error-based ADRC with a stability mechanism founded on singular perturbation 

theory. In permanent magnet synchronous motors, as discussed in [17], a cascaded filter 

proportional-integral-derivative (PID) paradigm is employed for error-based ADRC, with 

system robustness characterized in terms of stability margins. In piezo-actuated beams, as 

described in [18], ADRC is utilized to estimate and compensate for total disturbances, with 

design based on the governing equation. For gimbal mechanisms, [19] proposes a first-

order ADRC algorithm alongside a stability mechanism. The application of ADRC to 

rotary DC motors, as stated in [20], involves the use of an anti-windup strategy and Hurwitz 

polynomials. Across all these systems, the precise modeling remains a considerable 

challenge. 

MFC, often associated with the concept of intelligent PID controllers, presents a viable 

alternative to traditional model-based control methodologies. Instead of relying on a 

detailed mathematical representation of the system, MFC builds on simplified local models 

based on real-time data. This approach allows the controller based on MFC to adapt to 
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system dynamics and external disturbances in the absence of preliminary identification 

procedures, making it especially valuable for complex or poorly understood processes. In 

recent years, MFC has been rigorously improved and validated across various demanding 

applications, from robotics to process industries, demonstrating its adaptability and 

efficacy in practical environments. In [5], the discrete-time MFC algorithm is employed, 

wherein the parameters of iPID controllers are optimally determined utilizing FRIT via the 

metaheuristic AVOA, subsequently validated through experimental trials on tower crane 

systems. In [21], the MFC is implemented in advanced processes, including the Quanser 

AERO. In [22], the MFC is validated across various scenarios on Wendling’s model. In 

[23], MFC is experimentally applied to cloud and high-performance computing systems. 

In [24], MFC is utilized to manage processes involving shape memory alloys, specifically 

controlling a shape memory alloy spring-based actuator initially. In [25], the application of 

MFC, time-delay estimation MFC, and backstepping-based MFC is demonstrated in 

coupled mechatronic systems for controlling 2-DOF and 3-DOF robotic manipulators. In 

[26], MFC, in combination with Flatness-Based control, is employed for the management 

of unmanned surface vehicles. In [27], MFC is applied to the control of a prosthetic hand. 

In [28], MFC, coupled with a fuzzy technique, is utilized to control a twin rotor 

aerodynamic system. In all these applications, MFC proves to be highly beneficial due to 

the complexity and the challenge in determining precise mathematical models for these 

processes. 

FRIT constitutes a data-driven iterative technique devised for the optimization of 

controllers, obviating the necessity for an explicit process model. The principal concept 

involves constructing a reference signal, designated as the fictitious reference, which, if 

pursued by the system, would produce an identical measured output. Through the iterative 

minimization of the error between the actual and desired behaviors, FRIT facilitates the 

direct adjustment of controller parameters utilizing solely experimental data, rendering it 

particularly suitable for systems where modeling is challenging or unreliable. Analogous 

to ADRC and MFC, FRIT has been substantiated across a diverse array of applications, 

encompassing robotics and process industries, thereby exhibiting its versatility and 

effectiveness within practical settings. In [29], an enhancement of FRIT through pseudo-

linearization has been implemented on asymmetric Bouc-Wen systems. According to [30], 

FRIT is applied to the control of hydraulic systems and necessitates an offline database for 

the storage of historical process data. The study in [31] demonstrates the utilization of FRIT 

to calibrate the parameters of a fractional- and integer-order PID controller relevant to a 

benchmark problem encompassing both scenarios with and without time delay, specifically 

within a flexible transmission model. In [32], FRIT was employed to manage the cart 

position within a pendulum cart system. As observed in [33], FRIT is leveraged for the 

design of controller parameters in applications concerning a switched reluctance generator, 

ball screw positioning, two-mass resonance, and switched reluctance motor systems. 

Across these applications, FRIT effectively manages the feedback loop even when 

confronted with nonlinear processes. 

The present paper seeks to build upon and synthesize the authors’ prior work involving 

the integration of ADRC and MFC with FRIT. Initially, as indicated in [5], the discrete-

time variant of the first-order MFC, incorporating a PID component, was integrated with 

FRIT, with the optimal controller parameters being computed via AVOA. Subsequently, 

[34] describes the blending of the continuous-time variant of the first-order MFC with a PI 

component with FRIT, with tuning via SMA for optimal parameters. Furthermore, in [35], 
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a discrete-time, second-order version of the MFC algorithm with a P component is 

combined with FRIT, with optimal parameter settings adjusted using SMA. Additionally, 

[14] details the integration of the first-order continuous-time ADRC with FRIT, where 

parameters were optimized utilizing the Gauss-Newton algorithm. Each of these algorithm 

integrations underwent experimental validation using tower crane systems. Accordingly, 

in the current paper, the authors integrate the continuous-time first-order MFC with a P 

component and the continuous-time first-order ADRC algorithms with FRIT, resulting in 

the ADRC-FRIT and MFC-FRIT algorithms. Both algorithms comprise one user-selected 

parameter and one tunable parameter whose optimal values will be ascertained through 

FRIT using the Newton–Raphson method. Stability mechanisms have been proposed for 

both ADRC and MFC algorithms, and stability is implicitly guaranteed for the ADRC-

FRIT and MFC-FRIT algorithms. The efficacy of these algorithms is demonstrated through 

experiments performed using the 3D crane laboratory device [36], involving the control of 

the x-, y-, and z-axes. Metaheuristic algorithms such as AVOA and SMA, employed in 

solving optimization problems for the algorithms listed below, operate on the same 

principles as the metaheuristic BASO or ASO as detailed in [37]. Although the exact 

identification of the 3D crane system constitutes a labor-intensive endeavor, it can be 

achieved, for instance, through the application of dimension reduction via unsupervised 

learning [38]. 

The ensuing sections of this manuscript are systematically arranged as follows: Section 

2 provides a comprehensive elucidation of the ADRC-FRIT and MFC-FRIT algorithms. 

Section 3 delivers a succinct description of the 3D crane. Section 4 presents a detailed 

exposition of the experimental results in conjunction with a critical analysis. Section 5 

underscores the conclusions. 

2. THE DATA-DRIVEN ALGORITHMS MIX 

2.1 The FRIT Algorithms 

The integration of continuous-time first-order ADRC and MFC with FRIT is advocated 

to ascertain the optimal parameters of the ADRC and MFC algorithms and to enhance the 

overall efficacy of the control system architecture. To achieve this objective, it is requisite 

to conduct an initial closed-loop experiment of the control system incorporating the ADRC 

algorithm. ADRC-FRIT and MFC-FRIT utilize the I/O data to resolve the optimization 

problem via the Newton–Raphson method 
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where, in this context, Κ* denotes the optimal parameter either of the ADRC-FRIT or the 

MFC-FRIT algorithm as it pertains to Κ, depending on the practitioner’s choice. The initial 

parameter of these algorithms is represented by Κ(0), with the superscript (0) satisfying its 

initial value. The cost function associated with the ADRC-FRIT or MFC-FRIT algorithm 

is denoted by JΚ. Notation TH is used to specify the duration of the experimental timeframe. 

Furthermore, y0(t, Κ(0)) retains the output data obtained post the initial experiment. The 
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fictitious reference model output ỹK(t, K) is determined through offline computation, given 

the understanding that [10,14,15,34,35] 

 )},,(~)({),(~ 1  

 srsΜLty  (2) 

where the notation L–1 is utilized to represent the inverse Laplace transform. The reference 

model transfer function, denoted as M(s), is determined by the designer to yield an output 

response that meets the performance specifications of the control system, and r(̃t, Κ) is the 

fictitious reference input, also referred to as the virtual set-point 
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r(̃t, Κ) constitutes a modified version of the fictitious reference input as presented in [9] for 

continuous-time systems and corresponds to the improved virtual set-point for continuous-

time systems outlined in [14] and [34], and for discrete-time systems in [6] and [35]. The 

term u0(s, Κ(0)) denotes the input data, which is obtained using the Laplace transform and 

gathered from the initial closed-loop experiment, while C(s, Κ(0)) represents the transfer 

function of the proportional component within the ADRC or MFC algorithm 

[10,14,15,34,35] 
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To determine the value of gain Κ using the Newton-Raphson method [39] by computing 

the first and the second derivative of JΚ(Κ), i.e., ∂JΚ/∂(Κ(i)) and ∂2JΚ/∂(Κ(i))2, and the 

solution is updated knowing that 
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where i is the index of the current iteration, J’
Κ and J”

Κ are the first and the second derivative 

of JΚ(Κ). 

As indicated by [10], the ADRC-FRIT algorithm identifies the I/O data-pair (u0(t, Κ(0)), 

y0(t, Κ(0))) as non-trivial, thereby [10,14,15,34,35] 
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2.2 The ADRC-FRIT Algorithms 

The ADRC algorithm is designed for a continuous-time low-pass filter process 

 ),()()( tutyty    (7) 

where t is the time variable, Κ is a member of the real numbers set R, represents the process 

gain, and Τ, also within R, signifies the process’s time constant. The algorithm’s capacity 

to operate with Τ values less than zero enables it to manage unstable processes effectively. 

Here, u(t), a real-valued function, denotes the control input, while y(t), also a real-valued 

function, indicates the controlled output. The revised process model is derived by 

incorporating the expression b = b0 + Δb, where b0 serves as an estimator of the value of b 
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 R, and Δb accounts for the parametric uncertainty or variation in the gain parameter Κ 

of the system [13–15] 

 ).()()()/1()()/1()( 0 tubbttyty    (8) 

In (8), the effect of the disturbance δ(t) is evident, as the ADRC algorithm mitigates 

disturbance influences via an ESO, specifically a Luenberger observer. Conversely, in (7), 

this disturbance is excluded to maintain a simplified representation of the nominal system 

model. The term that gathers all the unknowns of the process is the generalized disturbance 

term of the ADRC algorithm is 

 ),()()/1()()/1()( tubttytf    (9) 

where function f(t) within R is contingent upon the known output y(t), in contrast with the 

unidentified disturbances δ(t) and the modeling error Δb, both of which affect the dynamics 

of the system. Within the context of the ESO in ADRC, y(t) is not directly observable and 

is instead approximated, thus included in f(t) together with the unknown disturbances δ(t) 

and the modeling error Δb. Upon integrating the disturbance term from (8) into the first-

order low-pass filter denoted as (7), the resulting process model transforms into a perturbed 

integrator [13–15] 
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Employing the notations z1(t) = y(t) and z2(t) = f(t) within expression (10), the state-

space representation of the perturbed integrator model is 
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where z(t) = [z1(t) z2(t)]T, with T representing matrix transposition, the third term in the 

right-hand side of (11) can be deemed negligible since the ESO, as introduced later in the 

discourse, can estimate and compensate for disturbances. The ADRC algorithm does not 

necessitate explicit disturbance modeling, as the observer performs real-time estimation 

and mitigation of disturbances. Consequently, the system can concentrate on its primary 

dynamics while the ESO addresses disturbances. Within the context of the ESO is 

employed to estimate the output of the system rather than the disturbance itself. This arises 

because, in the framework of ADRC, the observer is designed to estimate the system output 

directly. At the same time, the disturbance is inferred indirectly as a component of the total 

disturbance. This is achieved by analyzing the discrepancy between the observed output 

and the estimated output y(t) = ẑ1(t). Subsequently, upon substituting ẑ1(t) with ŷ1(t), the 

model for the ESO is adjusted accordingly [13–15] 
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where the ESO gain matrices are A  R2x2, B  R2x1, and C  R1x2, while L = [l1 l2]T exerts 

an influence on the spectrum of matrix (A–LC), and ẑ(t) is the estimate of z(t). The 

eigenvalues of the matrix (A–LC) are required to reside in the left half-plane because their 

positions influence the behavior of the control system. Within this context, the feasible 

domain is denoted as DL. Here, y(t) represents the controlled output obtained from an initial 

open-loop experiment, and ẑ1(t) = y(t), which is the primary output produced by the 

observer estimating y(t). The initial open-loop experiment is executed under a dynamic 

regime that is congruent with the closed-loop control system’s operating conditions. 

Furthermore, the input signal applied to the open-loop experiment must be rich in 

frequency content. The characteristic polynomial associated with the ESO’s dynamic 

model is [14] 

 .)( 21

2 lslss   (13) 

The stability of the ESO is guaranteed by enforcing the characteristic polynomial in 

(13) to satisfy Hurwitz conditions, thereby resulting in the establishment of constraints for 

determining the elements of L 
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The control strategy formulated for the ADRC algorithm is 
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where ê(t) represents the estimated control error, and e(t) = r(t) – z1(t) = r(t) – y(t) denotes 

the control error, r(t) is the reference input (set-point), and Κ is the ADRC’s gain. 

The stability of the control system with the ADRC algorithm and ESO, denoted as 

KADRC = [Κ  l1  l2]T, is ensured by Theorem 1 [14] with the proof given in [40]. 

Theorem 1. Taking into account the disturbed integrator model (10) alongside the 

disturbance term (9), in conjunction with the ESO dynamic model (12), the ADRC control 

system employing the control law (15) is stable if and only if 
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In designing the ADRC-FRIT algorithm, theoretical considerations from the current 

subsection, as well as those of FRIT in Subsection 2.1, are meticulously incorporated. 

In the context of ADRC-FRIT, for the initial experiment, the practitioner should set a 

value of Κ, and therefore, the domain (16) will be reduced to 

}]    [|]  {[)( ADRC21

2

21 DllllD TT  RL
. Controller tuning heuristics can be 
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minimized by setting matrix L = [l1 l2]T as the solution L* = [ *

1l   *

2l ]T to the optimization 

problem [14] 
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The subsequent implementation of ADRC-FRIT is realized by adhering to the steps 

outlined below: 

Step 1.1. The designer defines the initial conditions of the open-loop experiment. 

Step 1.2. The designer must assign a value other than zero to the estimated coefficient 

of the control input, denoted as b0. Additionally, the designer should establish an 

appropriate value for Κ, which represents the gain of the ADRC algorithm (or controller 

gain), specifically Κ(0), as the initial parameter of the ADRC-FRIT algorithm. 

Step 1.3. In the dynamic regime and context tailored to the optimization problem given 

in (17), constrained by (16), the optimization problem stated in equation (17) is solved 

using the Newton-Raphson method to determine the optimal ESO parameter vector, L* = [
*

1l   *

2l ]T. 

Step 1.4. The ADRC algorithm is validated in a closed-loop control experiment. This 

coincides with the ADRC-FRIT initial experiment. 

Step 1.5. A reference model M(s) is set to ensure the output meets the control system’s 

performance criteria. 

Step 1.6. To determine the fictitious reference r(̃t, K) accordance with (3), the I/O data 

pair (u0(t, Κ(0)), y0(t, Κ(0))) is acquired. Next, the fictitious reference model output ỹK(t, K) 

is derived in accordance with (2). 

Step 1.7. To calculate the optimal parameter K* for the ADRC-FRIT algorithm, the 

control error from the previous experiment is used as the benchmark input in the gradient 

experiment. This is carried out with (5), applying the Newton-Raphson method to solve the 

optimization challenge outlined in equation (1). 

Step 1.8. An experiment with the control system’s closed-loop structure, employing the 

ADRC algorithm with parameter K* optimally determined via FRIT, is conducted. 

The procedures outlined in Steps 2.6-2.8 are repeated numerous times to improve the 

overall efficacy of the control system. The input/output data collected upon the completion 

of Step 2.8 is subsequently employed in Step 2.6 for a new iteration. 

2.3 The MFC-FRIT Algorithms 

The MFC algorithms incorporating a P component, commonly identified in 

contemporary research as the iP controller, are designed based on the first-order local 

process model similar to (7) [1,5,6,21–23,34,35] 

 ),()()( tutFty   (18) 

where F(t) represents unmodeled dynamics and disturbances, u(t) and y(t) have the same 

significance as in the ADRC case, while α > 0 for balancing ẏ(t) and αu(t). 

The MFC algorithm is predicated upon the subsequent specific control law 

 ,/)]()()(ˆ[)( tetrtFtu    (19) 
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where, in the context of the MFC algorithm, Κ represents the proportional constant, 

specifically the gain associated with the P component of the MFC algorithm. )(ˆ tF  denotes 

the estimation of F(t) derived from the I/O data of u(t) and y(t). Furthermore, r(t) holds an 

equivalent significance as observed within the framework of the ADRC algorithm, and its 

first-order derivative is estimated through the utilization of a derivative plus low-pass filter, 

characterized by [1,5,6,21–23,34,35] 

 ),1/()( sTssH FF   (20) 

where the time constant of the first-order derivative filter, denoted as TF, ought to be 

selected by the practitioner as a small positive value to ensure precise estimation of 

derivatives. The signals processed through HF(s) in (20), represented as ṙ(t) and ẏ(t), will 

henceforth be referred to as )(ˆ tr  and )(ˆ ty , respectively. Additionally, e(t) maintains the 

same definition as it does within the framework of the ADRC algorithm. The derivation of 

)(ˆ tF  is based on the first-order local process model equation given in (18), which is 

transformed as follows: 

 ).( )(ˆ)(ˆ tutytF    (21) 

The stability of a control system utilizing the MFC algorithm is guaranteed if the 

characteristic polynomial, obtained by substituting the control law from equation (19) into 

the local process model delineated in equation (18) 

 ,0)()(  tete  (22) 

exhibits roots situated within the left half-plane; therefore, Κ < 0, and the estimation error 

denotes )(ˆ)()( tFtFt   is assumed to be zero, and ė(t) = ṙ(t) – ẏ(t). The stability of the 

control system with the MFC algorithm KMFC = Κ is ensured by Theorem 2, with the proof 

taken from [41]. 

Theorem 2. Considering the first-order local process model as detailed in (18) 

alongside the control law delineated in (19), as well as the unmodeled dynamics and 

disturbances specified in (21), assuming δ(t) equals zero, and evaluating the characteristic 

polynomial of the error dynamics presented in (22), the stability of the control system is 

ensured if the roots of (22) reside in the left half-plane. Therefore, the MFC control system 

employing the control law (19) is stable if and only if 

 }.0|{,K MFCMFCMFC  DD R  (23) 

The subsequent implementation of MFC-FRIT is realized by crossing to the outlined 

steps: 

Step 2.1. The designer defines the initial conditions of the closed-loop experiment. 

Step 2.2. The designer must assign a value other than zero to α. Additionally, the 

designer should establish an appropriate value for Κ, which represents the gain of the MFC 

algorithm (or controller gain), specifically Κ(0), as the initial parameter of the MFC-FRIT 

algorithm. 

Step 2.3. The designer should establish the derivative plus low-pass filter in (20) by 

setting a small positive value for TF. 
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Step 2.4. The MFC algorithm is validated in a closed-loop control experiment. This 

coincides with the MFC-FRIT initial experiment. 

Steps 2.5 to 2.8 are identical to steps 1.5 to 1.8, as is the case with the ADRC algorithm, 

and are applied for the case of the MFC algorithm. Therefore, the procedures outlined in 

Steps 2.6-2.8 are repeated numerous times to improve the overall efficacy of the control 

system. The input/output data collected upon the completion of Step 2.8 is subsequently 

employed in Step 2.6 for a new iteration. 

The block diagrams of the ADRC-FRIT and MFC-FRIT algorithms are depicted in Fig. 

1 a) and b), respectively. 

 

Fig. 1 The block diagrams of the ADRC-FRIT in a) and MFC-FRIT in b). 

3. THE 3D CRANE 

The validation of the continuous-time first-order ADRC-FRIT and MFC-FRIT is 

performed with experimental setups involving the 3D crane laboratory equipment, where 

control is applied to the x-, y-, and z-axes. Details of the laboratory configuration and the 

mathematical model, highlighting the complex dynamics due to nonlinearity, are recorded 

in [36]. 

The 3D crane is operated using three control inputs ui  [–1, 1], i  {1, 2, 3}, which 

modulate the duty cycles of pulse width to control the DC motors, thereby actuating the x-

, y-, and z-axes. Specifically, x1(m) = y1(m) denotes the cart’s position along the x-axis, 

x3(m) = y2(m) corresponds to its position along the y-axis, and x9(m) = y3(m) represents the 

payload’s position along the z-axis. 

4. THE SETUP AND RESULTS 

To have a fair comparison of the ADRC-FRIT and MFC-FRIT algorithms, both are 

validated using experiments considering the same set-up, i.e., 70 s as time horizon, and the 

reference inputs (set-point) are )(tri
 obtained as the signals )(ti  filtered through 

}3,2,1{),(
1

isHr
: 
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The effectiveness of the data-driven algorithms shall be evaluated utilizing the 

forthcoming performance index: 

   
HT

H

ue dttetete
T

KJ
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2
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2

21

2

1, ,)],(),(),([
1

)(  (26) 

where the time horizon is TH = 70 s, the subscript ◊ represents one of the following: ADRC, 

ADRC-FRIT, MFC, MFC-FRIT, each of which corresponds to the data-driven algorithms 

discussed within this paper. Additionally, the subscripts 1, 2, and 3 denote the parameters 

corresponding to the x-, y-, and z-axes, respectively.  

According to Steps 1.1 to 1.4, the ADRC algorithms are designed by considering the 

open-loop experiment a signal rich in frequency content (Step 1.1). Next, the practitioner 

assigns the values of b0 = 1 and Κ, which will later be employed as Κ(0) in the ADRC-FRIT 

(Step 1.2), obtaining ΚADRC1 = 1.3432, ΚADRC2 = 1.3541, and ΚADRC3 = 1.4135. 

By solving the optimization problem in (17) in terms of (16) using the Newton-Raphson 

method, the optimal parameters of ESO are (Step 1.3) L1
* = [192.1 9224.1]T, L2

* = [146.8 

5388.3]T, L3
* = [172.4 7416.7]T. The validation of the closed-loop ADRC algorithm 

coincides with the initial experiment of the ADRC-FRIT algorithm, considering the 

reference inputs (set-point) described above for the closed-loop experiments (Step 1.4). In 

the next phase, the designer sets the reference model M(s) chosen to meet the control 

system performance criteria, and in this case, M(s) is Hr(s) as given in (25) (Step 1.5). With 

the I/O data collected in Step 1.4, the fictitious reference r(̃t, Κ) and fictitious reference 

model output ỹK(t, K) are computed in terms of (3) and (2) (Step 1.6). The optimal 

parameter Κ* of the ADRC-FRIT algorithm is determined after ten iterations by solving 

(1) using the Newton–Raphson method and obtaining (Steps 1.7 and 1.8) Κ*
ADRC-FRIT1 = 

5.8716, Κ*
ADRC-FRIT2 = 4.8671, Κ*

ADRC-FRIT3 = 3.3211. 

According to Steps 2.1 to 2.4, the MFC algorithms are designed by considering the 

closed-loop experiment, with the same reference inputs as above (Step 2.1). Next, the 

practitioner assigns the values of α = 1 and Κ, later used as Κ(0) in the MFC-FRIT algorithm 

(Step 2.2), obtaining ΚMFC1 = –22.9093, ΚMFC2 = –21.0261, and ΚMFC3 = –29.0214. The 

designer establishes that TF = 0.001 for the low-pass filter in (20) (Step 2.3). The validation 

of the closed-loop MFC algorithm coincides with the initial experiment of the MFC-FRIT 

algorithm (Step 2.4). In the next phase, the designer uses the same reference model M(s) 

as in the ADRC-FRIT chosen to meet the control system performance (Step 2.5). With the 

I/O data collected in Step 2.4, the fictitious reference r(̃t, Κ) and fictitious reference model 

output ỹK(t, K) are computed in terms of (3) and (2) (Step 2.6). The optimal parameter Κ* 

of the MFC-FRIT algorithm is determined after ten iterations by solving (1) using the 

Newton–Raphson method and obtaining (Steps 2.7 and 2.8) Κ*
MFC-FRIT1 = –33.9101, Κ*

MFC-

FRIT2 = –31.0199, Κ*
MFC-FRIT3 = –49.0200. 

The outcomes of the real-time experiments are illustrated in Figs. 1-3 within the 

supplementary material in [42], as well as in Table 2. These outcomes represent the 
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averages of ten distinct sets of real-time experiments conducted to mitigate random 

disturbances that may arise during an experiment. No additive disturbances were 

introduced in the real-time experiments. The experimental data distinctly indicate that 

ADRC and MFC exhibit equivalent performance in the initial experiment. Subsequent to 

determining the optimal parameters with FRIT, the experimental results derived from 

ADRC-FRIT and MFC-FRIT surpass those of the initial closed-loop experiments. 

Moreover, similar to the initial closed-loop experiment, ADRC-FRIT and MFC-FRIT 

perform equivalently. However, concerning the 3D crane equipment, MFC and MFC-FRIT 

demonstrate slightly superior performance. However, these conclusions might be different 

if combinations of data-driven control with model-based control including fuzzy control 

[4,12,28,43], [42], and sliding mode control [44,45]. 

Table 1 The average and the variance of the performance index in (27) 

 ADRC ADRC-FRIT MFC MFC-FRIT 

Average of Je,u 9.8043∙10–4 3.5911∙10–4 5.9425∙10–4 3.3567∙10–4 

Variance of Je,u 1.9881∙10–11 2.0014∙10–11 2.1015∙10–11 1.9988∙10–11 

5. CONCLUSIONS 

This paper aims to conduct a comparative analysis of two data-driven integrations, 

specifically the first-order continuous-time ADRC-FRIT and MFC-FRIT algorithms, as 

validated through experimental testing on 3D crane laboratory equipment. The innovative 

aspects of this study include the integration of the first-order continuous-time ADRC and 

MFC with FRIT, the determination of optimal parameters for ADRC and MFC using FRIT 

by resolving the optimization problem in (1) via the Newton–Raphson method, and the 

validation of the first-order continuous-time ADRC, ADRC-FRIT, MFC, and MFC-FRIT 

algorithms on the 3D crane system. 

Future research will concentrate on validating the proposed data-driven algorithms 

presented in this paper on other real-time devices, as well as on the integration and 

enhancement of data-driven algorithms such as ADRC, MFC, or FRIT. 

Acknowledgement: This work was supported by a grant of the Ministry of Research, Innovation and 

Digitization, CNCS/CCCDI - UEFISCDI, project number ERANET-ENUAC-e-MATS, within PNCDI 

IV, and the NSERC of Canada. 

REFERENCES 

1. Precup, R.-E., Roman, R.-C., Safaei, A., 2021, Data-Driven Model-Free Controllers, 1st Edition, CRC 
Press, Taylor & Francis, Boca Raton, FL, USA. 

2. Milić, P., Marinković, D., Klinge, S., Ćojbašić, Ž., 2023, Reissner-Mindlin based isogeometric finite 
element formulation for piezoelectric active laminated shells, Tehnički Vjesnik, 30(2), pp. 416-425. 

3. Z. Gao, 2006, Active disturbance rejection control: a paradigm shift in feedback control system design, 
Proc. 2006 American Control Conference, Minneapolis, MN, USA, pp. 2399–2405. 

4. Roman, R.-C., Precup, R.-E., Petriu, E. M., 2021, Hybrid data-driven fuzzy active disturbance rejection 
control for tower crane systems, European Journal of Control, 58, pp. 373-387. 

5. Fliess, M., Join, C., 2013, Model-free control, International Journal of Control, 86(12), pp. 2228–2252. 



 Active Disturbance Rejection Control and Model-Free Control  13 

6. Roman, R.-C., Precup, R.-E., Petriu, E. M., Muntyan, M., 2023, Fictitious reference iterative tuning of 
discrete-time model-free control for tower crane systems, Studies in Informatics and Control, 32(1), pp. 5-
14. 

7. Liu, S., Lin, G., Ji, H., Jin, S., Hou, Z., 2025, A novel enhanced data-driven model-free adaptive control 
scheme for path tracking of autonomous vehicles, IEEE Transactions on Intelligent Transportation 
Systems, 26(1), pp. 579-590. 

8. Formentin, S., Campi, M. C., Carè, A., Savaresi, S. M., 2019, Deterministic continuous-time virtual 
reference feedback tuning (VRFT) with application to PID design, Systems & Control Letters, 127, pp. 25-
34. 

9. Hjalmarsson, H., 2002, Iterative feedback tuning, International Journal of Adaptive Control and Signal 
Processing, 16(5), pp. 373-395. 

10. Soma, S., Kaneko, O., Fujii, 2004, A new method of controller parameter tuning based on input-output 
data – Fictitious Reference Iterative Tuning (FRIT), IFAC Proceedings Volumes 37(12), pp. 798-794. 

11. Bristow, D.A., Tharayil, M., Alleyne, A.G., 2006, A survey of iterative learning control, IEEE Control 
Systems Magazine, 26(3), pp. 96-114. 

12. Precup, R.-E., Roman, R.-C., Hedrea, E.-L., Petriu, E. M., Bojan-Dragos, C.-A., Szedlak-Stinean, A.-I., 
2024, Metaheuristic-based tuning of proportional-derivative learning rules for proportional-integral fuzzy 
controllers in tower crane system payload position control, Facta Universitatis-Series Mechanical 
Engineering, 22(4), pp. 567-582. 

13. Roman, R.-C., Precup, R.-E., Petriu, E. M., Borlea, A.-I., 2024, Hybrid data-driven active disturbance 
rejection sliding mode control with tower crane systems validation, Romanian Journal of Information 
Science and Technology, 27(1), pp. 3-17. 

14. Roman, R.-C., Precup, R.-E., Stebel, K., Madonski, R., 2025, Active disturbance rejection control tuned 
by fictitious reference iterative tuning for tower crane systems, Proc. 23rd European Control Conference 
(ECC), Thessaloniki, Greece, pp. 1-8. 

15. Roman, R.-C., Precup, R.-E., Petriu, E. M., 2024, Active disturbance rejection control for 3D crane 
systems, Procedia Computer Science, 242, pp. 976-983. 

16. Madonski, R., Shao, S., Zhang, H., Gao, Z., Yang, J., Li, S., 2019, General error-based active disturbance 
rejection control for swift industrial implementations, Control Engineering Practice, 84, pp. 218-229. 

17. Cao, M., Yang, J., Li, S., Madonski, R., Xue, W., 2025, Cascaded filter PID paradigm for error-based 
active disturbance rejection control: equivalence, design, and implementation guidelines, IEEE 
Transactions on Industrial Electronics, doi: 10.1109/TIE.2025.3559950, pp. 1-11. 

18. Sun, X. G., Chi, W. C., Wang, Y. Q., 2024, Linear active disturbance rejection control algorithm for active 
vibration control of piezo-actuated beams: Theoretical and experimental studies, Thin-Walled Structures, 
199, paper 111782. 

19. Ahi, B., Nobakhti, A., 2018, Hardware implementation of an ADRC controller on a gimbal mechanism, 
IEEE Transactions on Control Systems Technology, 26(6), pp. 2268-2275. 

20. Ahi, B., Haeri, M., 2018, Linear active disturbance rejection control from the practical aspects, 
IEEE/ASME Transactions on Mechatronics, 23(6), pp. 2909–2919. 

21. Fliess, M., Join, C., 2012, An alternative to proportional‐integral and proportional‐integral‐derivative 
regulators: Intelligent proportional‐derivative regulators, International Journal of Robust and Nonlinear 
Control, 32(18), pp. 9512–9524. 

22. Join, C., Jovellar, D. B., Delaleau, E., Fliess, M., 2024, Detection and suppression of epileptiform seizures 
via model-free control and derivatives in a noisy environment, Proc. IEEE 12th International Conference 
on Systems and Control, Batna, Algeria, pp. 1-6. 

23. Guilloteau, Q., Robu, B., Join, C., Fliess, M., Rutten, E., Richard, O., 2022, Model-free control for resource 
harvesting in computing grids, Proc. 2022 6th IEEE Conference on Control Technology and Applications, 
Trieste, Italy, pp. 1-7. 

24. Gedouin, P.-A., Delaleau, E., Bourgeot, J.-M., Join, C., Chirani, S. A., Calloch, S., 2011, Experimental 
comparison of classical PID and model-free control: Position control of a shape memory alloy active 
spring, Control Engineering Practice, 19(5), pp. 433-441. 

25. He, D., Wang, H., Tian, Y., Fliess, M., 2025, MIMO ultra-local model-based adaptive enhanced model-
free control using extremum-seeking for coupled mechatronic systems, ISA Transactions, 157, pp. 233-
247. 

26. Degorre, L., Delaleau, E., Join, C., Fliess, M., 2025, A novel approach to guidance and control of USVs 
combining flatness-based and model-free controllers, Proc. 9th IFAC Symposium on System Structure and 
Control (SSSC 2025), Gif-sur-Yvette, France, pp. 1-6. 

27. Precup, R.-E., Roman, R.-C., Teban, T.-A., Albu, A., Petriu, E. M., Pozna, C., 2020, Model-free control 
of finger dynamics in prosthetic hand myoelectric-based control systems, Studies in Informatics and 
Control, 29(4), pp. 399-410. 



14 R.-C. ROMAN, R.-E. PRECUP, E. M. PETRIU 

28. Roman, R.-C., Precup, R.-E., David, R.-C., 2018, Second order intelligent proportional-integral fuzzy 
control of twin rotor aerodynamic systems, Procedia Computer Science, 139, pp. 372-380. 

29. Sekine, M., Tsuruhara, S., ITO, K., 2025, Optimized design of a pseudo-linearization-based model 
predictive controller: Direct data-driven approach, IET Control Theory & Applications, 19(1), pp. 1-17. 

30. Li, Z., Hiraoka, K., Yamamoto, T., 2024, Design and experimental evaluation of a data-driven PID 
controller using cerebellar memory, IET Control Theory & Applications, 18(11), pp. 1371-1382. 

31. Yonezawa, A., Yonezawa, H., Yahagi, D., Kajiwara, I., 2024, Practical one-shot data-driven design of 
fractional-order PID controller: Fictitious reference signal approach, ISA Transactions, 152, pp. 208-
216. 

32. Kaneko, O., Soma, S., Fujii, T., 2005, A Fictitious Reference Iterative Tuning (FRIT) in the two-degree of 
freedom control scheme and its application to closed loop system identification, IFAC Proceedings 
Volumes, 38(1), pp. 626-631. 

33. Ikeda, H., Goto, K., Zhang, F., Kayashima, K., Hanamoto, T., 2018, Application of fictitious reference 
iterative tuning to controller design for various machines, Proc. 2018 International Power Electronics 
Conference, Niigata, Japan, pp. 1315-1321. 

34. Roman, R.-C., Precup, R.-E., Petriu, E. M., Muntyan, M., Hedrea, E.-L., 2023, Fictitious reference 
iterative tuning of intelligent proportional-integral controllers for tower crane systems, Proc. 2023 31st 
Mediterranean Conference on Control and Automation, Limassol, Cyprus, pp. 740-746. 

35. Roman, R.-C., Precup, R.-E., Hedrea, E.-L., 2023, Intelligent proportional controller tuned by virtual 
reference feedback tuning and fictitious reference iterative tuning, Procedia Computer Science 221, pp. 
86-93. 

36. Inteco, 2012, 3D Crane, User’s Manual, Inteco Ltd., Krakow, Poland. 
37. Kilic, U., Sarac Essiz, E., Kaya Keles, M., 2023, Binary anarchic society optimization for feature selection, 

Romanian Journal of Information Science and Technology, 26(3-4), pp. 351-364. 
38. Lu, Z.-L., Lok, U. H., 2024, Dimension-reduced modeling for local volatility surface via unsupervised 

learning, Romanian Journal of Information Science and Technology, 27(3-4), pp. 255-266. 
39. Pho, K.-H., 2022, Improvements of the Newton-Raphson method, Journal of Computational and Applied 

Mathematics, 408, paper 114106. 
40. Roman, R.-C., Precup, R.-E., Stebel, K., Madonski, R., 2024, Supplementary material of the paper Raul-

Cristian Roman, Radu-Emil Precup, Krzysztof Stebel, Rafal Madonski, Active Disturbance Rejection 
Control Tuned by Fictitious Reference Iterative Tuning for Tower Crane Systems, the 23rd European 
Control Conference (ECC), [Online], Available: https://uptro29158-
my.sharepoint.com/:f:/g/personal/raul-
cristian_roman_upt_ro/EljHGKk30Z1Alwd0r0rNNp8BTMpi742jM4v8s9MPgdBz2g?e=9rOXjd (last 
access: 31.10.2024). 

41. Fliess, M., Join, C., 2014, Stability margins and model-free control: A first look, Proc. 2014 European 
Control Conference, Strasbourg, France, pp. 454-459. 

42. Roman, R.-C., Precup, R.-E., Petriu, E. M., Supplementary appendix of the paper Active Disturbance 
Rejection Control and Model-Free Control Tuned via Fictitious Reference Iterative Tuning, [Online]. 
Available: https://uptro29158-my.sharepoint.com/:f:/g/personal/raul-
cristian_roman_upt_ro/EidruGdukWlGtba5YbQ0IqgBqAno8M91gUXs8t1FrqW8lA?e=ygQXw4 (last 
access 31.05.2025). 

43. Ćojbašić, Ž. M., Nikolić, V. D., Ćirić, I. T., Ćojbašić, L. R., 2011, Computationally intelligent modeling 
and control of fluidized bed combustion process, Thermal Science, 15(2), pp. 321-338. 

44. Borlea, A.-I., Precup, R.-E., Roman, R.-C., 2023, Discrete-time model-based sliding mode controllers for 
tower crane systems, Facta Universitatis-Series Mechanical Engineering, 21(1), pp. 1-20. 

45. Guvenc, M. A., Bilgic, H. H., Mistikoglu S., 2023, Identification of chatter vibrations and active vibration 
control by using the sliding mode controller on dry turning of titanium alloy (TI6AL4V), Facta 
Universitatis-Series Mechanical Engineering, 21(2), pp. 307-322. 

https://uptro29158-my.sharepoint.com/:f:/g/personal/raul-cristian_roman_upt_ro/EljHGKk30Z1Alwd0r0rNNp8BTMpi742jM4v8s9MPgdBz2g?e=9rOXjd
https://uptro29158-my.sharepoint.com/:f:/g/personal/raul-cristian_roman_upt_ro/EljHGKk30Z1Alwd0r0rNNp8BTMpi742jM4v8s9MPgdBz2g?e=9rOXjd
https://uptro29158-my.sharepoint.com/:f:/g/personal/raul-cristian_roman_upt_ro/EljHGKk30Z1Alwd0r0rNNp8BTMpi742jM4v8s9MPgdBz2g?e=9rOXjd
https://uptro29158-my.sharepoint.com/:f:/g/personal/raul-cristian_roman_upt_ro/EidruGdukWlGtba5YbQ0IqgBqAno8M91gUXs8t1FrqW8lA?e=ygQXw4
https://uptro29158-my.sharepoint.com/:f:/g/personal/raul-cristian_roman_upt_ro/EidruGdukWlGtba5YbQ0IqgBqAno8M91gUXs8t1FrqW8lA?e=ygQXw4

