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Abstract. Tractors play a critical role in the operational processes of green ports. The 

primary objective of this study is to develop a decision support system (DSS) for the 

selection of tractors suitable for green port operations. In this context, a hybrid multi-

criteria decision-making (MCDM) approach based on fuzzy logic—namely the FF-

Hamacher-CIMAS-LODECI-RADAR (Fermatean Fuzzy–Hamacher-Criteria Importance 

Assessment-Logarithmic Decomposition of Criteria Importance- Ranking based on the 

Distances and Range) hybrid method is proposed. This hybrid model enables the 

simultaneous integration of both quantitative and qualitative criteria into the decision-

making process. Expert weight vectors are determined using Fermatean fuzzy sets, while 

the overall criteria weight vector is constructed through a combination of subjective (FF-

Hamacher-CIMAS) and objective (FF-Hamacher-LODECI) weighting techniques. The 

performance ranking of tractor alternatives is obtained using the RADAR method. The 

proposed methodology was applied to a tractor selection problem for a green port in 

Türkiye. The decision model was established based on the evaluations of ten experts, 

involving eight criteria (two quantitative and six qualitative) and five alternative tractors. 

According to the results of the case study, Towing Capacity emerged as the most 

influential criterion. Among the alternatives, the MAFI T 230e tractor demonstrated the 

highest performance. The robustness of the proposed hybrid method was supported 

through three sensitivity analysis scenarios. Additionally, comparative analyses revealed 

a high level of consistency in the results, confirming the reliability of the method. Based 

on the findings, practical implications and recommendations were provided to support 

decision-making processes in green port operations. 
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1. INTRODUCTION 

The increasing volume of global trade has placed ports at the center of not only 

economic growth but also environmental sustainability. The increasing global trade volume 

also leads to increased greenhouse gas (GHG) and particulate matter (PM) emissions from 

logistics equipment [1]. Today, ports are not only cargo handling areas; they have also 

become one of the important sources of GHG emissions with their energy-intensive, fossil 

fuel-based equipment [2]. Increasing efficiency and reducing environmental impacts in 

port operations have become both political and economic imperative. Sustainability goals 

in port operations necessitate the transformation of not only ships but also in-port 

equipment such as cranes, carrier vehicles and terminal tractors [3]. In this context, terminal 

tractors play a critical role in the transportation of containers within the terminal and 

account for a significant portion of port-related emissions [4]. 

In large commercial ports such as the San Pedro Bay Port Complex in California, 

terminal tractors contribute to 28% and 33% of total oxides of nitrogen (NOₓ) and PM 

emissions, respectively [5]. As in the case of Ambarlı Port, diesel-fueled terminal tractors 

produce the highest carbon emissions among in-port equipment [6]. This high contribution 

rate has placed the conversion of terminal tractors at the center of ports’ carbon emission 

reduction strategies. Regulatory policies and technological advances developed in recent 

years encourage the replacement of diesel engines with low or zero-emission alternative 

power systems [7-9]. 

Traditional diesel engine tractors attract attention with their high fuel consumption and 

emission production due to the characteristics of in-port operations such as low speed, 

frequent stop/start and high idle rate [1]. Real field tests have shown that diesel terminal 

tractors emit 2 to 3 times more NOₓ and PM2.5 than their emission certification levels [10]. 

The evaluation of alternative energy systems has added a new dimension to the selection 

of terminal tractors. Electric and hydrogen fuel cell tractors promise zero emissions and are 

also promising in terms of energy efficiency. Studies conducted in recent years reveal that 

electric versions of terminal tractors offer advantages in terms of both fuel consumption and 

operating costs [11]. Comparative total cost of ownership analyses show that hydrogen fuel 

cell tractors will be cost-competitive with their diesel counterparts [1]. Thanks to adaptive 

energy management systems designed specifically for variable load profiles, these vehicles 

provide efficient energy consumption and operational flexibility [12]. 

The technological transition process affects not only environmental but also operational 

decisions. Studies conducted in port terminals have shown that optimal planning and task 

assignment strategies of terminal tractors can significantly reduce loading/unloading times 

and empty trip rates [13]. In addition, evaluation of various transfer scenarios with different 

tractor models (e.g. semi-trailer or full trailer) once again emphasizes the importance of 

flexibility and engineering standards in equipment selection [14]. 

The primary motivation of this study is to develop a decision support system (DSS) for 

the selection of tractors used in green ports. The main objective is to address the tractor 

selection problem through a multi-criteria decision-making (MCDM) approach by proposing a 

hybrid method as a DSS. To handle complex and sensitive computations, the use of Fermatean 

Fuzzy (FF) sets [15], which are based on fuzzy logic, is proposed. FF sets not only offer 

enhanced capability in managing high levels of uncertainty but also allow for more flexible 

expression of expert judgments. 



 Development of a Fuzzy-Based Decision Support System for Sustainable Tractor Selection... 581 

 

Moreover, to strengthen the operations and aggregation processes of FF sets, Hamacher 

t-norm and t-conorm-based FF sets have been utilized as Bonferroni aggregation [16]. 

Specifically, the FFHWA (Fermatean fuzzy Hamacher weighted average) aggregation 

operator [17] was employed for aggregating expert evaluations. The proposed hybrid DSS 

is the FF-Hamacher-CIMAS-LODECI-RADAR (FF- Hamacher-Criteria Importance 

Assessment-Logarithmic Decomposition of Criteria Importance) method. In this 

framework, FF-Hamacher-CIMAS is adopted as the subjective criteria weighting method, 

where the CIMAS technique [18] is adapted to the FF-Hamacher environment for the first 

time. For objective criteria weighing, the FF-Hamacher-LODECI method was developed 

by extending the LODECI method [19] using FF-Hamacher sets. Both weighting methods 

incorporate FF-Hamacher sets for the first time in literature. 

The FF-Hamacher-CIMAS method was chosen due to its ability to provide consistency-

based weighting calculations, whereas the FF-Hamacher-LODECI method offers precise 

weight computations based on logarithmic decomposition. For ranking the tractor 

alternatives, the RADAR method [20] was utilized. The proposed hybrid model enables 

the simultaneous evaluation of both quantitative and qualitative criteria, and the ranking 

process is performed using the RADAR approach [21]. The applicability, robustness, and 

consistency of the proposed hybrid method were validated through a real-world case study 

conducted at a green port in Türkiye. 

This study presents a novel DSS for selecting the most suitable tractor for green port 

operations by integrating fuzzy logic and MCDM techniques. A new hybrid methodology 

(FF-Hamacher-CIMAS-LODECI-RADAR) is proposed, combining subjective and 

objective weighting methods with an advanced ranking model. Subjective weights are 

derived using FF-Hamacher-CIMAS to reflect expert judgments, while objective weights 

are calculated through FF-Hamacher-LODECI based on decision matrix data. The model 

evaluates both quantitative (Towing Capacity, Turning Radius) and qualitative (Energy 

Efficiency, Emission Level, Maintenance Cost, Total Cost of Ownership, Ease of Use, Port 

Infrastructure Suitability) criteria simultaneously. Applied to a real-world case in Türkiye 

involving five tractor alternatives and ten experts, the MAFI T 230e emerged as the top 

choice, with Towing Capacity as the most critical criterion. The methodology’s robustness 

was confirmed through sensitivity analysis and comparison with 15 established MCDM 

methods, showing high consistency. This research contributes both methodologically and 

practically to sustainable decision-making in green port logistics and beyond. 

This paper is structured into six sections. Section 2 presents the literature review. 

Section 3 outlines the methodology adopted in the study. Section 4 details the case study 

conducted to demonstrate the applicability of the proposed approach. Section 5 discusses 

the results and their practical implications. Finally, Section 6 provides the conclusions 

drawn from the study. 

2. LITERATURE REVIEW 

2.1. Green Ports: A Paradigm for Sustainable Port Management 

Green ports represent a strategic approach aimed at mitigating environmental impacts 

while enhancing energy efficiency and sustainable management practices within port 

operations. Traditional port activities often contribute significantly to environmental 

externalities, including elevated GHG emissions, and air and water pollution. Consequently, 
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there is an imperative for ports to adopt sustainable practices to address these challenges 

effectively. 

The operational components of ports, such as terminal equipment, ships, and land 

transportation systems, are primary sources of carbon emissions and pollutants, thereby 

impacting air quality. Various global ports have undertaken concerted efforts to implement 

emission reduction measures, with outcomes influenced by factors such as population 

density, business models, and specialization in container transportation [22]. 

Effective collaboration between public authorities and port administrations is pivotal in 

implementing policy instruments aimed at reducing GHG emissions. Research underscores 

the role of environmental incentive systems, automation, and digitalization in facilitating 

the transition towards green port operations, particularly highlighted in Asian ports [23]. 

Renewable energy technologies, such as solar energy, wind turbines, fuel cells, and 

ocean energy systems, emerge as promising solutions to diminish fossil fuel dependency 

in ports. Studies confirm the technical and economic viability of these technologies in 

significantly reducing carbon emissions and enhancing sustainability [24]. 

Modeling energy consumption and enhancing the efficiency of port facilities are critical 

components of operational strategies. It has been demonstrated that optimizing port 

operations can lead to substantial reductions in energy consumption, with potential savings 

estimated at up to 34% [25]. Integrating green port initiatives with logistics efficiency 

further underscores the potential for reducing carbon emissions and operational costs, 

exemplified by initiatives such as transitioning hazardous material transportation vehicles 

to electric systems [26]. 

The advancement of digital technologies plays a transformative role in shaping green 

ports. Innovations such as Internet of Things (IoT), artificial intelligence (AI), remote 

monitoring systems, and autonomous technologies are instrumental in optimizing energy 

consumption, emission control, and logistics management within port environments [27]. 

In conclusion, the evolution towards green ports necessitates a holistic approach 

encompassing policy interventions, technological advancements, and collaborative 

governance to achieve sustainable development goals. By integrating these strategies, ports 

worldwide can effectively mitigate environmental impacts while fostering economic 

growth and operational resilience in a rapidly evolving global context. 

2.2. Green Ports: A Paradigm for Sustainable Port Management 

The vision of green ports fundamentally seeks to minimize the environmental impacts 

associated with port operations, enhance energy efficiency, and reduce carbon footprints. 

Within this framework, cargo handling equipment (CHE) represents one of the most 

significant sources of port-related emissions. Key machinery, including terminal tractors, 

rubber-tired gantry (RTG) cranes, straddle carriers, forklifts, and reach stackers, are 

indispensable for maintaining port operational efficiency, yet they concurrently contribute 

substantially to greenhouse gas emissions and overall energy consumption. 

Terminal tractors have been identified as primary contributors to emissions within port 

environments. Empirical data from Chinese ports reveal that although terminal tractors 

comprise just over one-third of all equipment in operation, they account for nearly half of 

the total fuel consumption among CHE [28]. A parallel trend has been observed in Turkish 

ports, where terminal tractors constitute many carbon emissions within CHE fleets [6]. 
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These findings highlight the critical need to reconsider the technological design and 

environmental impact of such equipment. 

The energy consumption profile of CHE is influenced by multiple factors, including 

fuel type, engine specifications, and operational duty cycles. Notably, equipment with 

larger engine capacities (though fewer in number) may disproportionately contribute to 

emissions due to prolonged operational hours or intensive workload demands [28]. This 

recognition has catalyzed accelerated efforts toward the electrification of port equipment, 

particularly in regions with stringent policy frameworks or explicit carbon reduction 

targets. 

The transition to electric or hybrid CHE alternatives presents several challenges. 

Research conducted in California ports identifies key barriers such as high upfront 

investment costs, limitations in grid capacity, and the need for workforce adaptation [29]. 

Nonetheless, with strategic long-term planning, electrification initiatives have 

demonstrated considerable potential not only to reduce emissions but also to modernize 

port infrastructure in a manner that promotes inclusivity and resilience [30]. 

Beyond technological substitution, optimizing the deployment and scheduling of CHE 

is critical for reducing emissions and improving operational efficiency. Coordinated 

scheduling among terminal tractors, cranes, and yard vehicles can significantly reduce idle 

times, lower energy consumption, and enhance overall system productivity. Emerging 

optimization frameworks have demonstrated effectiveness in integrating various types of 

equipment within unified planning routines, thereby reducing empty trips and operational 

delays [31-32]. 

The selection of cargo handling equipment is a strategic element within sustainable port 

management. MCDM methodologies, such as the AHP, PROMETHEE, and TOPSIS, are 

extensively employed to evaluate alternative equipment based on a comprehensive set of 

criteria. These criteria typically encompass environmental factors (e.g., CO₂, NOx, particulate 

matter emissions), economic considerations (investment and operational costs), technical 

specifications (power output, efficiency), and operational characteristics (flexibility, cycle 

time) [33]. 

In summary, the progression toward green ports necessitates a dual focus on mitigating 

the environmental footprint of cargo handling equipment and enhancing their operational 

efficiency. Key strategies include the electrification of high-emission equipment 

(particularly terminal tractors) the integration of these assets within optimized scheduling 

models, and the adoption of life-cycle management approaches. Collectively, these 

measures constitute essential components for achieving long-term sustainability and 

environmental stewardship in port operations. 

3. METHODOLOGY 

3.1. Hamacher T-Norm and T-Conorm based Aggregation Operator 

Definition 1. The FF set (ℱ̃) defined as ℱ̃ = {〈𝑓, 𝑥ℱ̃(𝑓), 𝑦ℱ̃(𝑓) | 𝑓 ∈ 𝐹〉} is a fuzzy 

logic-based set using functions defined by the universe 𝐹 and element 𝑓. The FF numbers 

defined in this set are defined as follows: 𝑥ℱ̃(𝑓): the degree of membership, 𝑦ℱ̃(𝑓): the 

degree of non-membership, and (𝑧ℱ̃(𝑓)): the indeterminacy degree. The FF numbers fulfill 
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the following conditions: 0 ≤ (𝑥ℱ̃(𝑓))
3
+ (𝑦ℱ̃(𝑓))

3
≤ 1 and 𝑧ℱ̃(𝑓) =

√1 − (𝑥ℱ̃(𝑓))
3
− (𝑦ℱ̃(𝑓))

33

 [15]. 

Definition 2. The accuracy function is calculated when the score functions used to 

convert FF sets into numerical values are equal. Consider two FF sets as ℱ̃1 =

{〈𝑓, 𝑥ℱ̃1(𝑓), 𝑦ℱ̃1(𝑓) | 𝑓 ∈ 𝐹〉} and ℱ̃2 = {〈𝑓, 𝑥ℱ̃2(𝑓), 𝑦ℱ̃2(𝑓) | 𝑓 ∈ 𝐹〉}. Score function 

(𝑆𝑐(ℱ̃1)) calculation is shown in Eq. (1) and accuracy function (𝐴𝑐(ℱ̃1)) calculation is 

shown in Eq. (2) [15]: 

 𝑆𝑐(ℱ̃1) =
1

2
(1 + (𝑥ℱ̃1(𝑓))

3

− (𝑦ℱ̃1(𝑓))
3

) (1) 

 𝐴𝑐(ℱ̃1) = (𝑥ℱ̃1(𝑓))
3

+ (𝑦ℱ̃1(𝑓))
3

 (2) 

Definition 3. The Hamacher t-norm and t-conorm are computed by applying Eq. (3) 

and Eq. (4) respectively [17]: 

 𝑇 − 𝑛𝑜𝑟𝑚 (𝑎, 𝑏) =
𝑎𝑏

𝜗+(1−𝜗)(𝑎+𝑏−𝑎𝑏)
 (3) 

 𝑇 − 𝑐𝑜𝑛𝑜𝑟𝑚 (𝑎, 𝑏) =
𝑎+𝑏−𝑎𝑏−(1−𝜗)𝑎𝑏

1−(1−𝜗)𝑎𝑏
 (4) 

herein, 𝑎, 𝑏 ∈ [0,1] and 𝜗 > 0. 

Definition 4. For a group of FF sets defined as ℱ̃𝑟 = {〈𝑓, 𝑥ℱ̃𝑟(𝑓), 𝑦ℱ̃𝑟(𝑓) | 𝑓 ∈ 𝐹〉}, the 

FFHWA aggregation operator is computed by applying Eq. (5) [17]: 

𝐹𝐹𝐻𝑊𝐴 =⊕𝑟=1
Ɍ 𝜏𝑟ℱ̃𝑟 =

(

 
 
 
 
 √

∏ (1+(𝜗−1)(𝑥ℱ̃𝑟
(𝑓))

3
)

𝜏𝑟
Ɍ
𝑟=1 −∏ (1−(𝑥ℱ̃𝑟

(𝑓))
3
)

𝜏𝑟
Ɍ
𝑟=1

∏ (1+(𝜗−1)(𝑥ℱ̃𝑟
(𝑓))

3
)

𝜏𝑟
Ɍ
𝑟=1 +(𝜗−1)∏ (1−(𝑥ℱ̃𝑟

(𝑓))
3
)

𝜏𝑟
Ɍ
𝑟=1

3

,

√𝜗
3

∏ (𝑦ℱ̃𝑟
(𝑓))

𝜏𝑟
Ɍ
𝑟=1

√∏ (1+(𝜗−1)(1−(𝑦ℱ̃𝑟
(𝑓))

3
))

𝜏𝑟
Ɍ
𝑟=1 +(𝜗−1)∏ (𝑦ℱ̃𝑟

(𝑓))
3𝜏𝑟

Ɍ
𝑟=1

3

)

 
 
 
 
 

  (5) 

3.2. The Novel FF-Hamacher-CIMAS- LODECI-RADAR Hybrid Method 

In this study, the elements of the decision model are defined as experts (𝛦 =

{𝜖1, 𝜖2, … , 𝜖ӗ, … , 𝜖Ӗ} (ӗ = 1,2, … , Ӗ)), quantitative criteria (𝑁 = {𝜂1, 𝜂2, … , 𝜂ň, … , 𝜂Ň} (ň =

1,2, … , Ň)), qualitative criteria (𝐿 = {ȴ1, ȴ2, … , ȴĺ, … , ȴĹ} (ĺ = 1,2, … , Ĺ)), overall criteria 

(𝑇 = {ȶ1, ȶ2, … , ȶţ, … , ȶŢ} (ţ = 1,2, … , Ţ); (Ň + Ĺ = Ţ)), and alternatives (𝛢 =

{𝑎1, 𝑎2, … , 𝑎ą, … , 𝑎Ą} (ą = 1,2, … , Ą)). 

The hybrid method consists of four stages: Stage 1: Subjective criteria weights are 

determined based on the experts' assessment of all criteria. Expert weights are also 

determined. Stage 2: Objective criterion weights are determined by experts evaluating only 

the alternatives according to qualitative criteria and are combined with other quantitative 

criteria. Stage 3: The criteria obtained because of subjective and objective criteria weighing 
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methods are combined. Stage 4: Based on the final criteria weights, Terminal Tractor for 

Sustainable Port Management performance levels are calculated and ranked. The diagram 

of the FF-Hamacher-CIMAS-LODECI-RADAR hybrid method is presented in Fig. 1. 

 

Fig. 1 The diagram of the FF-Hamacher-CIMAS-LODECI-RADAR hybrid method 
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The application steps of the FF-Hamacher-CIMAS-LODECI-RADAR hybrid method 

are summarized as follows: 

Stage 1: Subjective weighting of criteria using the FF-CIMAS method [18]: 

Step 1-1: It is important to calculate expert weights according to the levels of expertise, 

which play an important role in decision-making processes, and to integrate these weights 

into the decision-making process. In this step, the expertise levels presented in Table 1 are 

determined and the expertise level matrix (𝛣̃ = [𝛣̃ӗ]Ӗ) is created accordingly. 

Table 1 Linguistic expressions for expertise levels [34] 

Linguistic expressions FFNs 

Very-poor (VP) (0.21, 0.70) 

Poor (P) (0.36, 0.41) 

Medium (M) (0.42, 0.52) 

Good (G) (0.73, 0.10) 

Very-good (VG) (0.82, 0.50) 

 

Step 1-2: The linguistic expressions are transformed into FFNS and after obtaining the 

score function with Eq. (6), experts’ weights are calculated with Eq. (7): 

 𝛣̃ӗ = 𝑆𝑐(𝛣̃ӗ) =
1

2
(1 + (𝑥𝛣̃ӗ(𝑓))

3

− (𝑦𝛣̃ӗ(𝑓))
3

) ; 𝑆𝑐(𝛣̃ӗ) ∈ [0,1]  (6) 

 𝛹ӗ =
𝛣̃ӗ

∑ 𝛣̃ӗ
Ӗ
ӗ=1

; (ӗ = 1,2, … , Ӗ )  (7) 

Step 1-3: To derive the criteria evaluation matrix, experts (𝜖ӗ) evaluate each overall 

criterion (ȶţ) using the linguistic expressions as presented in Table 2. Then, these linguistic 

expressions are transformed into FF numbers, and the criteria evaluation matrix (𝛧̃ = [𝛧̃ţӗ]ŢӖ
) 

is created. 

Table 2 Linguistic expressions for evaluating criteria/alternatives [34] 

Linguistic expressions FFNs 

Exceptionally low (ExL) (0.30, 0.50) 

Extremely low (EL) (0.35, 0.43) 

Very low (VL) (0.36, 0.56) 

Low (L) (0.40, 0.73) 

Below average (BA) (0.42, 0.30) 

Average (A) (0.47, 0.21) 

Above average (AA) (0.50, 0.62) 

High (H) (0.55, 0.38) 

Very high (VH) (0.60, 0.18) 

Extremely high (EH) (0.72, 0.50) 

Exceptionally high (ExH) (0.83, 0.42) 

Step 1-4: To derive the weighted criteria evaluation matrix (𝛨̃ = [𝛨ţӗ]ŢӖ
), the expertise 

level matrix and the criteria evaluation matrix are aggregated via FF-Hamacher product 

operation (Eq. (8)). 



 Development of a Fuzzy-Based Decision Support System for Sustainable Tractor Selection... 587 

 

 𝛨ţӗ = 𝛣̃ӗ⨂𝛧̃ţӗ =

{
 
 
 
 
 

 
 
 
 
 

(

 
 
 
 
 
 
 
 

(

  
 𝑥𝛣̃ӗ

(𝑓)𝑥𝛧̃ţӗ
(𝑓)

√𝜗+(1−𝜗)((𝑥𝛣̃ӗ
(𝑓))

3

+(𝑥𝛧̃ţӗ
(𝑓))

3

−((𝑥𝛣̃ӗ
(𝑓))

3

(𝑥𝛧̃ţӗ
(𝑓))

3

))
3

)

  
 
,

√
(𝑦𝛣̃ӗ

(𝑓))

3

+(𝑦𝛧̃ţӗ
(𝑓))

3

−((𝑦𝛣̃ӗ
(𝑓))

3

(𝑦𝛧̃ţӗ
(𝑓))

3

)−(1−𝜗)((𝑦𝛣̃ӗ
(𝑓))

3

(𝑦𝛧̃ţӗ
(𝑓))

3

)

1−(1−𝜗)((𝑦𝛣̃ӗ
(𝑓))

3

(𝑦𝛧̃ţӗ
(𝑓))

3

)

3

)

 
 
 
 
 
 
 
 

  |  𝑓 ∈ 𝐹

}
 
 
 
 
 

 
 
 
 
 

  (8) 

Step 1-5: The score function (𝑆𝑐(𝛨̃ţӗ)) used to convert the weighted criteria evaluation 

matrix into crisp values (Eq. (9)) yields the crisp weighted criteria evaluation matrix 

(𝛨 = [𝛨ţӗ]ŢӖ
). 

 𝛨ţӗ = 𝑆𝑐(𝛨̃ţӗ) =
1

2
(1 + (𝑥𝛨̃ţӗ(𝑓))

3

− (𝑦𝛨̃ţӗ(𝑓))
3

) ; (𝑆𝑐(𝛨ţӗ) ∈ [0,1])  (9) 

Step 1-6: The normalized criteria evaluation matrix (𝛬 = [𝛬ţӗ]ŢӖ
) is computed 

applying Eq. (10). 

 𝛬ţӗ =
𝛨ţӗ

∑ 𝛨ţӗ
Ţ
ţ=1

; (ţ = 1,… , Ţ; ӗ = 1,2, … , Ӗ )  (10) 

Step 1-7: Eq. (11) is used to determine the weighted criteria evaluation 

matrix(𝛲 = [𝛲ţӗ]ŢӖ
).  

 𝛲ţӗ = (𝛬ţӗ ∗ 𝛹ӗ); (ţ = 1,… , Ţ; ӗ = 1,2, … , Ӗ )  (11) 

Step 1-8: The maximum value matrix (𝛲ţ
𝑚𝑎𝑥 = [𝛲ţ

𝑚𝑎𝑥]
Ţ
) is calculated by Eq. (12) 

and the minimum value matrix (𝛲ţ
𝑚𝑖𝑛 = [𝛲ţ

𝑚𝑖𝑛]
Ţ
) is calculated by Eq. (13). 

 𝛲ţ
𝑚𝑎𝑥 = 𝑚𝑎𝑥

1≤ţ≤Ţ
𝛲ţ ; (ţ = 1,… , Ţ )  (12) 

 𝛲ţ
𝑚𝑖𝑛 = 𝑚𝑖𝑛

1≤ţ≤Ţ
𝛲ţ ; (ţ = 1,… , Ţ )  (13) 

Step 1-9: The matrix representing the differences between minimum and maximum 

values (𝛭 = [𝛭ţ]Ţ
) is computed applying Eq. (14). 

 𝛭ţ = (𝛲ţ
𝑚𝑎𝑥 − 𝛲ţ

𝑚𝑖𝑛); (ţ = 1,… , Ţ)   (14) 

Step 1-10: The criteria weight matrix (ɰ = [ɰţ]Ţ
) is computed applying Eq. (15). 
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 ɰţ =
𝛭ţ

∑ 𝛭ţ
Ţ
ţ=1

; (ţ = 1,… , Ţ)   (15) 

herein, ɰţ = (ɰ1, ɰ2, … ,ɰŢ), ɰţ  ∈  [0,1], and ∑ ɰţ 
Ţ
ţ=1 = 1. 

If the (𝑅𝐼)values fall below 0.1, the criteria’s weights are consistent, and the next step 

is taken. 

Stage 2: Objective weighting of criteria using the FF-LODECI method [18] 

Step 2-1: Each alternative (𝑎ą) is evaluated by each expert (ϵӗ) against attribute criteria 

only (ȴĺ) using the linguistic expressions defined in Table 2. Following this evaluation, the 

LVs are transformed into FF sets as detailed in Table 2. Thus, an initial decision matrix 

(𝕃̃(𝜖ӗ) = [𝕃̃(𝜖ӗ)ąĺ]Ą𝑥Ĺ
) where 𝕃̃(𝜖ӗ)ąĺ = (𝑥𝕃̃(𝜖ӗ)ąĺ

(𝑓), 𝑦
𝕃̃(𝜖ӗ)ąĺ

(𝑓)) (ą = 1,2, … , Ą;  ĺ =

1,2, … , Ĺ;  ӗ = 1,2, … , Ӗ) is created.  

Step 2-2: The evaluations made by each expert are combined using the FFHWA 

aggregation operator shown in Eq. (16). Thus, the aggregated decision matrix 

(𝕃 = [𝕃ąĺ]Ą𝑥Ĺ
) is composed. 

 𝕃 = 𝛣̃ӗ⨂𝛧̃ţӗ =

{
 
 
 
 
 

 
 
 
 
 

(

 
 
 
 
 
 
 
 

(

  
 𝑥𝛣̃ӗ

(𝑓)𝑥𝛧̃ţӗ
(𝑓)

√𝜗+(1−𝜗)((𝑥𝛣̃ӗ
(𝑓))

3

+(𝑥𝛧̃ţӗ
(𝑓))

3

−((𝑥𝛣̃ӗ
(𝑓))

3

(𝑥𝛧̃ţӗ
(𝑓))

3

))
3

)

  
 
,

√
(𝑦𝛣̃ӗ

(𝑓))

3

+(𝑦𝛧̃ţӗ
(𝑓))

3

−((𝑦𝛣̃ӗ
(𝑓))

3

(𝑦𝛧̃ţӗ
(𝑓))

3

)−(1−𝜗)((𝑦𝛣̃ӗ
(𝑓))

3

(𝑦𝛧̃ţӗ
(𝑓))

3

)

1−(1−𝜗)((𝑦𝛣̃ӗ
(𝑓))

3

(𝑦𝛧̃ţӗ
(𝑓))

3

)

3

)

 
 
 
 
 
 
 
 

  |  𝑓 ∈ 𝐹

}
 
 
 
 
 

 
 
 
 
 

  (16) 

herein, 𝜗 > 0. 

Step 2-3: To convert the FF fuzzy sets into crisp values, the score functions (𝑆𝑐(𝕃ąĺ)) 

is computed using Eq. (17). Thus, the crisp aggregated decision matrix (𝑆𝑐(𝕃ąĺ) =

[𝕃ąĺ]Ą𝑥Ĺ
) is derived. 

 𝑆𝑐(𝕃ąĺ) =
1

2
(1 + (𝑥𝕃̃ąĺ

(𝑓))

3

− (𝑦𝕃̃ąĺ
(𝑓))

3

) ; (𝑆𝑐(𝐶ąţ) ∈ [0,1])  (17) 

Step 2-4: In order to create the initial decision matrix including the overall criteria 

(𝐶 = [𝐶ąţ]Ą𝑥Ţ
), it is necessary to include the initial decision matrix for both the qualitative 

criteria (𝕃 = [𝕃ąĺ]Ą𝑥Ĺ
) and the quantitative criteria (ℕ = [ℕąň]Ą𝑥Ň

). 

Step 2-5: Normalization is accomplished using Eq. (18) for the cost and benefit criteria. 

Thus, a normalized decision matrix (𝜅 = [𝜅ąţ]Ą𝑥Ţ
) is obtained. 
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 𝜅ąţ = {

𝐶ąţ

𝐶ţ
𝑚𝑎𝑥  𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

𝐶ţ
𝑚𝑖𝑛

𝐶ąţ
𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

} ; (ą = 1,… , Ą;  ţ = 1,… , Ţ)  (18) 

Step 2-6: The decomposition is accomplished using Eq. (19). Thus, the decomposed 

decision matrix (𝐷 = [𝐷ąţ]Ą𝑥Ţ
) is obtained. 

 𝐷ąţ = 𝑚𝑎𝑥{|𝜅ąţ − 𝜅𝜂ţ|} ; (ą. = 1,… , Ą;  ţ = 1,… , Ţ; 𝜂 = 1,2, …  Ň), (𝜂 ≠ ą)  (19)  

 Step 2-7: Logarithmic decomposition is accomplished using Eq. (20). Thus, a 

logarithmic decomposed decision matrix (𝛶 = [𝛶ţ]Ţ
) is obtained. 

 𝛶ţ = 𝑙𝑛 (1 +
∑ 𝐷ąţ
Ą
ą=1

Ą
) ; (ą = 1,… , Ą;  ţ = 1,… , Ţ)  (20) 

Step 2-8: Using Eq. (21), the matrix of the weights (ϣ = [ϣţ]Ţ
) of the criteria is 

obtained. 

 ϣţ =
𝛶ţ

∑ 𝛶ţ
Ţ
ţ=1

  (21) 

Stage 3: Final weighs of the criteria based on FF-CIMAS and FF-LODECI methods. 

Step 3-1: The criteria weights obtained by the subjective criteria weighting method FF- 

CIMAS method and the objective criteria weighting method FF- LODECI method are 

combined with Eq. (22) to obtain the final criteria weight matrix (𝓌 = [𝓌ţ]Ţ
). 

 𝓌ţ = 𝜆ɰţ + (1 − 𝜆)ϣţ; (ţ = 1,… , Ţ)  (22) 

Where 𝜆 is the parameter expressing the degree of importance of the subjective criterion 

weights and  𝜆 ∈ [0,1]. 
Stage 4: Ranking the alternatives based on FF-RADAR method [20-21] 

Step 4-1: The initial decision matrix (𝐶 = [𝐶ąţ]Ą𝑥Ţ
) is created as in Step 2-4. 

Step 4-2: Using Eq. (23), the maximum proportion matrix is obtained separately for the 

benefit and cost criteria. 

 𝑅𝐴𝐷𝐴𝑅 =

{
 
 
 

 
 
 
𝛼ąţ =

𝑚𝑎𝑥
ą

𝐶ąţ

𝐶ąţ
𝑚𝑎𝑥
ą

𝐶ąţ

𝐶ąţ
+

𝐶ąţ

𝑚𝑖𝑛
ą

𝐶ąţ

 , 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

𝛼ąţ =

𝐶ąţ

𝑚𝑖𝑛
ą

𝐶ąţ

𝑚𝑎𝑥
ą

𝐶ąţ

𝐶ąţ
+

𝐶ąţ

𝑚𝑖𝑛
ą

𝐶ąţ

 , 𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

  (23) 

Step 4-3: Using Eq. (24), the minimum proportion matrix is obtained separately for the 

benefit and cost criteria. 
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 𝑅𝐴𝐷𝐴𝑅 =

{
  
 

  
 
𝛽ĄŢ =

𝐶ĄŢ
𝑚𝑖𝑛
Ą

𝐶ĄŢ

𝑚𝑎𝑥
Ą

𝐶ĄŢ

𝐶ĄŢ
+

𝐶ĄŢ
𝑚𝑖𝑛
Ą

𝐶ĄŢ

 , 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

𝛽ĄŢ =

𝑚𝑎𝑥
Ą

𝐶ĄŢ

𝐶ĄŢ
𝑚𝑎𝑥
Ą

𝐶ĄŢ

𝐶ĄŢ
+

𝐶ĄŢ
𝑚𝑖𝑛
Ą

𝐶ĄŢ

 , 𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

  (24) 

Step 4-4: The values obtained in Step 4-2 and Step 4-3 are used in Eq. (25) to obtain 

the empty range matrix. 

 𝜃ąţ = |𝛼ąţ − 𝛽ąţ|  (25) 

Step 4-5: The relative relationship matrix is obtained using Eq. (26). 

 𝛪ąţ =
𝛼ąţ

𝛽ąţ+𝜃ąţ
  (26) 

Step 4-6: The relative relationship matrix and the criteria weights are multiplied as in 

Eq. (27) to obtain the weighted relative relationship matrix. 

 𝛱ąţ = 𝛪ąţ ∗ 𝓌ţ  (27) 

Step 4-7: Eq. (28) is used to calculate the aggregated ranking index of the alternatives. 

The alternative with the highest value among the obtained values becomes the best 

alternative. 

 𝜓ą =
𝑚𝑖𝑛 (∑ 𝛱ąţ

Ţ
ţ=1 )

∑ 𝛱ąţ
Ţ
ţ=1

  (28) 

4. CASE STUDY 

This case study was conducted to support the selection of a tractor for a green port in 

Türkiye. A panel consisting of experts specializing in green port operations was established 

to guide the evaluation process. A total of eight criteria (two quantitative and six qualitative) 

were identified to assess the alternatives. Additionally, five alternative tractor models suitable 

for green port operations were selected. This section presents detailed information regarding 

the experts’ levels of expertise, descriptions of the evaluation criteria, and the specifications 

of the alternative tractors considered in the analysis. 

4.1. Decision Model 

4.1.1. Experts 

A panel of ten experts working in green port operations in Türkiye was formed for this 

study. These experts possess varying levels of experience and domain-specific expertise. 

The composition of the expert panel based on their expertise levels is presented in Table 3. 

Through face-to-face interviews conducted with the expert group, the tractor alternatives 

were evaluated in accordance with the established criteria. This collaborative assessment 
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ensured that both technical knowledge and practical experience were incorporated into the 

decision-making process. 

Table 3 The expert group for assessing the green maritime transport performance 

criteria 

Experts Expertise Level Professions 

𝜖1 Medium - M Specialists in Green Port Operations-1 

𝜖2 Good - G Specialists in Green Port Operations-2 

𝜖3 Good - G Specialists in Green Port Operations-3 

𝜖4 Very Good - VG Specialists in Green Port Operations-4 

𝜖5 Very Good - VG Specialists in Green Port Operations-5 

𝜖6 Medium - M Specialists in Green Port Operations-6 

𝜖7 Very Good - VG Specialists in Green Port Operations-7 

𝜖8 Very Good - VG Specialists in Green Port Operations-8 

𝜖9 Good - G Specialists in Green Port Operations-9 

𝜖10 Very Good - VG Specialists in Green Port Operations-10 

4.1.2. Criteria Definition 

In this study the definition of the criteria for the terminal tractor selection for green 

ports is based on several technical, economic, environmental and operational factors. The 

criteria are individually explained as follows: 

Towing Capacity (ton) (𝜂1 − ȶ1): It is referred to as the maximum horizontal pulling 

force that can be safely and effectively exerted by the tractor to pull handling equipment 

or connected trailers. In full trailer models commonly used in ports, the load is completely 

supported by the trailer itself, and the terminal tractor merely provides the pulling force 

necessary to counteract friction as well as rolling resistance [14]. Towing capacity is a 

crucial performance indicator for ensuring that tractors can maneuver efficiently in tight 

spaces, maintain safe speeds under load, and endure the demanding, continuous operation 

cycles typical of terminal environments [35]. Additionally, having an adequate towing 

capacity is essential to maintaining smooth traffic flow and achieving high operational 

efficiency within the terminal [36]. 

Turning Radius (m) (𝜂2 − ȶ2): It is an important measure of performance that defines 

the smallest circular path a tractor-trailer combination can negotiate and has a direct impact 

on maneuverability within the limited areas typical of ports and terminals. According to 

Ma et al. terminal tractor design prefers narrow working spaces, frequent steering, and 

complex road surfaces, all needing a smaller turning radius for effective operation [14]. 

Reducing the turn radius allows terminal tractors to better fit into operational requirements 

where available space is narrow, such as trailer alignment, yard stacking, or vessel loading 

operations. 

Energy Efficiency (ȴ1 − ȶ3): It is a term that defines the capability to save energy 

consumption while maintaining the optimum working performance. As Brzeziński et al. 

pointed out, energy efficiency at terminals is crucial since handling vehicles like tractors 

can significantly affect the terminal daily energy requirement [37]. In addition, Martínez-

Moya et al. demonstrate that yard tractors generate substantial amounts of CO₂ emissions 

and energy consumption in container terminals, underlining the need for more energy-

efficient models and operational practices [38]. In this context, transitioning from diesel-
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powered to electric or hybrid has been identified as a key strategy to enhance energy 

efficiency while supporting environmental goals. 

Emission Level (ȴ2 − ȶ4): It refers to the quantity and mixture of pollutants released 

into the environment during operation, playing a critical role in contributing to air quality 

around port terminals. Terminal tractors have been identified as a major port-associated 

emission source, particularly CO₂ and NOₓ, often accounting for over 25% of overall 

emissions at major terminals [4]. Emission rates vary depending on the fuel type: diesel 

tractors tend to have higher NOₓ, and PM emissions compared to liquefied natural gas 

(LNG) or renewable natural gas-powered tractors [5]. In addition, electrification of 

terminal tractors has been proposed as a feasible alternative to lower life-cycle emissions 

significantly, especially in regions aiming for net-zero port operations. improvement in 

emission control technologies and cleaner energy sources are critical pathways to achieving 

sustainable and low-emission port operations [38]. 

Maintenance Cost (ȴ3 − ȶ5): It refers to the total expenses incurred to ensure the 

continuous operational reliability, safety, and longevity of the terminal tractors, covering 

activities such as regular inspections, repairs, part replacements, and preventive maintenance. 

Maintenance cost is a significant part of total lifecycle expenses, especially when 

transitioning to electric terminal tractors, where although the upfront investment is high, the 

simplified mechanical systems can substantially reduce ongoing maintenance needs. 

Traditional terminal tractors driven by diesel engines, while more affordable to purchase 

initially, become more expensive in terms of maintenance costs because of such variables 

as engine deterioration, transmission overhaul, and greater component failure under port 

use [39]. Additionally, operational challenges such as tire damage, particularly in harsh 

terminal environments, contribute notably to the maintenance costs, necessitating 

systematic inspection and failure analysis programs. 

Total Cost of Ownership (TCO) (ȴ4 − ȶ6): It considers all the direct and indirect 

expenses of purchasing, operating, maintaining, energy consumption, and final disposal of 

the vehicle for its life cycle. Terminal tractor TCO analysis points out that while electric or 

fuel cell-based models cost more to buy than their diesel equivalents, they can reach the 

same cost after a few years due to the lower maintenance and fuel expenses [1]. According 

to Olivari et al., terminal tractor electrification is more economically viable when taking 

into consideration possible future advancements in battery technology and forecasted 

decreases in energy prices [11]. 

Ease of Use (ȴ5 − ȶ7): It refers to the degree to which operators can efficiently, 

comfortably, and safely operate the control systems and interfaces of the vehicle during 

various cargo handling activities. In port environments, where frequent maneuvering and 

coupling/decoupling of trailers is required, an ergonomic and user-friendly tractor design 

is crucial in order to prevent operator fatigue and reduce operational errors [14]. Recent 

studies on dashboard and control interface design for electric terminal tractors emphasize 

that user-centered design approaches, such as employing familiar graphical elements and 

minimizing unnecessary complexity, significantly improve driver comfort and operational 

smoothness during the transition from diesel to electric models. 

Port Infrastructure Suitability (ȴ6 − ȶ8): It refers to the compatibility between the 

vehicle's operational requirements with the port environment's design and technical 

requirements. As Ma et al. have pointed out, terminal tractors must be designed for narrow 

working sites, complex road surfaces, frequent breaking, and long continuous working 

hours, so their design is highly coupled with the physical characteristics and operation 
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flows of the terminal [14]. Moreover, Yang observes that the adoption of green and 

automated technologies in terminals requires a high degree of infrastructural adjustment, 

particularly about energy supply networks and layout planning optimization [40]. 

Infrastructure readiness also affects how well electric, or hybrid tractor adoption can be 

achieved, since charging infrastructure, turning radii, and trailer handling areas must be 

adapted to tractor design specifications. 

4.1.3. Alternatives Definition 

In the specific case study addressing the issue of the terminal tractor selection for green 

ports, the potential options are explained below: 

Kalmar Ottawa (a1): These terminal tractors have a high usage rate in terminal 

operations worldwide. The Kalmar Ottawa T2 model stands out with its compact chassis 

design, optimized field of view and fast maneuverability. The modular structure of the 

vehicle provides easy maintenance and low total cost of ownership [41]. 

Terberg YT (a2): These series terminal tractors are durable and flexible tractors widely 

preferred in European and Asian markets. Models such as YT193 and YT220 offer high 

efficiency in narrow port areas thanks to their strong chassis structure and optimized 

turning circle. The vehicles are equipped with an adjustable fifth wheel structure that adapts 

to different trailer heights [42]. 

TICO Pro-Spotter (a3): It has a high market share especially in domestic terminal and 

storage areas in the United States. The Pro-Spotter series is known for its spacious cabin 

design and durable powertrain systems that focus on operator comfort. The use of Volvo 

Penta electric powertrains in the latest generation models has increased the energy 

efficiency of the vehicles and reduced maintenance costs [43]. 

Capacity TJ Series (a4): They are durable vehicles designed specifically for heavy-duty 

transportation and high-density terminal operations. Models such as the TJ5000 and TJ6500 

offer a wide range of usage flexibility with both off-road and DOT (highway) compliant 

versions. The new generation models developed by Capacity Trucks feature high-lift capacity 

hydraulic fifth wheel systems and optimized chassis weight distribution [44]. 

The MAFI T 230e (a5): It is specially designed for sustainable port operations as a fully 

electric terminal tractor. It maximizes energy efficiency thanks to its high-capacity lithium-

ion batteries and regenerative braking system. MAFI has significantly improved operator 

ergonomics in the T 230e model by offering low chassis height and increased visibility [45]. 

4.1.4. Evaluating Tractor using the FF-Hamacher-CIMAS-LODECI-RADAR  

Hybrid Model 

The tractor selection process based on expert evaluations was conducted by 

sequentially applying the steps of the FF-Hamacher-CIMAS-LODECI-RADAR hybrid 

method. The expert proficiency levels are presented in Table 4, while the experts’ 

evaluation vectors for the criteria are provided in Table 5. The expert-based evaluation 

matrix of the tractor alternatives according to the criteria is shown in Table 6. As a result 

of the application, the criteria weight vector is presented in Table 7, and the tractor ranking 

vector is given in Table 8. According to the results, Towing Capacity was identified as the 

most significant criterion, and the MAFI T 230e was determined to be the highest-

performing tractor alternative. 



594 G. C. YALÇIN 

 

Table 4 The significant levels of the experts 

Expert Experience 
FF Numbers Score  

Functions 
𝛹ӗ 

𝑥𝐹̃(𝑓) 𝑦𝐹̃(𝑓) 

𝜖1 Medium - M 0.42 0.52 0.47 0.0709 

𝜖2 Good - G 0.73 0.10 0.69 0.1054 

𝜖3 Good - G 0.73 0.10 0.69 0.1054 

𝜖4 Very Good - VG 0.82 0.50 0.71 0.1084 

𝜖5 Very Good - VG 0.82 0.50 0.71 0.1084 

𝜖6 Medium - M 0.42 0.52 0.47 0.0709 

𝜖7 Very Good - VG 0.82 0.50 0.71 0.1084 

𝜖8 Very Good - VG 0.82 0.50 0.71 0.1084 

𝜖9 Good - G 0.73 0.10 0.69 0.1054 

𝜖10 Very Good - VG 0.82 0.50 0.71 0.1084 

Table 5 The criterion assessment matrix with LVs 

Experts ȶ1 − 𝜂1 ȶ2 − 𝜂2 ȶ3 − ȴ1 ȶ4 − ȴ2 ȶ5 − ȴ3 ȶ6 − ȴ4 ȶ7 − ȴ5 ȶ8 − ȴ6 

𝜖1 H VH VH H A H ExH VH 

𝜖2 VH VH EH AA AA H EH VH 

𝜖3 H H H AA H H EH H 

𝜖4 AA VH H H H AA VH H 

𝜖5 H H VH H A H ExH H 

𝜖6 VH H VH A A H VH VH 

𝜖7 H VH H H A AA VH H 

𝜖8 H H VH A H H EH VH 

𝜖9 AA VH VH AA AA AA ExH H 

𝜖10 AA VH H A AA AA EH AA 

Table 6 The initial decision matrix with linguistic expressions 

Experts Alternatives ȶ3 − ȴ1 ȶ4 − ȴ2 ȶ5 − ȴ3 ȶ6 − ȴ4 ȶ7 − ȴ5 ȶ8 − ȴ6 

𝜖1 

𝑎1 VH EH AA VH AA H 

𝑎2 EH EH VH H AA H 

𝑎3 H EH H EH H AA 

𝑎4 VH EH A A BA A 

𝑎5 EH ExH H VH H H 

𝜖2 

𝑎1 VH VH H EH AA H 

𝑎2 EH VH VH VH AA EH 

𝑎3 H VH VH VH H A 
𝑎4 VH VH BA A AA AA 

𝑎5 EH EH AA VH H VH 

𝜖3 

𝑎1 VH EH AA H H H 

𝑎2 EH EH H H VH H 

𝑎3 H EH H EH H AA 
𝑎4 H EH A A BA AA 

𝑎5 VH ExH H H VH VH 

𝜖4 

𝑎1 EH EH VH AA H EH 

𝑎2 EH EH H H H VH 

𝑎3 VH EH H VH AA AA 
𝑎4 H EH A AA AA H 

𝑎5 EH ExH H VH H VH 
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𝜖5 

𝑎1 EH EH VH AA VH EH 

𝑎2 EH EH H H VH VH 

𝑎3 VH EH H VH AA AA 
𝑎4 H EH AA H H H 

𝑎5 EH ExH VH H VH H 

𝜖6 

𝑎1 EH H VH H VH VH 

𝑎2 EH H AA H VH VH 

𝑎3 H H H VH AA AA 

𝑎4 H H AA H H H 

𝑎5 EH VH AA VH AA H 

𝜖7 

𝑎1 EH EH VH VH VH VH 

𝑎2 VH EH H VH H VH 

𝑎3 H EH VH VH H H 

𝑎4 AA EH AA H H H 

𝑎5 VH ExH VH H AA H 

𝜖8 

𝑎1 EH VH VH VH EH VH 

𝑎2 EH VH VH H H H 

𝑎3 VH VH VH VH H H 

𝑎4 H VH H H H VH 

𝑎5 EH EH A VH H VH 

𝜖9 

𝑎1 H VH H EH VH EH 

𝑎2 H VH H VH AA VH 

𝑎3 AA VH H EH AA VH 

𝑎4 A VH AA VH AA EH 

𝑎5 H EH VH AA A EH 

𝜖10 

𝑎1 EH EH H VH A AA 
𝑎2 EH EH A EH A VH 

𝑎3 VH EH VH ExH AA A 

𝑎4 EH EH H H BA A 

𝑎5 EH ExH H EH A AA 

Table 7 The final criteria weights 

 ȶ1 − η1 ȶ2 − η2 ȶ3 − ȴ1 ȶ4 − ȴ2 ȶ5 − ȴ3 ȶ6 − ȴ4 ȶ7 − ȴ5 ȶ8 − ȴ6 

𝓌ţ 0.1549 0.0857 0.1070 0.1156 0.1297 0.1433 0.1196 0.1443 

Rank 1 8 7 6 4 3 5 2 

Table 8 The aggregated ranking index matrix 

 
Kalmar Ottawa 

(𝑎𝟏) 
Terberg YT 

(𝑎𝟐) 
TICO Pro-Spotter 

(𝑎𝟑) 
Capacity TJ Series 

(𝑎𝟒) 
The MAFI T 230e 

(𝑎𝟓) 
𝜓ą 0.9600 0.9940 0.8920 0.9390 1.0000 

Rank 3rd 2nd 5th 4th 1st 

5. RESULTS 

In this study, a novel hybrid decision-making methodology (FF-Hamacher-CIMAS-

LODECI-RADAR) was proposed and implemented to identify the most suitable tractor 

among various cargo handling equipment alternatives for green port operations. The 

methodology was applied to a real-life case involving a port currently operating in Türkiye. 
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The decision-making model involved ten expert decision-makers, eight evaluation criteria, 

and five different tractor alternatives. 

As a result of the application of the hybrid method, three primary outcomes were 

obtained: 

Determination of Criterion Importance Levels: Through the integration of the FF-

Hamacher-CIMAS-LODECI methodology, the weights of the evaluation criteria were 

calculated by combining both subjective (expert opinions) and objective (data-driven) 

perspectives. The weights of the criteria as follows: “Towing Capacity (ton) (ȶ1) 
(𝓌1 = 0.1549) > Port Infrastructure Suitability (ȶ8) (𝓌8 = 0.1443) > Total Cost of 

Ownership (TCO) (ȶ6) (𝓌6 = 0.1433) > Maintenance Cost (ȶ5) (𝓌5 = 0.1297) > Ease 

of Use (ȶ7)(𝓌7 = 0.1196) > Emission Level (ȶ4) (𝓌4 = 0.1156) > Energy Efficiency 
(ȶ3) (𝓌3 = 0.1070) > Turning Radius (m) (ȶ2) (𝓌2 = 0.0857)” According to the final 

importance ranking of criteria, Towing Capacity (ton) was identified as the most influential 

factor in the decision-making process, while Turning Radius (m) was ranked as the least 

important. This outcome can be attributed to the specific characteristics of the port under 

consideration; namely, the port area offers sufficient spatial allowance, thus diminishing 

the criticality of turning radius in operational scenarios. Conversely, towing capacity 

directly reflects the operational power and efficiency of the tractors, indicating its 

fundamental role in sustainable cargo handling processes. 

Ranking of Tractor Alternatives: Using the RADAR method, tractor alternatives were 

evaluated and ranked according to their performance across the determined criteria. The 

ranking of the tractors as follows: “The MAFI T 230e (𝑎5)  (𝜓5 = 1.000) > Terberg YT 

(𝑎2)  (𝜓5 = 0.994) > Kalmar Ottawa (𝑎1)  (𝜓1 = 0.960) > Capacity TJ Series (𝑎4)  
(𝜓4 = 0.939) > TICO Pro-Spotter (𝑎3)  (𝜓5 = 0.892)” The final ranking revealed that the 

MAFI T 230e tractor emerged as the most suitable alternative for green port implementation. 

This model was followed by other alternatives in descending order of performance, consistent 

with the aggregated performance scores derived from the decision model. 

Validation of Methodological Applicability: The successful application of the FF-

Hamacher-CIMAS-LODECI-RADAR hybrid methodology demonstrated its capability to 

effectively support multi-criteria decision-making in the selection of eco-efficient cargo 

handling equipment. The method enabled a transparent, structured, and rigorous evaluation 

process by integrating fuzzy logic with subjective and objective weight derivation 

techniques, as well as a robust ranking algorithm. 

In conclusion, the findings of this study underscore the practical relevance and decision-

making robustness of the proposed hybrid methodology. By guiding the selection of the most 

appropriate tractor aligned with green port objectives, the method provides a replicable 

framework for other ports seeking to enhance their sustainability performance through 

informed equipment procurement strategies. 

5.1. Sensitivity Analysis for Robustness 

To validate the reliability and robustness of the tractor selection results obtained 

through the FF-Hamacher-CIMAS-LODECI-RADAR hybrid methodology for green port 

operations, a series of sensitivity analysis scenarios were designed. The primary objective 

of these scenarios was to observe the stability of the results under varying conditions and to 

assess the resilience of the proposed method against changes in methodological parameters. 

Within this scope, three distinct sensitivity scenarios were developed and analyzed. 
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Scenario 1 - Impact of Varying Weighting Techniques: This scenario was designed to 

examine how changes in the relative contribution of the FF-Hamacher-CIMAS and FF-

Hamacher-LODECI weighting techniques would influence the final ranking of tractor 

alternatives. A parameter denoted as 𝜆 was introduced to represent the contribution 

coefficient of the FF-Hamacher-CIMAS method in the overall weighting process. By 

incrementally adjusting the 𝜆 parameter from 0 to 1, the model simulated varying levels of 

influence from the respective methods. 

The findings, illustrated in Fig. 2 (tractor performance scores) and Fig. 3 (ranking orders), 

reveal that when the 𝜆 coefficient approaches zero (indicating minimal contribution from the 

CIMAS method) the highest-ranking tractor shifts to Terberg YT. Conversely, as the influence 

of CIMAS increases (𝜆 → 1), The MAFI T 230e regains its position as the top performer. The 

analysis concludes that an 𝜆 value of 0.5 yields the most balanced outcome, suggesting that 

equal contributions from both weighting methods enhance the objectivity and consistency of 

the decision-making process. 

Scenario 2 - Influence of Qualitative vs. Quantitative Criteria: The second scenario was 

developed to test the performance of the hybrid method when only qualitative or 

quantitative criteria were used independently in the decision model. This aimed to evaluate 

the hybrid methodology's capability to integrate both types of data simultaneously, a key 

advantage in complex multi-criteria decision environments. 

According to the results, depicted in Fig. 4 (performance scores) and Fig. 5 (alternative 

rankings), if only qualitative criteria were considered, Kalmar Ottawa would have been 

selected as the best alternative. Conversely, if only quantitative criteria were employed, 

Terberg YT would have emerged as the top choice. However, when both types of criteria were 

integrated using the proposed hybrid method, The MAFI T 230e was consistently identified as 

the most suitable tractor. These findings emphasize the methodological limitation of relying 

solely on one data type and demonstrate how the hybrid approach effectively mitigates 

potential decision-making biases, ensuring a more holistic and accurate evaluation. 

 

Fig. 2 Results according to first sensitivity scenario 
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Fig. 3 Ranks according to first sensitivity scenario 

  

Fig. 4 Results according to the second sensitivity scenario 

 

Fig. 5 Ranks according to second sensitivity scenario 
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Scenario 3 - Evaluation of Tractor Suitability under Alternative Conditions: The third 

sensitivity scenario aimed to verify the consistency of the selection of The MAFI T 230e 

as the top-performing tractor by testing its dominance across various sub-scenarios. In each 

sub-scenario, the lowest-performing tractor (based on the original ranking) was systematically 

removed from the model, and the evaluation process was repeated to identify the new top 

performer. 

As shown in Fig. 6 and summarized in Table 9, The MAFI T 230e remained the top-ranked 

tractor across all sub-scenarios, thereby confirming its robust performance and suitability for 

green port operations under varying configurations. This consistency reinforces the accuracy 

and stability of the proposed hybrid methodology in identifying optimal alternatives. 

 

Fig. 6 Results according to third sensitivity scenario 

Table 9 The ranks according to third sensitivity scenario 

SAS-3 scenarios Ranking Best Performance 

Result 𝑎𝟓 > 𝑎𝟐 > 𝑎𝟏 > 𝑎𝟒 > 𝑎𝟑  The MAFI T 230e 

SAS-3a: Removed 𝑎𝟑 𝑎𝟓 > 𝑎𝟐 > 𝑎𝟏 > 𝑎𝟒  The MAFI T 230e 

SAS-3b: Removed 𝑎𝟒 𝑎𝟓 > 𝑎𝟐 > 𝑎𝟏  The MAFI T 230e 

SAS-3c: Removed 𝑎𝟏 𝑎𝟓 > 𝑎𝟐  The MAFI T 230e 

In conclusion, the outcomes of all three sensitivity scenarios confirm the robustness, 

reliability, and adaptability of the FF-Hamacher-CIMAS-LODECI-RADAR hybrid 

methodology. The consistent identification of the same optimal tractor under different 

analytical conditions validates the method as an effective decision-support tool for equipment 

selection in sustainable port management. Therefore, the proposed hybrid methodology can be 

confidently considered as an ideal approach for supporting strategic decision-making in the 

context of green port development. 
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5.2. Comparative Analysis for Consistency 

To evaluate the effectiveness and reliability of the proposed FF-Hamacher-CIMAS-
LODECI-RADAR hybrid method for tractor selection in green port operations, a comparative 
analysis was conducted using alternative ranking methodologies widely recognized in the 
literature. Specifically, fifteen alternative multi-criteria decision-making (MCDM) methods 
were applied to the same dataset to derive tractor performance scores and corresponding 
rankings. These methods include RADAR II [46], RAWEC [47,48], CORASO [49], ALWAS 
[50], AROMAN [51], RATGOS [52], MABAC [53-55], MARCOS [56], RAM [57], SAW, 
WASPAS [58], ARLON [59], OPARA [60], WEDBA [61], and COCOSO [62-64]. 

The ranking outcomes derived from these methods are presented in Fig. 7. Upon 
examination of the results, it was found that the top-performing tractor (The MAFI T 230e) 
and the lowest-performing tractor (TICO Pro-Spotter) remained consistent across all 
fifteen methods, thereby confirming the robustness of these alternatives within varying 
methodological contexts. 

However, minor deviations were observed in the middle ranks. Specifically, four of the 
methods (MABAC, MARCOS, WEDBA, and COCOSO) produced a slight change in the 
order between the third-ranked tractor (Kalmar Ottawa) and the fourth-ranked tractor 
(Capacity TJ Series) when compared to the proposed hybrid method. This variation 
highlights the sensitivity of certain methods to slight differences in performance criteria 
weighting and aggregation procedures. 

Furthermore, a correlation analysis was conducted to examine the statistical 
relationship between the performance scores of tractors as determined by the proposed 
hybrid method and each of the alternative methods. The correlation coefficients are 
presented in Table 10. The results reveal that the FF-Hamacher-CIMAS-LODECI-
RADAR hybrid method demonstrates a very high level of correlation with all alternative 
methods, indicating strong consistency and alignment in decision outcomes. 

In summary, the findings from this comparative analysis support the validity and 
reliability of the proposed hybrid methodology. Its ability to produce consistent rankings 
across a wide range of established MCDM methods reinforces its suitability as a robust 
decision-support tool for selecting environmentally suitable tractors in green port operations. 

 

Fig. 7 Ranks according to comparative analysis 
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Table 10 The correlation analysis results 
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The results 1.00 0.92 0.98 0.98 0.95 1.00 0.99 0.98 0.98 0.99 0.98 0.98 0.99 0.97 0.94 0.97 

RADAR II   1.00 0.87 0.87 0.99 0.95 0.89 0.89 0.87 0.90 0.87 0.87 0.94 0.87 0.80 0.88 

RAWEC     1.00 1.00 0.89 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.99 1.00 

CORASO       1.00 0.89 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.99 1.00 

ALWAS         1.00 0.98 0.91 0.91 0.89 0.92 0.89 0.90 0.95 0.89 0.82 0.89 

AROMAN           1.00 0.98 0.97 0.97 0.98 0.97 0.97 0.99 0.96 0.92 0.96 

RATGOS             1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.98 1.00 

MABAC               1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.98 1.00 

MARCOS                 1.00 1.00 1.00 1.00 0.98 1.00 0.99 1.00 

RAM                   1.00 1.00 1.00 0.99 1.00 0.98 0.99 

SAW                     1.00 1.00 0.98 1.00 0.99 1.00 

WASPAS                       1.00 0.99 1.00 0.99 1.00 

ARLON                         1.00 0.98 0.95 0.99 

OPARA                           1.00 0.99 1.00 

WEDBA                             1.00 0.99 

COCOSO                               1.00 

6. CONCLUSION 

This study developed a decision support system aimed at selecting the most suitable tractor 

for green port operations. The proposed system integrates the FF-Hamacher-CIMAS-LODECI-

RADAR hybrid method, which effectively combines subjective and objective criteria weighting 

through fuzzy Hamacher operations and utilizes the RADAR technique for ranking alternatives. 

The novelty of this approach lies in the simultaneous inclusion of both qualitative and 

quantitative criteria within a unified decision-making framework, enabling a comprehensive 

evaluation of alternative tractors tailored to the specific requirements of green ports. 

The applicability of the hybrid method was demonstrated through a case study involving a 

green port in Türkiye, where a panel of ten experts evaluated five tractor types across eight 

criteria, including both technical and environmental factors. The findings identified The MAFI 

T 230e as the optimal tractor choice, with towing capacity emerging as the most significant 

criterion and turning radius as the least influential, justified by the expansive operational area 

of the port. Sensitivity analyses further confirmed the robustness and reliability of the model, 

while comparative assessments with fifteen alternative methods showed strong consistency and 

high correlation, validating the effectiveness of the proposed system. 

Overall, this research contributes a novel, reliable, and practical decision support tool for 

green port management, facilitating informed and balanced equipment selection that aligns with 

sustainability goals. The results offer valuable insights for port authorities and industry 

stakeholders, supporting the advancement of environmentally conscious operations. Moreover, 

the robustness of the proposed hybrid method can be further reinforced through comparative 
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analyses involving newly developed techniques [65] and alternative comparative frameworks 

[66]. Future research may also enhance the model’s applicability by adapting it to diverse 

operational contexts and integrating additional evaluation criteria, thereby improving the 

effectiveness of decision-making processes in sustainable port logistics. 
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