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Abstract. In this paper, a robust control technique based on μ-synthesis is employed in 

order to investigate the vibration control of a funnel-shaped structure that is used as the 

inlet of a magnetic resonance imaging (MRI) device. MRI devices are widely subjected to 

the vibration of the magnetic gradient coil which then propagates to acoustic noise and 

leads to a series of clinical and mechanical problems. In order to address this issue and 

as a part of noise cancellation study in MRI devices, distributed piezo-transducers are 

bounded on the top surface of the funnel as functional sensor/actuator modules. Then, a 

reduced order linear time-invariant (LTI) model of the piezolaminated structure in the 

state-space representation is estimated by means of a predictive error minimization 

(PEM) algorithm as a subspace identification method based on the trust-region-reflective 

technique. The reduced order model is expanded by the introduction of appropriate 

frequency-dependent weighting functions that address the unmodeled dynamics and the 

augmented multiplicative modeling uncertainties of the system. Then, the standard D-K 

iteration algorithm as an output-feedback control method is used based on the nominal 

model with the subordinate uncertainty elements from the previous step. Finally, the 

proposed control system implemented experimentally on the real structure is to evaluate 

the robust vibration attenuation performance of the closed-loop system. 
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1. INTRODUCTION 

MRI is an influential method that is broadly used in medical examinations and hospital 

clinics. The current research in the MRI technology development is mostly concentrated on 

improving high static magnetic field strength while keeping the speed of the current 

switching of the gradient coil at considerable levels. This results in a higher quality of 

scanning concerning the internal organs of the patient [1]. A key drawback in the 

development of these medical instruments is identified to be the acoustic noise that is 

propagated within the operational scanning [2]. One of the sources of the acoustic noise that 

is reported by Mechefske et al. is the gradient coil [3]. The gradient coil is used to propagate 

measured variations in the 3D magnetic field which permits localized image slices [3, 4]. A 

high acoustical noise level can engender heightened anxiety, noise-induced hearing loss, and 

possible permanent hearing impairment [5, 6]. The vibration of the gradient coil can also 

affect the image quality and resolution [7]. McJury et al. studied impair communication 

problems between the patient and the hospital staff due to the acoustic noise generated by 

MRI devices and proposed an active noise control (ANC) technique based on the generation 

of destructive anti-phase interference with MRI noise [8]. Cho et al. investigated the 

functionality of the visual and cortex motor of the GE Signa 1.5-T EPI commercial MRI and 

KAIS 2.0-T research MRI devices in the presence of the sound noise due to gradient 

pulsing. They identified the typical behavior of the noise signal that is induced by the 

scanner [9]. Price et al. studied the acoustic noise of various MRI devices with a magnetic 

field strength range of 0.2-3 T and measured the noise level between 82.5-118.4 dB [10]. 

Edelstein et al. studied the acoustic noise due to the vibrations of the gradient assembly and 

showed the primary effect of the eddy-current-induced vibration of cryostat inner bore and 

the RF-body-coil in a 1.5 T cylindrical MRI scanner. They reduced the noise level that is 

transmitted through the vibration of the structure by blocking the signal pathways carrying 

the noise to the region of interest [11]. Mechefske et al. proposed the design of a passive 

acoustic liner and the gradient coil in order to suppress the noise level for the 4-T 

Varian/Siemens Unity INOVA whole-body MRI system [12]. Active vibration control as an 

effective solution can be employed to block the pathways that carry and transmit the noise in 

the whole MRI structure [13]. Mechefske and Shao considered the acoustic sound radiated 

from the MRI device under the Lorentz forces and validated the results with the boundary 

element method (BEM) [14]. Pribil et al. compared the spectral properties of an acoustical 

noise which is produced by the mechanical vibration of the gradient coils during the 

scanning in the open-air MRI equipment working up to 0.2 T [15]. 

The MRI shell is subjected to the excitation of the uninterrupted pulse Lorentz force 

of the coils. The study of MRI gradient coil relating to the sound noise was first 

conducted by Hurwitz et al. at the very basic level [16]. Qiu and Tani tackled the active 

vibration suppression due to the Lorentz force between the pulse current applied to the 

coil and to the main magnetic field of the circular cylindrical shell that are equipped with 

MRI devices [17]. Yao et al. conducted a comprehensive investigation of the vibration 

properties of the coil using the finite element approach (FEA) and experimental testing [1]. 

Nestorović et al. implemented an optimal LQ tracking controller with additional dynamics 

for vibration suppression of the funnel-shaped shell MRI structure [18]. They designed an 

additional model reference adaptive controller in order to compare the performance of the 

LQ controller experimentally [19]. Jaensch and Lamperth designed a micro-positioning 

stabilizing structure for open pre-polarization MRI scanner with piezoelectric actuators by 
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means of PID controller [20]. Roozen et al. employed seismic masses which are actuated 

utilizing piezo-transducers by aiming at impacting the response of the gradient coil in order 

to actively control the vibration [21]. The application of hybrid control system consisting of 

both the feedback and feedforward control channels in reducing the acoustic noise of 4-T 

Varian Unity INOVA MRI scanner is studied by Li et al. [22]. 

In all of the aforementioned studies, the vibration and acoustic noise cancellation are 

carried out by passive methods, model-free controllers, or a deterministic model-based 

control approach. Although the model-free control methods are easy to implement, they are 

mostly limited in the performance especially due to a large working frequency of the MRI 

scanners and low order dynamics of the controller [23, 24]. In addition, the active control 

methods that are previously carried out are based on a deterministic reduced order models 

that are obtained by experimental-, FEM-, and BEM-based identification techniques. 

However, due to the limitations of the identification methods [25], the obtained model is 

subjected to modeling uncertainties which should be addressed by the controller. To the best 

knowledge of the authors of this article, no research is conducted to investigate the vibration 

suppression excellence by means of robust control methods. The rest of the paper is 

organized as follows: in section 2, the experimental configuration of the multi-input/multi-

output (MIMO) structure that is used in this study for modeling and control design purposes 

is introduced. Then, a short overview of the identification method which is used in this paper 

is presented in section 3. The interested reader can refer to [26-29]. The robust output 

feedback control synthesis for the reduced order model that includes the input weighting 

functions and uncertain elements is proposed in section 4. Finally, the experimental 

implementation and the numerical simulation results are presented in section 5. 

2. EXPERIMENTAL SETUP 

Since the ultimate goal of this research is vibration suppression, distributed piezo-

transducers are bounded on the top surface of the funnel as depicted in Fig. 1. In order to 

address the actuator/sensor placement, the results are used based on the research conducted by 

DLR Braunschweig [30].  

 

Fig. 1 Distribution of the piezo-transducers on the surface of funnel 



40 A. OVEISI, T. NESTOROVIĆ 

The structure consists of the funnel-shaped MRI inlet and six groups of sensor/actuator 

elements (L1, L2, L3, R1, R2, and R3). Each group of transducers consists of four individual 

paired actuator-patches and one sensor element (PZT film Sonox P53). Each piezo-

transducer is embedded in a polymer matrix for electrical insulation and it has the overall 

length, width, and thickness of 50, 25, and 0.2 mm, respectively. In order to reinforce the 

actuation power of the function modules, the second set of actuators are bounded on the top 

of the first set. The base of the funnel is fixed on a vibration isolation table with a set of 

screws (see Fig. 1). The measured output signals of the system are obtained through the six 

piezo-sensors that are placed on the top surface of the funnel as shown in Fig. 2.  

 

Fig. 2 Sketch of the experimental setup 

dSPACE digital data acquisition (DAQ) with DS1005 PPC board is employed to 

compile the simulated disturbance and the designed control system in real-time analysis. 

The connection of the DAQ system with the actuators/sensors and the mainframe is 

provided by an analog to digital converter (ADC dSPACE DS2004) and a digital to 

analog converter (DAC dSPACE DS2102). Due to the different working voltage of 

dSPACE DAQ (±10 V) compared to the transducers ([-60, 200] V), an amplifier (PI E-

500) is utilized to amplify the signal generated by DAQ with constant gain of 100 and 

similarly, the second amplifier with maximum input current up to 5 A (Brüel&Kjær 

amplifier type 2706) is utilized to amplify the generated signal by DAQ system for the 

vibration exciter (Brüel&Kjær shaker type 4809). The control law of the active vibration 

system is realized on the SIMULINK platform and then compiled regulator law with 

standard fixed step explicit ODE5 solver (Dormand-Prince method [31]) is downloaded 

to the dSPACE DAQ in real-time by means of experimental rig shown in Fig. 3.  
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Fig. 3 Experimental rig of the closed-loop system 

The simulated disturbance acts on the structure by the shaker which is connected to 

the funnel by a force transducer (Brüel&Kjær DeltaTron Type 8230-001) with the 

sensitivity of 22 mV/N. This transducer measures the mechanical force applied to the 

structure that is used as the definition of the uncertainty weighting function of input 

disturbance. Furthermore, it should be mentioned that in the rest of the paper, due to the 

computational limitations, only four sets of actuators and sensors (L1, L2, R1, and R2) are 

activated for the modeling and control design purposes. 

3. SYSTEM IDENTIFICATION 

In this research, predictive error minimization (PEM) subspace identification 

algorithm [26] in the time domain for continuous LTI systems is utilized to estimate the 

system matrices from input-output data of the mechanical configuration shown in Fig. 2. 

The process begins with collecting data (voltage) from the input/output channels of the 

open-loop experimental setup. This includes the external input mechanical excitation 

channel that is realized by shaker (Bw) and the input piezoelectrical excitation channel for 

applied control effort by means of functional modules (B). Accordingly, the reduced order 

deterministic MIMO LTI system in the state-space framework which represents the 

dynamics of the funnel structure with distributed piezo-transducers in a constraint 

frequency range can be constructed through the trust-region-reflective Newton technique 

as [27, 32-34] 
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 are the state, control input, disturbance input, 

and output vectors, respectively. In addition, A, B, Bw, C, and D correspondingly represent 
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the matrices of states, control inputs, input disturbances, outputs, and feedforward. 

Furthermore, wn stands for the measurement noise which is considered to be an 

uncorrelated zero-mean Gaussian stochastic process with constant power spectral density 

(Wn) so that { } ( ),T

n n nE w w W t    in which E is the expectation operator [29]. 

4. µ-SYNTHESIS 

The coupled piezo-laminated funnel shape structure as shown in Fig. 4 has five inputs 

including one disturbance channel and four actuation signals. The measured output of the 

system consists of four channels associated with four piezo-sensors bounded on the 

structure. The modeling uncertainty for the input matrix and input disturbance matrix are 

assumed to be multiplicative unstructured uncertainty [35].  

 

Fig. 4 Closed-loop system with multiplicative uncertainty 

In Fig. 4 K(s) the controller is represented as designed on the basis of the output 

feedback µ-synthesis. n stands for the white Gaussian output measurement noise, respectively. 

In addition, Wdist, WRdist, Wn, and WRi (i = 1, 2, 3, 4) are the frequency dependent norm-bounded 

weighting function for external input disturbance signal, the multiplicative uncertainty of 

disturbance, a high pass filter representing the activation frequency of the noise signal, 

and weighting function of the actuation uncertainty, respectively. Also, as a standard 

multiplicative representation, it is assumed that ||dist||  1 and ||act i||  1, i = 1,...,4  

[36]. For the sake of applying the structured singular value theory to the plant under 

study, the signal configuration in Fig. 4 should be recast into linear fractional 

transformation (LFT) [37] representation that is shown in the standard form in Fig. 5. 
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Fig. 5 LFT representation of the control system 

In Fig. 5, the plant is an open-loop interconnection which encloses certain elements 

such as the nominal structure model and all the weighting functions.  -block 

parameterizes all of the defined uncertain elements in the previous representation of Fig. 

4. The inputs to the MIMO plant are allocated into three standard groups in which w 

represents the perturbation and, similarly, the outputs are grouped into three signals with e 

representing the error signal. The LFT representation covers the set of all the control 

systems FU so that {F ( ( ), ) : max [ (j ) 1]}U P s


    with ω being the frequency so that for 

perturbation Δ, stabilizing controller K(s) exists that satisfies the following equation: 

 F [F ( ( ), ), ( )] F [F ( ( ), ( )), ] 1.L U U LP s K s P s K s
 

     (2) 

For given controller K(s), constrained H∞-index function of Eq. (2) with the predefined 

augmented uncertainty structure of LFT representation in Fig. 5 can be checked by 

examining the structured singular values of the closed-loop system if and only if K(s) 

satisfies the following constraint over frequency ω  

 max [F [F ( ( ), ), ( )]] 1.L U P s K s    (3) 

The standard µ-synthesis minimizes the maximum structured singular value of the close-loop 

system over frequency: min{max[ [F [F ( ( ), ), ( )]]( )], stabilizing ( )}L U P s K s j K s   . In order 

to solve the µ-synthesis problem,  should be replaced with the upper bound.  

Definition 1 [38] Considering M to be a constant matrix and the uncertainty δ, the 

upper bound of ( )M  is defined as 1inf ( )DMD  for D  D with D being the set of 

all matrices D that satisfy D = D. 

Using Definition 1 for the optimization function of the µ-synthesis and Δ, the 

optimization equation is reformatted as 

 
1

( )
min max min [ ( ( ), ( ))( ) ],L
K s D D

D F P s K s j D


 


 





 (4) 

by defining D as a frequency dependent function that satisfies D  D for an arbitrary 

frequency ω, and replacing max [.]


  with .


, the optimization problem in Eq. (4) can be 

rewritten as 

 
1

( ) ,
min min (P( ),K( ))( ) ,L
K s D D D

DF s s j D






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 (5) 

then, assuming U as a block orthogonal complex matrix for complex M (Definition 1) to 

have the same structure as D  D and satisfying U
*
U = UU

*
 = I with I being the identity 
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matrix and superscript * denoting the complex conjugate of the original matrix, it is easy 

to obtain 1 1[( ) ( ) ] [ ]UD M UD DMD   . This is due to the fact that the matrix multiplication 

with orthogonal matrix does not change   and, as a result, one can transform D into UD 

without changing the maximum structured singular value of the system. By the 

introduction of an appropriate U, it is possible to restrict Dω to be real-rational, stable, 

and minimum-phase transfer function symbolized as ( )D s  [39]. The optimization index, 

Eq. (5), based on this transformation and due to the orthogonality of the introduced matrix 

is reformatted as 

 1

( ) ( )
min min ( ( ), ( ))( ) ,L
K s D s D

DF P s K s j D





 (6) 

The transformed optimization problem of Eq. (6), as shown in Fig. 6, can be solved 

iteratively by means of D-K iteration approach [40, 41]. 

 

Fig. 6 Replacing µΔ with the upper bound 

4.1. D-K iteration algorithm 

1. Solve optimization problem 
1

( )
min ( ( ), ( ))( ) ,L
K s

DF P s K s j D 


 with an initial guess 

of stable, minimum-phase, and real rational ( )D s  and define PD(s) as shown in Fig. 7. 

 

Fig. 7 Real-ration D scaling in D-K iteration 

2. With known PD(s) from the previous step, solve standard H∞ problem with the 

optimization function of 
( )

min F ( ( ), ( ))L
K s

P s K s


. 

3. With fixed controller K(s) from the previous step, move the optimization over D(s) 

and look for an appropriate frequency dependent function D(s) in a certain range 

of frequency to satisfy the previous constraints on ( )D s . 

5. EXPERIMENTAL AND NUMERICAL RESULTS 

In this section, the experimental investigation regarding the performance of the output 

feedback control system in suppressing the vibration of the MRI funnel structure is studied 

in detail. Considering the amount of variables that are involved in the modeling of the 
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structure and the control system and keeping in view our limitations on computation power, 

we shall confine our attention to a systematic procedure in evaluating the closed-loop 

system. For this purpose, first a reduced order model of the real structure with distributed 

piezoelectric sensor/actuator groups is obtained by means of system identification. In 

particular, a MIMO LTI system in state-space representation of the structure including the 

dynamics of the sensors/actuators is estimated in the time domain by utilizing the MATLAB 

System Identification toolbox. The reduced order model is assumed to cover the dynamics of 

the system within the frequency range of 0-18 Hz which includes two natural frequencies of 

the structure (9.72 Hz and 15.22 Hz). In order to present the identification quality, the 

frequency response function (FRF) of the real structure is compared with bode diagram of 

the identified model in the nominal frequency range of Fig. 8(a, b, and c). It is worth 

mentioning that the reduced order model is a sixth order LTI object. The identified system is 

employed to design a robust controller on the feedback channel based on the output 

measurements that are collected by the four piezo-sensors (L1, L2, R1, and R2) and dSPACE 

DS2004 based on the D-K iteration approach that is explained in section 4. Based on the FRF 

of the system, appropriate weighting functions are selected on the input channels that represent 

the frequency dependent uncertainty bounds and activation frequency of each channel. 
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Fig. 8a Comparison of FRF of the real structure with  

the identified model for disturbance channel 

 



46 A. OVEISI, T. NESTOROVIĆ 

 actuator L1 actuator L2 
se

n
so

r 
L

1
 

  

se
n

so
r 

L
2
 

  

se
n

so
r 

R
1
 

  

se
n

so
r 

R
2
 

  

Fig. 8b Comparison of FRF of the real structure with  

the identified model for actuator groups L1 and L2 
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Fig. 8c Comparison of FRF of the real structure with  

the identified model for actuator groups R1 and R2 
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Due to the multiplicative nature of the augmented uncertainty, the weighting functions 

are selected as shown in Fig. 9 to cover the higher order mode-shapes of the structure 

which are neglected in the modeling procedure. 

 

Fig. 9 Weighting functions associated with uncertainty presentation in control design 

In order to investigate the performance of the output feedback control system, the 

structure is excited through the disturbance channel by a sweep sine signal with a 

frequency range of 0-18 Hz for both the open loop and closed-loop systems. The applied 

mechanical disturbance signal is measured by the force transducer (B&K 8230) and 

represented in Fig. 10. Accordingly, the output measurements are obtained by the piezo-

sensors and are depicted in Fig. 11. Fig. 11 compares the transient response of the open 

loop system and the closed-loop system based on the designed controller. It can be 

observed that the µ-control system has successfully alleviated the vibration amplitude 

although the external disturbance continues to excite the structure.  

 

Fig. 10 The amplitude of applied mechanical disturbance through shaker 
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Fig. 11 The vibration suppression performance of  

the control system in the nominal frequency range 

The applied control effort for the sweep sine signal is presented in Fig. 12. As expected, 

the control voltage for the L2 and R2 actuator groups are less than for the L1 and R1 groups 

which are due to the small level of strain energy that reaches to these actuators because of 

the distance between the disturbance source and the actuator elements (see Figs. 1 and 2).  

   

Fig. 12 Applied control effort on the piezo-actuator groups 
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In addition, by the introduction of the appropriate weighting functions (see Fig. 9), 

that contain the frequency dependent information of the actuator elements, the applied 

control efforts have a smooth behavior with the maximum amplitude of 55 V. 

In order to investigate the spillover effect of the controller, the Fast Fourier Transformation 

(FFT) analysis was performed on the control signal to clarify the frequency content of the 

applied voltage [42]. The result as depicted in Fig. 13 shows that although the disturbance is 

acting within the maximum frequency of 18 Hz, the applied control effort of actuator R1 leads 

to excitation of higher order mode-shape. However, significant reductions in the magnitude of 

the applied control effort can be observed for all of the actuation elements due to the 

introduction of the weighting functions. In addition, in the mechanical systems, the lower eigen-

frequencies have a dominant impact, which is also confirmed here by the influence of the first, 

second, and third eigen-frequencies. Therefore, even if the high-frequency excitation would 

occur, it would not deteriorate the controller performance significantly due to the negligible 

influence of the higher modes with respect to the dominant mode-shapes. 

 

Fig. 13 FFT analysis on the control effort 

Finally, by aiming at investigating the robust performance of the closed-loop system in 

stabilizing the unmodeled higher order dynamics of the MRI funnel structure, the coupled 

system is excited through the disturbance channel with a sweep sine signal that charges the 

higher order mode-shapes of the structure in the frequency range of 20-38 Hz. The applied 

mechanical force acts on the system within 30 sec and the experimental results for the output 

measurements are presented in Fig. 14. In this figure, the controlled and the uncontrolled 

cases are brought together in four subplots to evaluate the robustness of the control system. 

It can be observed that the attenuation performance is reduced compared to the nominal 

frequency range but the control system mostly suppressed the vibration. Furthermore, as it 

can be seen in Fig. 15, the applied control effort on actuator R1 saturates for a short period 

between 6.8 and 7.7 sec which leads to performance loss that is mostly detected in sensor 

elements L1 and R1. This time period stands for the higher order unmodeled dynamics with 

the natural frequency around 27 Hz. 
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Fig. 14 Robust vibration attenuation performance for unmodeled dynamics 

By comparing the control effort in the nominal frequency range (Fig. 12) and the high-

frequency area (Fig. 15), it can be seen that the control system loses its optimality since 

by using more actuation energy less performance is achieved [42]. This emphasizes the 

importance of the nominal system order and the weighting functions in the control design 

procedure. 

   

Fig. 15 Applied voltage on the piezo-actuators in high-frequency range 
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6. CONCLUSION 

In this paper, the robust vibration control performance of the funnel-shaped structure 

that is used in MRI devices is evaluated experimentally. The problem of structural 

vibration and acoustic noise in the MRI scanners is an important challenge in the 

development of the technology in these devices that can be addressed properly by active 

vibration control and active noise control. In order to relax the limitations on the exact 

modeling of the dynamics of the structure, it is crucial to design regulators that can handle 

the modeling uncertainty. It has been proven that with limited energy consumption, high-

quality vibration suppression can be achieved by a combination of appropriate uncertainty 

modeling and robust controller design. 
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