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Abstract. Tractors play a critical role in the operational processes of green ports. The
primary objective of this study is to develop a decision support system (DSS) for the
selection of tractors suitable for green port operations. In this context, a hybrid multi-
criteria decision-making (MCDM) approach based on fuzzy logic—namely the FF-
Hamacher-CIMAS-LODECI-RADAR (Fermatean Fuzzy—Hamacher-Criteria Importance
Assessment-Logarithmic Decomposition of Criteria Importance- Ranking based on the
Distances and Range) hybrid method is proposed. This hybrid model enables the
simultaneous integration of both quantitative and qualitative criteria into the decision-
making process. Expert weight vectors are determined using Fermatean fuzzy sets, while
the overall criteria weight vector is constructed through a combination of subjective (FF-
Hamacher-CIMAS) and objective (FF-Hamacher-LODECI) weighting techniques. The
performance ranking of tractor alternatives is obtained using the RADAR method. The
proposed methodology was applied to a tractor selection problem for a green port in
Tiirkiye. The decision model was established based on the evaluations of ten experts,
involving eight criteria (two quantitative and six qualitative) and five alternative tractors.
According to the results of the case study, Towing Capacity emerged as the most
influential criterion. Among the alternatives, the MAFI T 230e tractor demonstrated the
highest performance. The robustness of the proposed hybrid method was supported
through three sensitivity analysis scenarios. Additionally, comparative analyses revealed
a high level of consistency in the results, confirming the reliability of the method. Based
on the findings, practical implications and recommendations were provided to support
decision-making processes in green port operations.
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1. INTRODUCTION

The increasing volume of global trade has placed ports at the center of not only
economic growth but also environmental sustainability. The increasing global trade volume
also leads to increased greenhouse gas (GHG) and particulate matter (PM) emissions from
logistics equipment [1]. Today, ports are not only cargo handling areas; they have also
become one of the important sources of GHG emissions with their energy-intensive, fossil
fuel-based equipment [2]. Increasing efficiency and reducing environmental impacts in
port operations have become both political and economic imperative. Sustainability goals
in port operations necessitate the transformation of not only ships but also in-port
equipment such as cranes, carrier vehicles and terminal tractors [3]. In this context, terminal
tractors play a critical role in the transportation of containers within the terminal and
account for a significant portion of port-related emissions [4].

In large commercial ports such as the San Pedro Bay Port Complex in California,
terminal tractors contribute to 28% and 33% of total oxides of nitrogen (NOx) and PM
emissions, respectively [5]. As in the case of Ambarli Port, diesel-fueled terminal tractors
produce the highest carbon emissions among in-port equipment [6]. This high contribution
rate has placed the conversion of terminal tractors at the center of ports’ carbon emission
reduction strategies. Regulatory policies and technological advances developed in recent
years encourage the replacement of diesel engines with low or zero-emission alternative
power systems [7-9].

Traditional diesel engine tractors attract attention with their high fuel consumption and
emission production due to the characteristics of in-port operations such as low speed,
frequent stop/start and high idle rate [1]. Real field tests have shown that diesel terminal
tractors emit 2 to 3 times more NOx and PM2.5 than their emission certification levels [10].

The evaluation of alternative energy systems has added a new dimension to the selection
of terminal tractors. Electric and hydrogen fuel cell tractors promise zero emissions and are
also promising in terms of energy efficiency. Studies conducted in recent years reveal that
electric versions of terminal tractors offer advantages in terms of both fuel consumption and
operating costs [11]. Comparative total cost of ownership analyses show that hydrogen fuel
cell tractors will be cost-competitive with their diesel counterparts [1]. Thanks to adaptive
energy management systems designed specifically for variable load profiles, these vehicles
provide efficient energy consumption and operational flexibility [12].

The technological transition process affects not only environmental but also operational
decisions. Studies conducted in port terminals have shown that optimal planning and task
assignment strategies of terminal tractors can significantly reduce loading/unloading times
and empty trip rates [13]. In addition, evaluation of various transfer scenarios with different
tractor models (e.g. semi-trailer or full trailer) once again emphasizes the importance of
flexibility and engineering standards in equipment selection [14].

The primary motivation of this study is to develop a decision support system (DSS) for
the selection of tractors used in green ports. The main objective is to address the tractor
selection problem through a multi-criteria decision-making (MCDM) approach by proposing a
hybrid method as a DSS. To handle complex and sensitive computations, the use of Fermatean
Fuzzy (FF) sets [15], which are based on fuzzy logic, is proposed. FF sets not only offer
enhanced capability in managing high levels of uncertainty but also allow for more flexible
expression of expert judgments.



Development of a Fuzzy-Based Decision Support System for Sustainable Tractor Selection... 581

Moreover, to strengthen the operations and aggregation processes of FF sets, Hamacher
t-norm and t-conorm-based FF sets have been utilized as Bonferroni aggregation [16].
Specifically, the FFHWA (Fermatean fuzzy Hamacher weighted average) aggregation
operator [17] was employed for aggregating expert evaluations. The proposed hybrid DSS
is the FF-Hamacher-CIMAS-LODECI-RADAR (FF- Hamacher-Criteria Importance
Assessment-Logarithmic Decomposition of Criteria Importance) method. In this
framework, FF-Hamacher-CIMAS is adopted as the subjective criteria weighting method,
where the CIMAS technique [18] is adapted to the FF-Hamacher environment for the first
time. For objective criteria weighing, the FF-Hamacher-LODECI method was developed
by extending the LODECI method [19] using FF-Hamacher sets. Both weighting methods
incorporate FF-Hamacher sets for the first time in literature.

The FF-Hamacher-CIMAS method was chosen due to its ability to provide consistency-
based weighting calculations, whereas the FF-Hamacher-LODECI method offers precise
weight computations based on logarithmic decomposition. For ranking the tractor
alternatives, the RADAR method [20] was utilized. The proposed hybrid model enables
the simultaneous evaluation of both quantitative and qualitative criteria, and the ranking
process is performed using the RADAR approach [21]. The applicability, robustness, and
consistency of the proposed hybrid method were validated through a real-world case study
conducted at a green port in Tiirkiye.

This study presents a novel DSS for selecting the most suitable tractor for green port
operations by integrating fuzzy logic and MCDM techniques. A new hybrid methodology
(FF-Hamacher-CIMAS-LODECI-RADAR) is proposed, combining subjective and
objective weighting methods with an advanced ranking model. Subjective weights are
derived using FF-Hamacher-CIMAS to reflect expert judgments, while objective weights
are calculated through FF-Hamacher-LODECI based on decision matrix data. The model
evaluates both quantitative (Towing Capacity, Turning Radius) and qualitative (Energy
Efficiency, Emission Level, Maintenance Cost, Total Cost of Ownership, Ease of Use, Port
Infrastructure Suitability) criteria simultaneously. Applied to a real-world case in Tiirkiye
involving five tractor alternatives and ten experts, the MAFI T 230e emerged as the top
choice, with Towing Capacity as the most critical criterion. The methodology’s robustness
was confirmed through sensitivity analysis and comparison with 15 established MCDM
methods, showing high consistency. This research contributes both methodologically and
practically to sustainable decision-making in green port logistics and beyond.

This paper is structured into six sections. Section 2 presents the literature review.
Section 3 outlines the methodology adopted in the study. Section 4 details the case study
conducted to demonstrate the applicability of the proposed approach. Section 5 discusses
the results and their practical implications. Finally, Section 6 provides the conclusions
drawn from the study.

2. LITERATURE REVIEW
2.1. Green Ports: A Paradigm for Sustainable Port Management

Green ports represent a strategic approach aimed at mitigating environmental impacts
while enhancing energy efficiency and sustainable management practices within port
operations. Traditional port activities often contribute significantly to environmental
externalities, including elevated GHG emissions, and air and water pollution. Consequently,
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there is an imperative for ports to adopt sustainable practices to address these challenges
effectively.

The operational components of ports, such as terminal equipment, ships, and land
transportation systems, are primary sources of carbon emissions and pollutants, thereby
impacting air quality. Various global ports have undertaken concerted efforts to implement
emission reduction measures, with outcomes influenced by factors such as population
density, business models, and specialization in container transportation [22].

Effective collaboration between public authorities and port administrations is pivotal in
implementing policy instruments aimed at reducing GHG emissions. Research underscores
the role of environmental incentive systems, automation, and digitalization in facilitating
the transition towards green port operations, particularly highlighted in Asian ports [23].

Renewable energy technologies, such as solar energy, wind turbines, fuel cells, and
ocean energy systems, emerge as promising solutions to diminish fossil fuel dependency
in ports. Studies confirm the technical and economic viability of these technologies in
significantly reducing carbon emissions and enhancing sustainability [24].

Modeling energy consumption and enhancing the efficiency of port facilities are critical
components of operational strategies. It has been demonstrated that optimizing port
operations can lead to substantial reductions in energy consumption, with potential savings
estimated at up to 34% [25]. Integrating green port initiatives with logistics efficiency
further underscores the potential for reducing carbon emissions and operational costs,
exemplified by initiatives such as transitioning hazardous material transportation vehicles
to electric systems [26].

The advancement of digital technologies plays a transformative role in shaping green
ports. Innovations such as Internet of Things (IoT), artificial intelligence (AI), remote
monitoring systems, and autonomous technologies are instrumental in optimizing energy
consumption, emission control, and logistics management within port environments [27].

In conclusion, the evolution towards green ports necessitates a holistic approach
encompassing policy interventions, technological advancements, and collaborative
governance to achieve sustainable development goals. By integrating these strategies, ports
worldwide can effectively mitigate environmental impacts while fostering economic
growth and operational resilience in a rapidly evolving global context.

2.2. Green Ports: A Paradigm for Sustainable Port Management

The vision of green ports fundamentally seeks to minimize the environmental impacts
associated with port operations, enhance energy efficiency, and reduce carbon footprints.
Within this framework, cargo handling equipment (CHE) represents one of the most
significant sources of port-related emissions. Key machinery, including terminal tractors,
rubber-tired gantry (RTG) cranes, straddle carriers, forklifts, and reach stackers, are
indispensable for maintaining port operational efficiency, yet they concurrently contribute
substantially to greenhouse gas emissions and overall energy consumption.

Terminal tractors have been identified as primary contributors to emissions within port
environments. Empirical data from Chinese ports reveal that although terminal tractors
comprise just over one-third of all equipment in operation, they account for nearly half of
the total fuel consumption among CHE [28]. A parallel trend has been observed in Turkish
ports, where terminal tractors constitute many carbon emissions within CHE fleets [6].
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These findings highlight the critical need to reconsider the technological design and
environmental impact of such equipment.

The energy consumption profile of CHE is influenced by multiple factors, including
fuel type, engine specifications, and operational duty cycles. Notably, equipment with
larger engine capacities (though fewer in number) may disproportionately contribute to
emissions due to prolonged operational hours or intensive workload demands [28]. This
recognition has catalyzed accelerated efforts toward the electrification of port equipment,
particularly in regions with stringent policy frameworks or explicit carbon reduction
targets.

The transition to electric or hybrid CHE alternatives presents several challenges.
Research conducted in California ports identifies key barriers such as high upfront
investment costs, limitations in grid capacity, and the need for workforce adaptation [29].
Nonetheless, with strategic long-term planning, electrification initiatives have
demonstrated considerable potential not only to reduce emissions but also to modernize
port infrastructure in a manner that promotes inclusivity and resilience [30].

Beyond technological substitution, optimizing the deployment and scheduling of CHE
is critical for reducing emissions and improving operational efficiency. Coordinated
scheduling among terminal tractors, cranes, and yard vehicles can significantly reduce idle
times, lower energy consumption, and enhance overall system productivity. Emerging
optimization frameworks have demonstrated effectiveness in integrating various types of
equipment within unified planning routines, thereby reducing empty trips and operational
delays [31-32].

The selection of cargo handling equipment is a strategic element within sustainable port
management. MCDM methodologies, such as the AHP, PROMETHEE, and TOPSIS, are
extensively employed to evaluate alternative equipment based on a comprehensive set of
criteria. These criteria typically encompass environmental factors (e.g., CO2, NOx, particulate
matter emissions), economic considerations (investment and operational costs), technical
specifications (power output, efficiency), and operational characteristics (flexibility, cycle
time) [33].

In summary, the progression toward green ports necessitates a dual focus on mitigating
the environmental footprint of cargo handling equipment and enhancing their operational
efficiency. Key strategies include the electrification of high-emission equipment
(particularly terminal tractors) the integration of these assets within optimized scheduling
models, and the adoption of life-cycle management approaches. Collectively, these
measures constitute essential components for achieving long-term sustainability and
environmental stewardship in port operations.

3. METHODOLOGY
3.1. Hamacher T-Norm and T-Conorm based Aggregation Operator

Definition 1. The FF set (F) defined as F = {(f,xz(f),yz(f) | f € F)} is a fuzzy
logic-based set using functions defined by the universe F and element f. The FF numbers
defined in this set are defined as follows: x#(f): the degree of membership, y&(f): the
degree of non-membership, and (Zja (f )): the indeterminacy degree. The FF numbers fulfill
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the  following  conditions: 0 < (xﬁQc))3 + (yjs(f))3 <1 and zz(f) =
3\/1 - (x(N)’ = (£(N)’ 15].

Definition 2. The accuracy function is calculated when the score functions used to
convert FF sets into numerical values are equal. Consider two FF sets as F; =

{foxe,(Nyz, (D f €F)} and Fy = {{f, x7,(f),y7,(f) | f € F)}. Score function
(S c(f’l)) calculation is shown in Eq. (1) and accuracy function (Ac(f'l)) calculation is
shown in Eq. (2) [15]:

1

se(®) =2(1+(,0) - (r7,N) ) M

Ac(#) = (x2,(0) +(v2,(N) @

Definition 3. The Hamacher t-norm and t-conorm are computed by applying Eq. (3)
and Eq. (4) respectively [17]:
ab

T —norm (a,b) = 9+(1-9)(a+b-ab)

3)

a+b—ab—(1-9)ab

T — conorm (a,b) = 1-(1-9)ab

“4)

herein, a, b € [0,1] and 9 > 0.
Definition 4. For a group of FF sets defined as %, = {(f, xz (), yg, ()| f € F)}, the
FFHWA aggregation operator is computed by applying Eq. (5) [17]:

3\ 3\
3 n$=1(1+(a—1>(xﬁr(f)) ) —nﬁzl(l—(xfrm) )
3\ ENZ
_ H¥:1<1+(19—1)(x¢r(f)> ) +@®-1) n¥=1<1—(xﬁr(f)) )
FFHWA =®*_, 1, £ = o Q)
Vo1 (vr, D)

3 3\ 31,
n$=1(1+(19—1)<1—(yf:r<f)) )) +O-D TR (v5,00)

3.2. The Novel FF-Hamacher-CIMAS- LODECI-RADAR Hybrid Method

In this study, the elements of the decision model are defined as experts (E =
{€1, €2 ) €5 o €53 (8 = 1,2, ..., E)), quantitative criteria (N = {3, 72, .., 3, ., M} (B =
1,2,..,N)), qualitative criteria (L = {Ly,L, ..., bj, ., b} (I = 1,2,..., L)), overall criteria
(T = {1:,1, 2T ...,tT} t=12,...T);(N+L= T)), and  alternatives (A =
{al,az, o) Ay, ...,aA} (@a=1,.2, ...,A)).

The hybrid method consists of four stages: Stage 1: Subjective criteria weights are
determined based on the experts' assessment of all criteria. Expert weights are also
determined. Stage 2: Objective criterion weights are determined by experts evaluating only
the alternatives according to qualitative criteria and are combined with other quantitative
criteria. Stage 3: The criteria obtained because of subjective and objective criteria weighing
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methods are combined. Stage 4: Based on the final criteria weights, Terminal Tractor for
Sustainable Port Management performance levels are calculated and ranked. The diagram
of the FF-Hamacher-CIMAS-LODECI-RADAR hybrid method is presented in Fig. 1.

A set of experts

A set of tractors

Two sets of quantitative and qualitative criteria

!

Stage 1:
Subjective weighting of criteria using the FF-CIMAS method

lStep 1-1: Construct the expertise level matrix.

¥

[Step 1-2: Calculate the expert weight matrix.
¥

‘Step 1-3: Construct the criteria evaluation matrix.
¥

‘Step 1-4: Compute the weighted criteria matrix.

‘Step 1-5: Compute the crisp criteria matrix.

‘Step 1-6: Compute the normalized criteria matrix.

¥
Step 1-7: Compute the weighted normalized criteria
matrix.

¥
Step 1-8: Compute the maximum and minimum |
value matrix.

h 4
[Step 1-9: Compute the differences value matrix. |

Step 1-10: Compute the subjective criteria weight
matrix.

Stage 2:
Objective weighting of criteria using the FF-LODECI method

‘Step 2-1: Construct an initial decision matrix. ‘

|Step 2-2: Compute aggregated decision matrix. |

|Step 2-3: Compute crisp aggregated decision matrix. |
Y

‘Strep 2-4: Combine crisp aggregated decision matrix
with quantitative criteria bavsed matrix.

‘Step 2-5: Compute the normalized decision matrix. ‘
Y
‘Step 2-6: Compute the decomposed decision matrix.

decision matrix.

Step 2-7: Compute the logaritmic decomposed ‘

Y

Step 2-8: Compute the objective criteria weight
matrix.

‘ Final weighs of the criteria based on FF-CIMAS and FF-LODECI| methods ‘

Step 3-1: Aggregate the objective and subjective criteria matrix.

v

N Step 4-1: Combine crisp aggregated decision matrix with quantitative criteria
w based matrix.
g ¥
2 |Step 4-2: Compute the maximum proportion matrix. |
o ¥
©
=3 |Step 4-3: Compute the minimum proportion matrix. |
23 ¥
g."é EE Step 4-4: Compute the empty range matrix. |
v}
HeZ ¥
® |Step 4-5: Compute the relative relation matrix. |
ge v
E& |Step 4-6: Compute the weighted relative relation matrix |
'% ¥
& Step 4-7: Compute aggregated ranking matrix. |

Fig. 1 The diagram of the FF-Hamacher-CIMAS-LODECI-RADAR hybrid method
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The application steps of the FF-Hamacher-CIMAS-LODECI-RADAR hybrid method
are summarized as follows:

Stage 1: Subjective weighting of criteria using the FF-CIMAS method [18]:

Step 1-1: 1t is important to calculate expert weights according to the levels of expertise,
which play an important role in decision-making processes, and to integrate these weights
into the decision-making process. In this step, the expertise levels presented in Table 1 are
determined and the expertise level matrix (E = [Bé]g) is created accordingly.

Table 1 Linguistic expressions for expertise levels [34]

Linguistic expressions FFNs

Very-poor (VP) (0.21, 0.70)
Poor (P) (0.36, 0.41)
Medium (M) (0.42, 0.52)
Good (G) (0.73, 0.10)
Very-good (VG) (0.82, 0.50)

Step 1-2: The linguistic expressions are transformed into FFNS and after obtaining the
score function with Eq. (6), experts’ weights are calculated with Eq. (7):

By = 5c(By) = %(1 + (x,00) - (ygé(f))3):50(§é) €[01] ©)
q/é=%-(é=1,2,...,ﬁ) (7)

Step 1-3: To derive the criteria evaluation matrix, experts (€z) evaluate each overall
criterion (t’t) using the linguistic expressions as presented in Table 2. Then, these linguistic

expressions are transformed into FF numbers, and the criteria evaluation matrix (Z = [Z té]TE)

is created.

Table 2 Linguistic expressions for evaluating criteria/alternatives [34]

Linguistic expressions FFNs
Exceptionally low (ExL) (0.30, 0.50)
Extremely low (EL) (0.35,0.43)

Very low (VL) (0.36, 0.56)
Low (L) (0.40, 0.73)
Below average (BA) (0.42, 0.30)
Average (A) (0.47,0.21)
Above average (AA) (0.50, 0.62)
High (H) (0.55, 0.38)
Very high (VH) (0.60, 0.18)

Extremely high (EH) (0.72, 0.50)
Exceptionally high (ExH) (0.83, 0.42)

Step 1-4: To derive the weighted criteria evaluation matrix (ﬁ = [ﬁté]TE), the expertise

level matrix and the criteria evaluation matrix are aggregated via FF-Hamacher product
operation (Eq. (8)).
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H;é = E ®Z;é =

¢

Xf;é(f)xzté(f)

eo-o{ (o) o) () o))

3 3 3 3 3 3
(yEé(f)) +(3/zté(f)) —(<Y§é(f)> (yzté(f)) )—(1—19><<y§é(f)) <J'z§é(f)> >
3 3
1—(1—19)<<y§é(f)> (yzté(f)> )

Step 1-5: The score function (S C(H;é)) used to convert the weighted criteria evaluation

1]

| fEF}; (8)

w

J

matrix into crisp values (Eq. (9)) yields the crisp weighted criteria evaluation matrix

(H = [Hté]TE).
Hys = Sc(Hy) = §(1 + <xﬁgé(f)>3 - (J’H;é(f)>3> ; (Sc(f) € [0.1]) ©)

Step 1-6: The normalized criteria evaluation matrix (/1 = [Até] ) is computed

TH
applying Eq. (10).
Hg

ﬁ;(g=1,...,T;e=1,2,...,}3) (10)

Step 1-7: Eq. (11) is used to determine the weighted -criteria evaluation
matrix(P = [Pté]TE).

Pe=(Ap*¥);(t=1..T;86=12..,E) (11)

Step 1-8: The maximum value matrix (P;max = [p™ ]T) is calculated by Eq. (12)

and the minimum value matrix (P;mi" = [Ptmi"]T) is calculated by Eq. (13).

P = grslg% P;t=1,...T) (12)
P;mi" = Irsltlg P;t=1,...T) (13)

Step 1-9: The matrix representing the differences between minimum and maximum

values (M = [Mt]T) is computed applying Eq. (14).
My = (R" = P™); (4= 1,..,T) (14)

Step 1-10: The criteria weight matrix (u{ = [u'h]T) is computed applying Eq. (15).
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— M
g = 5T 6= L ) (1s)
herein, uj, = (W, Wy, o) u{T), w; € [0,1], and Z;T=1 w, =1

If the (RI)values fall below 0.1, the criteria’s weights are consistent, and the next step
is taken.

Stage 2: Objective weighting of criteria using the FF-LODECI method [18]

Step 2-1: Each alternative (aq) is evaluated by each expert (€z) against attribute criteria
only (L;) using the linguistic expressions defined in Table 2. Following this evaluation, the
LVs are transformed into FF sets as detailed in Table 2. Thus, an initial decision matrix

Tlee) — [f(es) . Tles) . — — L=
(]L €8) = []L € ql]AxL) where L8 ;= <xE(Eé)qj(f)’yE(eé)qi(f)) (q =12,..,A; 1=

1,2,..,L; 6=1,2, ,E) is created.
Step 2-2: The evaluations made by each expert are combined using the FFHWA
aggregation operator shown in Eq. (16). Thus, the aggregated decision matrix

(IL = [H‘qi]AxL) is composed.

]L=E§®Zté=

XBy (f)xzté 62

T )

3 3 3 3 3 3
3 (yg,é(f)) +(y7;é(f)) —((ygé(f)> <y7;é(f)> )—(1—19)<<y§é(f)> <y7;é(f)> )
3 3
1—(1—19)<<y§é(f)> (yzgé(f)) >

’

| fEF; (16)

herein, 9 > 0.
Step 2-3: To convert the FF fuzzy sets into crisp values, the score functions (S c(]l.qi))

is computed using Eq. (17). Thus, the crisp aggregated decision matrix (Sc(]l.qi) =
[]LqI]AxL) is derived.

3 3
Se(lLy) = ;(1 #(xe,0) - (5,0) ): (se(c)elor) A

Step 2-4: In order to create the initial decision matrix including the overall criteria

(C = [Cq;]AxT)’ it is necessary to include the initial decision matrix for both the qualitative

criteria ([L = [H‘qi]AxL) and the quantitative criteria (N = [Nqﬁ]AxN).
Step 2-5: Normalization is accomplished using Eq. (18) for the cost and benefit criteria.

Thus, a normalized decision matrix (K = [Kq’]AxT) is obtained.
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o b it criteri
Tmax for benefit criteria

th: C‘m.in !(qzlllA! t: 1;;T) (18)
L for cost criteria

af
Step 2-6: The decomposition is accomplished using Eq. (19). Thus, the decomposed
decision matrix (D = [DQt]AxT) is obtained.

Dy =max{|ky —rpl};(@a=1...4t=1..Tn=12..N),0 %3 (19
Step 2-7: Logarithmic decomposition is accomplished using Eq. (20). Thus, a
logarithmic decomposed decision matrix (Y = [Y;]T) is obtained.

23:11)%
Yy =In 1+T ;@=1,...At=1..,T) (20)
Step 2-8: Using Eq. (21), the matrix of the weights ((1) = [O%]T) of the criteria is
obtained.
%
= (21)
@ %

Stage 3: Final weighs of the criteria based on FF-CIMAS and FF-LODECI methods.
Step 3-1: The criteria weights obtained by the subjective criteria weighting method FF-
CIMAS method and the objective criteria weighting method FF- LODECI method are

combined with Eq. (22) to obtain the final criteria weight matrix (w = [w;]T).

wy =+ (- Dog E=1,.,T) (22)

Where 4 is the parameter expressing the degree of importance of the subjective criterion
weights and A € [0,1].
Stage 4: Ranking the alternatives based on FF-RADAR method [20-21]

Step 4-1: The initial decision matrix (C = [th] ) is created as in Step 2-4.

AxT
Step 4-2: Using Eq. (23), the maximum proportion matrix is obtained separately for the
benefit and cost criteria.

maxC,
a at

— Ca
AT omaxCy oy

Cop  minCy

a , for benefit criteria

RADAR = { (23)

Cay
minC.
g

ap = Ty oy

Cop  minCy

, for cost criteria

Step 4-3: Using Eq. (24), the minimum proportion matrix is obtained separately for the
benefit and cost criteria.
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Cay
min Cay e
Bar = E L — , for benefit criteria

Cayp  minCyy

RADAR =/ (24

maxC,
A AT

— Car I
Bux = ey, o for cost criteria

Cay  minCyy

Step 4-4: The values obtained in Step 4-2 and Step 4-3 are used in Eq. (25) to obtain
the empty range matrix.

Bay = |ay — By (25)
Step 4-5: The relative relationship matrix is obtained using Eq. (26).
gy
=—1— 26
B Byt (26)

Step 4-6: The relative relationship matrix and the criteria weights are multiplied as in
Eq. (27) to obtain the weighted relative relationship matrix.

Iy = Iy * wy 27)

Step 4-7: Eq. (28) is used to calculate the aggregated ranking index of the alternatives.
The alternative with the highest value among the obtained values becomes the best
alternative.

_ mon(sam)

= (28)
2 z:;T=1 LLPY:

4. CASE STUDY

This case study was conducted to support the selection of a tractor for a green port in
Tiirkiye. A panel consisting of experts specializing in green port operations was established
to guide the evaluation process. A total of eight criteria (two quantitative and six qualitative)
were identified to assess the alternatives. Additionally, five alternative tractor models suitable
for green port operations were selected. This section presents detailed information regarding
the experts’ levels of expertise, descriptions of the evaluation criteria, and the specifications
of the alternative tractors considered in the analysis.

4.1. Decision Model
4.1.1. Experts

A panel of ten experts working in green port operations in Tiirkiye was formed for this
study. These experts possess varying levels of experience and domain-specific expertise.
The composition of the expert panel based on their expertise levels is presented in Table 3.
Through face-to-face interviews conducted with the expert group, the tractor alternatives
were evaluated in accordance with the established criteria. This collaborative assessment
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ensured that both technical knowledge and practical experience were incorporated into the
decision-making process.

Table 3 The expert group for assessing the green maritime transport performance

criteria

Experts Expertise Level Professions
€, Medium-M Specialists in Green Port Operations-1
€, Good - G Specialists in Green Port Operations-2
€3 Good - G Specialists in Green Port Operations-3

€4 Very Good - VG Specialists in Green Port Operations-4
€5 Very Good - VG Specialists in Green Port Operations-5
€5  Medium-M Specialists in Green Port Operations-6
€7 Very Good - VG Specialists in Green Port Operations-7
€g Very Good - VG Specialists in Green Port Operations-8
€9 Good - G Specialists in Green Port Operations-9
€19 Very Good - VG Specialists in Green Port Operations-10

4.1.2. Criteria Definition

In this study the definition of the criteria for the terminal tractor selection for green
ports is based on several technical, economic, environmental and operational factors. The
criteria are individually explained as follows:

Towing Capacity (ton) (n; —t,): It is referred to as the maximum horizontal pulling
force that can be safely and effectively exerted by the tractor to pull handling equipment
or connected trailers. In full trailer models commonly used in ports, the load is completely
supported by the trailer itself, and the terminal tractor merely provides the pulling force
necessary to counteract friction as well as rolling resistance [14]. Towing capacity is a
crucial performance indicator for ensuring that tractors can maneuver efficiently in tight
spaces, maintain safe speeds under load, and endure the demanding, continuous operation
cycles typical of terminal environments [35]. Additionally, having an adequate towing
capacity is essential to maintaining smooth traffic flow and achieving high operational
efficiency within the terminal [36].

Turning Radius (m) (n, — t,): It is an important measure of performance that defines
the smallest circular path a tractor-trailer combination can negotiate and has a direct impact
on maneuverability within the limited areas typical of ports and terminals. According to
Ma et al. terminal tractor design prefers narrow working spaces, frequent steering, and
complex road surfaces, all needing a smaller turning radius for effective operation [14].
Reducing the turn radius allows terminal tractors to better fit into operational requirements
where available space is narrow, such as trailer alignment, yard stacking, or vessel loading
operations.

Energy Efficiency (L —t3): It is a term that defines the capability to save energy
consumption while maintaining the optimum working performance. As Brzezinski et al.
pointed out, energy efficiency at terminals is crucial since handling vehicles like tractors
can significantly affect the terminal daily energy requirement [37]. In addition, Martinez-
Moya et al. demonstrate that yard tractors generate substantial amounts of CO. emissions
and energy consumption in container terminals, underlining the need for more energy-
efficient models and operational practices [38]. In this context, transitioning from diesel-
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powered to electric or hybrid has been identified as a key strategy to enhance energy
efficiency while supporting environmental goals.

Emission Level (L, — t,): It refers to the quantity and mixture of pollutants released
into the environment during operation, playing a critical role in contributing to air quality
around port terminals. Terminal tractors have been identified as a major port-associated
emission source, particularly CO. and NOx, often accounting for over 25% of overall
emissions at major terminals [4]. Emission rates vary depending on the fuel type: diesel
tractors tend to have higher NOx, and PM emissions compared to liquefied natural gas
(LNG) or renewable natural gas-powered tractors [5]. In addition, electrification of
terminal tractors has been proposed as a feasible alternative to lower life-cycle emissions
significantly, especially in regions aiming for net-zero port operations. improvement in
emission control technologies and cleaner energy sources are critical pathways to achieving
sustainable and low-emission port operations [38].

Maintenance Cost (L3 —ts): It refers to the total expenses incurred to ensure the
continuous operational reliability, safety, and longevity of the terminal tractors, covering
activities such as regular inspections, repairs, part replacements, and preventive maintenance.
Maintenance cost is a significant part of total lifecycle expenses, especially when
transitioning to electric terminal tractors, where although the upfront investment is high, the
simplified mechanical systems can substantially reduce ongoing maintenance needs.
Traditional terminal tractors driven by diesel engines, while more affordable to purchase
initially, become more expensive in terms of maintenance costs because of such variables
as engine deterioration, transmission overhaul, and greater component failure under port
use [39]. Additionally, operational challenges such as tire damage, particularly in harsh
terminal environments, contribute notably to the maintenance costs, necessitating
systematic inspection and failure analysis programs.

Total Cost of Ownership (TCO) (L, —tg): It considers all the direct and indirect
expenses of purchasing, operating, maintaining, energy consumption, and final disposal of
the vehicle for its life cycle. Terminal tractor TCO analysis points out that while electric or
fuel cell-based models cost more to buy than their diesel equivalents, they can reach the
same cost after a few years due to the lower maintenance and fuel expenses [1]. According
to Olivari et al., terminal tractor electrification is more economically viable when taking
into consideration possible future advancements in battery technology and forecasted
decreases in energy prices [11].

Ease of Use (Lg —t,): It refers to the degree to which operators can efficiently,
comfortably, and safely operate the control systems and interfaces of the vehicle during
various cargo handling activities. In port environments, where frequent maneuvering and
coupling/decoupling of trailers is required, an ergonomic and user-friendly tractor design
is crucial in order to prevent operator fatigue and reduce operational errors [14]. Recent
studies on dashboard and control interface design for electric terminal tractors emphasize
that user-centered design approaches, such as employing familiar graphical elements and
minimizing unnecessary complexity, significantly improve driver comfort and operational
smoothness during the transition from diesel to electric models.

Port Infrastructure Suitability (Lg — tg): It refers to the compatibility between the
vehicle's operational requirements with the port environment's design and technical
requirements. As Ma et al. have pointed out, terminal tractors must be designed for narrow
working sites, complex road surfaces, frequent breaking, and long continuous working
hours, so their design is highly coupled with the physical characteristics and operation
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flows of the terminal [14]. Moreover, Yang observes that the adoption of green and
automated technologies in terminals requires a high degree of infrastructural adjustment,
particularly about energy supply networks and layout planning optimization [40].
Infrastructure readiness also affects how well electric, or hybrid tractor adoption can be
achieved, since charging infrastructure, turning radii, and trailer handling areas must be
adapted to tractor design specifications.

4.1.3. Alternatives Definition

In the specific case study addressing the issue of the terminal tractor selection for green
ports, the potential options are explained below:

Kalmar Ottawa (a,): These terminal tractors have a high usage rate in terminal
operations worldwide. The Kalmar Ottawa T2 model stands out with its compact chassis
design, optimized field of view and fast maneuverability. The modular structure of the
vehicle provides easy maintenance and low total cost of ownership [41].

Terberg YT (a,): These series terminal tractors are durable and flexible tractors widely
preferred in European and Asian markets. Models such as YT193 and YT220 offer high
efficiency in narrow port areas thanks to their strong chassis structure and optimized
turning circle. The vehicles are equipped with an adjustable fifth wheel structure that adapts
to different trailer heights [42].

TICO Pro-Spotter (a3): It has a high market share especially in domestic terminal and
storage areas in the United States. The Pro-Spotter series is known for its spacious cabin
design and durable powertrain systems that focus on operator comfort. The use of Volvo
Penta electric powertrains in the latest generation models has increased the energy
efficiency of the vehicles and reduced maintenance costs [43].

Capacity TJ Series (a,): They are durable vehicles designed specifically for heavy-duty
transportation and high-density terminal operations. Models such as the TJI5000 and TJ6500
offer a wide range of usage flexibility with both off-road and DOT (highway) compliant
versions. The new generation models developed by Capacity Trucks feature high-lift capacity
hydraulic fifth wheel systems and optimized chassis weight distribution [44].

The MAFI T 230e (ag): It is specially designed for sustainable port operations as a fully
electric terminal tractor. It maximizes energy efficiency thanks to its high-capacity lithium-
ion batteries and regenerative braking system. MAFI has significantly improved operator
ergonomics in the T 230e model by offering low chassis height and increased visibility [45].

4.1.4. Evaluating Tractor using the FF-Hamacher-CIMAS-LODECI-RADAR
Hybrid Model

The tractor selection process based on expert evaluations was conducted by
sequentially applying the steps of the FF-Hamacher-CIMAS-LODECI-RADAR hybrid
method. The expert proficiency levels are presented in Table 4, while the experts’
evaluation vectors for the criteria are provided in Table 5. The expert-based evaluation
matrix of the tractor alternatives according to the criteria is shown in Table 6. As a result
of the application, the criteria weight vector is presented in Table 7, and the tractor ranking
vector is given in Table 8. According to the results, Towing Capacity was identified as the
most significant criterion, and the MAFI T 230e was determined to be the highest-
performing tractor alternative.
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Table 4 The significant levels of the experts
Expert Experience _FF Numbers Sco.re s
x+(f) ve(f) Functions
€, Medium - M 0.42 0.52 0.47 0.0709
€, Good-G 0.73 0.10 0.69 0.1054
€3 Good-G 0.73 0.10 0.69 0.1054
€, Very Good - VG 0.82 0.50 0.71 0.1084
€5  Very Good - VG 0.82 0.50 0.71 0.1084
€, Medium - M 0.42 0.52 0.47 0.0709
€;  Very Good - VG 0.82 0.50 0.71 0.1084
€g  Very Good - VG 0.82 0.50 0.71 0.1084
€9 Good-G 0.73 0.10 0.69 0.1054
€0 Very Good - VG 082  0.50 071  0.1084
Table 5 The criterion assessment matrix with LVs
Experts b1 =M1 Bp—TMp t3—l;  Ba—ly ts—ls Be—bs Br—ls g —lg
€1 H VH VH H A H ExH VH
€, VH VH EH AA AA H EH VH
€3 H H H AA H H EH H
€4 AA VH H H H AA VH H
€5 H H VH H A H ExH H
€6 VH H VH A A H VH VH
€ H VH H H A AA VH H
€g H H VH A H H EH VH
€9 AA VH VH AA AA AA ExH H
€10 AA VH H A AA AA EH AA
Table 6 The initial decision matrix with linguistic expressions
Experts  Alternatives  t3—Lb;  t4—by ts—Lbs tg—Lby t7—Lls tg—1lg
a, VH EH AA VH AA H
a, EH EH VH H AA H
€1 as H EH H EH H AA
Ay VH EH A A BA A
as EH ExH H VH H H
a, VH VH H EH AA H
a, EH VH VH VH AA EH
€ as H VH VH VH H A
Ay VH VH BA A AA AA
as EH EH AA VH H VH
a, VH EH AA H H H
a, EH EH H H VH H
€3 as H EH H EH H AA
a, H EH A A BA AA
as VH ExH H H VH VH
a, EH EH VH AA H EH
a, EH EH H H H VH
€4 as VH EH H VH AA AA
Ay H EH A AA AA H
as EH ExH H VH H VH
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a, EH EH VH AA VH EH
a, EH EH H H VH VH
€s as VH EH H VH AA AA
a, H EH AA H H H
a. EH ExH VH H VH H
a, EH H VH H VH VH
a, EH H AA H VH VH
€s as H H H VH AA AA
a, H H AA H H H
as EH VH AA VH AA H
a, EH EH VH VH VH VH
a, VH EH H VH H VH
€ as H EH VH VH H H
a, AA EH AA H H H
as VH ExH VH H AA H
a, EH VH VH VH EH VH
a, EH VH VH H H H
€g as VH VH VH VH H H
a, H VH H H H VH
as EH EH A VH H VH
a, H VH H EH VH EH
a, H VH H VH AA VH
€ as AA VH H EH AA VH
a, A VH AA VH AA EH
as H EH VH AA A EH
a, EH EH H VH A AA
a, EH EH A EH A VH
€10 a, VH EH VH ExH AA A
a, EH EH H H BA A
as EH ExH H EH A AA

Table 7 The final criteria weights

Bp—=M1  Bp—My  b3—b; o Ba—ly  bs—by  Be—bys By —bs Bg—1lg

wy 0.1549 0.0857 0.1070 0.1156 0.1297 0.1433 0.1196 0.1443

Rank 1 8 7 6 4 3 5 2

Table 8 The aggregated ranking index matrix

Kalmar Ottawa Terberg YT TICO Pro-Spotter Capacity TJ Series The MAFI T 230e

(a1) (az) (az) (aq) (as)
qu 0.9600 0.9940 0.8920 0.9390 1.0000
Rank 3rd 2nd Sth 4th ]st
5. RESULTS

In this study, a novel hybrid decision-making methodology (FF-Hamacher-CIMAS-
LODECI-RADAR) was proposed and implemented to identify the most suitable tractor
among various cargo handling equipment alternatives for green port operations. The
methodology was applied to a real-life case involving a port currently operating in Tiirkiye.
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The decision-making model involved ten expert decision-makers, eight evaluation criteria,
and five different tractor alternatives.

As a result of the application of the hybrid method, three primary outcomes were
obtained:

Determination of Criterion Importance Levels: Through the integration of the FF-
Hamacher-CIMAS-LODECI methodology, the weights of the evaluation criteria were
calculated by combining both subjective (expert opinions) and objective (data-driven)
perspectives. The weights of the criteria as follows: “Towing Capacity (ton) (%)
(wy = 0.1549) > Port Infrastructure Suitability (tg) (wg = 0.1443) > Total Cost of
Ownership (TCO) (+g) (wg = 0.1433) > Maintenance Cost (tg) (wg = 0.1297) > Ease
of Use (t;)(w, = 0.1196) > Emission Level (t,) (w, = 0.1156) > Energy Efficiency
(t3) (w3 = 0.1070) > Turning Radius (m) (t,) (w, = 0.0857)” According to the final
importance ranking of criteria, Towing Capacity (ton) was identified as the most influential
factor in the decision-making process, while Turning Radius (m) was ranked as the least
important. This outcome can be attributed to the specific characteristics of the port under
consideration; namely, the port area offers sufficient spatial allowance, thus diminishing
the criticality of turning radius in operational scenarios. Conversely, towing capacity
directly reflects the operational power and efficiency of the tractors, indicating its
fundamental role in sustainable cargo handling processes.

Ranking of Tractor Alternatives: Using the RADAR method, tractor alternatives were
evaluated and ranked according to their performance across the determined criteria. The
ranking of the tractors as follows: “The MAFI T 230e (as) (s = 1.000) > Terberg YT
(a;) (Ps =0.994) > Kalmar Ottawa (a,) (P, = 0.960) > Capacity TJ Series (a,)
(Y4 = 0.939) > TICO Pro-Spotter (a3) (s = 0.892)” The final ranking revealed that the
MAFI T 230e tractor emerged as the most suitable alternative for green port implementation.
This model was followed by other alternatives in descending order of performance, consistent
with the aggregated performance scores derived from the decision model.

Validation of Methodological Applicability: The successful application of the FF-
Hamacher-CIMAS-LODECI-RADAR hybrid methodology demonstrated its capability to
effectively support multi-criteria decision-making in the selection of eco-efficient cargo
handling equipment. The method enabled a transparent, structured, and rigorous evaluation
process by integrating fuzzy logic with subjective and objective weight derivation
techniques, as well as a robust ranking algorithm.

In conclusion, the findings of this study underscore the practical relevance and decision-
making robustness of the proposed hybrid methodology. By guiding the selection of the most
appropriate tractor aligned with green port objectives, the method provides a replicable
framework for other ports seeking to enhance their sustainability performance through
informed equipment procurement strategies.

5.1. Sensitivity Analysis for Robustness

To validate the reliability and robustness of the tractor selection results obtained
through the FF-Hamacher-CIMAS-LODECI-RADAR hybrid methodology for green port
operations, a series of sensitivity analysis scenarios were designed. The primary objective
of these scenarios was to observe the stability of the results under varying conditions and to
assess the resilience of the proposed method against changes in methodological parameters.
Within this scope, three distinct sensitivity scenarios were developed and analyzed.
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Scenario 1 - Impact of Varying Weighting Techniques: This scenario was designed to
examine how changes in the relative contribution of the FF-Hamacher-CIMAS and FF-
Hamacher-LODECI weighting techniques would influence the final ranking of tractor
alternatives. A parameter denoted as A was introduced to represent the contribution
coefficient of the FF-Hamacher-CIMAS method in the overall weighting process. By
incrementally adjusting the A parameter from 0 to 1, the model simulated varying levels of
influence from the respective methods.

The findings, illustrated in Fig. 2 (tractor performance scores) and Fig. 3 (ranking orders),
reveal that when the A coefficient approaches zero (indicating minimal contribution from the
CIMAS method) the highest-ranking tractor shifts to Terberg YT. Conversely, as the influence
of CIMAS increases (1 — 1), The MAFI T 230e regains its position as the top performer. The
analysis concludes that an A value of 0.5 yields the most balanced outcome, suggesting that
equal contributions from both weighting methods enhance the objectivity and consistency of
the decision-making process.

Scenario 2 - Influence of Qualitative vs. Quantitative Criteria: The second scenario was
developed to test the performance of the hybrid method when only qualitative or
quantitative criteria were used independently in the decision model. This aimed to evaluate
the hybrid methodology's capability to integrate both types of data simultanecously, a key
advantage in complex multi-criteria decision environments.

According to the results, depicted in Fig. 4 (performance scores) and Fig. 5 (alternative
rankings), if only qualitative criteria were considered, Kalmar Ottawa would have been
selected as the best alternative. Conversely, if only quantitative criteria were employed,
Terberg YT would have emerged as the top choice. However, when both types of criteria were
integrated using the proposed hybrid method, The MAFI T 230e was consistently identified as
the most suitable tractor. These findings emphasize the methodological limitation of relying
solely on one data type and demonstrate how the hybrid approach effectively mitigates
potential decision-making biases, ensuring a more holistic and accurate evaluation.
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Scenario 3 - Evaluation of Tractor Suitability under Alternative Conditions: The third
sensitivity scenario aimed to verify the consistency of the selection of The MAFI T 230e
as the top-performing tractor by testing its dominance across various sub-scenarios. In each
sub-scenario, the lowest-performing tractor (based on the original ranking) was systematically
removed from the model, and the evaluation process was repeated to identify the new top
performer.

As shown in Fig. 6 and summarized in Table 9, The MAFI T 230e remained the top-ranked
tractor across all sub-scenarios, thereby confirming its robust performance and suitability for
green port operations under varying configurations. This consistency reinforces the accuracy
and stability of the proposed hybrid methodology in identifying optimal alternatives.
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Table 9 The ranks according to third sensitivity scenario

SAS-3 scenarios Ranking Best Performance
Result as > a; > aq > a4 > az The MAFI T 230e
SAS-3a: Removed a; as > a, > aq > ay The MAFI T 230e
SAS-3b: Removed a4 a5 > a, > a4 The MAFI T 230e
SAS-3c: Removed aq ag > a, The MAFI T 230e

In conclusion, the outcomes of all three sensitivity scenarios confirm the robustness,
reliability, and adaptability of the FF-Hamacher-CIMAS-LODECI-RADAR hybrid
methodology. The consistent identification of the same optimal tractor under different
analytical conditions validates the method as an effective decision-support tool for equipment
selection in sustainable port management. Therefore, the proposed hybrid methodology can be
confidently considered as an ideal approach for supporting strategic decision-making in the
context of green port development.
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5.2. Comparative Analysis for Consistency

To evaluate the effectiveness and reliability of the proposed FF-Hamacher-CIMAS-
LODECI-RADAR hybrid method for tractor selection in green port operations, a comparative
analysis was conducted using alternative ranking methodologies widely recognized in the
literature. Specifically, fifteen alternative multi-criteria decision-making (MCDM) methods
were applied to the same dataset to derive tractor performance scores and corresponding
rankings. These methods include RADAR 1I [46], RAWEC [47,48], CORASO [49], ALWAS
[50], AROMAN [51], RATGOS [52], MABAC [53-55], MARCOS [56], RAM [57], SAW,
WASPAS [58], ARLON [59], OPARA [60], WEDBA [61], and COCOSO [62-64].

The ranking outcomes derived from these methods are presented in Fig. 7. Upon
examination of the results, it was found that the top-performing tractor (The MAFI T 230e)
and the lowest-performing tractor (7/CO Pro-Spotter) remained consistent across all
fifteen methods, thereby confirming the robustness of these alternatives within varying
methodological contexts.

However, minor deviations were observed in the middle ranks. Specifically, four of the
methods (MABAC, MARCOS, WEDBA, and COCOSO) produced a slight change in the
order between the third-ranked tractor (Kalmar Ottawa) and the fourth-ranked tractor
(Capacity TJ Series) when compared to the proposed hybrid method. This variation
highlights the sensitivity of certain methods to slight differences in performance criteria
weighting and aggregation procedures.

Furthermore, a correlation analysis was conducted to examine the statistical
relationship between the performance scores of tractors as determined by the proposed
hybrid method and each of the alternative methods. The correlation coefficients are
presented in Table 10. The results reveal that the FF-Hamacher-CIMAS-LODECI-
RADAR hybrid method demonstrates a very high level of correlation with all alternative
methods, indicating strong consistency and alignment in decision outcomes.

In summary, the findings from this comparative analysis support the validity and
reliability of the proposed hybrid methodology. Its ability to produce consistent rankings
across a wide range of established MCDM methods reinforces its suitability as a robust
decision-support tool for selecting environmentally suitable tractors in green port operations.
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Fig. 7 Ranks according to comparative analysis
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Table 10 The correlation analysis results

Z2 = @) Z w Q 1] ®)
Methods 3 % 2 2 2 <§t $ 2 S < & S s z

o - = = o £ 2 % 2 5 2 3 < 2 9

E 220223552 52%68¢z2°¢8
The results 1.00 0.92 0.98 0.98 0.95 1.00 0.99 0.98 0.98 0.99 0.98 0.98 0.99 0.97 0.94 0.97
RADARII 1.00 0.87 0.87 0.99 0.95 0.89 0.89 0.87 0.90 0.87 0.87 0.94 0.87 0.80 0.88
RAWEC 1.00 1.00 0.89 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.99 1.00
CORASO 1.00 0.89 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.99 1.00
ALWAS 1.00 0.98 0.91 091 0.89 0.92 0.89 0.90 0.95 0.89 0.82 0.89
AROMAN 1.00 0.98 0.97 0.97 0.98 0.97 0.97 0.99 096 0.92 0.96
RATGOS 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.98 1.00
MABAC 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.98 1.00
MARCOS 1.00 1.00 1.00 1.00 0.98 1.00 0.99 1.00
RAM 1.00 1.00 1.00 0.99 1.00 0.98 0.99
SAW 1.00 1.00 0.98 1.00 0.99 1.00
WASPAS 1.00 0.99 1.00 0.99 1.00
ARLON 1.00 0.98 0.95 0.99
OPARA 1.00 0.99 1.00
WEDBA 1.00 0.99
COCOSO 1.00

6. CONCLUSION

This study developed a decision support system aimed at selecting the most suitable tractor
for green port operations. The proposed system integrates the FF-Hamacher-CIMAS-LODECI-
RADAR hybrid method, which effectively combines subjective and objective criteria weighting
through fuzzy Hamacher operations and utilizes the RADAR technique for ranking alternatives.
The novelty of this approach lies in the simultaneous inclusion of both qualitative and
quantitative criteria within a unified decision-making framework, enabling a comprehensive
evaluation of alternative tractors tailored to the specific requirements of green ports.

The applicability of the hybrid method was demonstrated through a case study involving a
green port in Tiirkiye, where a panel of ten experts evaluated five tractor types across eight
criteria, including both technical and environmental factors. The findings identified The MAFI
T 230e as the optimal tractor choice, with towing capacity emerging as the most significant
criterion and turning radius as the least influential, justified by the expansive operational area
of the port. Sensitivity analyses further confirmed the robustness and reliability of the model,
while comparative assessments with fifteen alternative methods showed strong consistency and
high correlation, validating the effectiveness of the proposed system.

Opverall, this research contributes a novel, reliable, and practical decision support tool for
green port management, facilitating informed and balanced equipment selection that aligns with
sustainability goals. The results offer valuable insights for port authorities and industry
stakeholders, supporting the advancement of environmentally conscious operations. Moreover,
the robustness of the proposed hybrid method can be further reinforced through comparative
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analyses involving newly developed techniques [65] and alternative comparative frameworks
[66]. Future research may also enhance the model’s applicability by adapting it to diverse
operational contexts and integrating additional evaluation criteria, thereby improving the
effectiveness of decision-making processes in sustainable port logistics.
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