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Abstract. We investigate the tangential contact problem of a spherical indenter at 

constant normal force. When the indenter is subjected to tangential movement, frictional 

shear stresses arise at the interface and do not vanish when it is moved backwards. We 

study the evolution of shear stress when the indenter is moved back and forth at falling 

amplitude. The method of dimensionality reduction (MDR) is employed for obtaining the 

distribution of stick and slip zones as well as external forces and the final stress 

distribution. We find that the shear stress decreases. For the special case of linearly 

falling amplitude of the movement, we observe uniform peaks in the shear stress. The 

absolute value of the shear stress peaks is reduced best for a high number of back-and-

forth-movements with slowly decreasing amplitude. 
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1. INTRODUCTION 

Loaded contacts exist in a broad variety of technical and natural situations. A basic 

frictional couple consists of two deformable bodies, which are pressed together and 

subjected to an additional tangential loading.  

When the tangential load is below the threshold of gross sliding, some micro-slip 

occurs nevertheless. In technical contact that experience cyclic loading, the relative 

movement of the bodies is often invisible to the naked eye. However, the friction involved 

can cause effects such as damping [3, 4] and fretting wear [8]. The same applies in a 

slightly more complicated fashion for biaxial loading [5]. 

Consider a contact where the normal load is held constant, so that the bodies cannot 

separate. Initially, the pure normal loading can take place without inducing shear stress in 
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the contact interface. However, when some tangential load is applied, shear stress arises. 

Upon unloading, the stress does not simply vanish due to the dual nature of the contact 

(stick zones vs. slip zones). Tangential force and resulting tangential displacement 

together form a system with hysteresis, which can be described with a Preisach formalism 

[10]. In 1928, Prandtl developed a model for microtribology out of many micro-sliders, 

which also included hysteresis [12] (see [11] for English translation of the original paper). 

In his model, the exact state of the system at any moment of time depends on its 

prehistory and can be very complicated. Prandtl poses the question of whether it is 

possible to restore the virgin state. With very simple arguments, he shows that if the 

contact partners start to oscillate with large amplitude and the amplitude then decreases 

slowly, then each slider finally comes to a neutral, non-stressed position and the system 

returns to the virgin state. He compares this result with demagnetization through slowly 

decreasing oscillating magnetic fields, first studied by E. Madelung [6]. In this paper, we 

will apply this idea to the loaded contact with partial sliding.   

Assume a typical Hertzian contact. A spherical indenter with radius R  is pressed into 

a plane. The sphere is approximated by a parabola and we assume that the plane is rigid. 

We keep normal force FN that we first applied constant throughout the following. This 

configuration is known as the Hertzian contact with contact radius a  and has been studied in 

great detail. Normal stress distribution p  as a function of radial coordinate r reads 
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Here we used the reduced modulus of elasticity: 
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for two elastic bodies with moduli of elasticity E1 and E2 , shear moduli G1 and G2 and 

Poisson's ratios 1 and 2, respectively. The equivalent reduced shear modulus is:  

 
2 2

1 2

*

1 2

1 11

G G G
 




 
 . (3) 

We now move the indenter horizontally along one spatial direction and assume that 

Coulombs law of friction is valid in its simplest form τ(r) ≤ μp(r). Here τ is the shear stress 

and μ is the coefficient of friction. This condition leads to the partitioning of the contact area 

into a stick area in the center and a slip area at the edges of it. For example, at the very edge 

of the contact surface, normal stress disappears and the slightest displacement of the  

indenter would lead to shear stress violating our friction condition if we assumed it would 

stick to the plane. The solution of this is that some parts of the contact area are being slipped 

over the plane while the others stick to it. At a certain point, the stick area completely 

disappears and the whole contact is slipping. Tangential displacement ux
(0)

  at this last point 

reads [2]: 
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Let us now drag the indenter back and forth along the same spatial direction on the 

rigid plane. We observe different shear stress distributions depending on the motion 

history. The shear stress created from the first movement will not disappear if we simply 

return to our starting point. In the following, we will analyze the shear stress under a back 

and forth movement with falling amplitude with the aim of reducing this stress. For the 

analysis of the system, the Aleshins method of memory diagrams is well suited. Because 

the contact stress distribution accumulates more and information of past reversal points, 

the HH-mode described in sec. 31 of [9] should be applied iteratively. Using careful 

algebra, an explicit analytical solution might be achievable. However, we decided to use 

the method of dimensionality reduction for our analysis, which we describe in the next 

section. Alternatively, one could employ a full Boundary Elements solution [7].  

2. MDR AND DISCRETIZED 1D-MODEL 

We consider the three-dimensional contact of two elastic bodies. In the following, we 

presuppose axially symmetric profiles. Let z=f (r) be the difference between the profiles 

of the bodies. 

According to the theorems of the method of dimensionality reduction (MDR), this 

contact can be exactly replaced by a contact with a one-dimensional linearly elastic 

foundation with independent springs. 

To reduce the initial three-dimensional contact to a one-dimensional one, two steps are 

required. First, we replace the elastic bodies by the one-dimensional linearly elastic foundation. 

Normal stiffness Δkz and tangential stiffness Δkx of the springs are chosen according to:  

 *

z Ek x    (5) 

and *

xk xG   , (6) 

where x  denotes the distance between two springs. 

Second, we replace the three-dimensional profile z=f(r) with a one-dimensional profile 

in accordance to [2]: 
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The reverse transformation is: 
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If now transformed profile g(x) is pressed with normal force FN and resulting indentation 

depth d  into the elastic foundation, we obtain the displacement in the contact area: 

 zu (x) d g(x)  . (9) 
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For non-adhesive contacts we can set: 

 
z a) 0  d (au g( : )    , (10) 

where a  is the contact radius. We again denote the length a  the ‘contact radius’ because 

following the theorems of MDR, all the lengths in the model are equal to the respective 

ones in a three-dimensional problem. The same applies to the contact area. The force of a 

spring at point x  inside the contact area equals: 

 
z z z z(x) u (x) E*u (xF k x.)     (11) 

If we choose the spring separation distance to be infinitesimal, we get for the normal 

force: 

 *
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After bringing the elastic bodies in normal contact with force FN, we apply tangential 

movement ux
(0)

 to the indenter and assume that Coulomb's law of friction is valid following:  

  (r) p(r) for stick,    (13) 

 (r) p(r) for slip.   (14) 

Now every spring sticks to the indenter as long as ΔFx=Δkx ux
(0) 

< μ ΔFz. This results 

in the following conditions:  
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where ux(x) denotes here the horizontal displacement of a spring at point x. The sign of 

the second equation depends on the direction of the indenter motion. We denote the 

radius of the stick-area by c and find:      

 * *)

x
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for which the whole contact area is in slip state. Similarly to the normal contact, the force 

of a spring at point x inside the contact area equals: 

 *

xx xx(x) u (x) G u (x)F k x    . (17) 

If we choose the spring separation distance to be infinitesimal, we get for the 

tangential force: 
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The distribution of tangential stress in the original three-dimensional contact can be 

calculated according to [2]: 
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For our problem, we choose the classical contact between a sphere with radius R and a 

plane. The modified profile of z=f(r)=r
2
/2R is g(x)=x

2
/R. Normal and tangential stiffness 

follow Eqs. (5) and (6).  With a given indentation depth d, we calculate contact radius a   

according to Eq. (10). The length of the elastic foundation is set to 2a and consists of NS 

springs. Distance Δx between two adjacent springs is 2a/NS. The normal displacement is 

uz(x)=d-g(x)=d-x
2
/R. For the normal force, we get 
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With a given indenter displacement ux
(0)

, we first assume that every spring sticks. 

Next, we check if tangential spring force is exceeding the maximum tangential force 

according to the first part in Eq. (15) and where required, we adjust the displacement. 

For the tangential force, we get 



SN

1k

*
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3. REDUCTION OF RESIDUAL SHEAR STRESS MAGNITUDE 

We push a spherical indenter into an elastic plane and drag it horizontally. If we drag 

it not too far to one side, our contact area will be divided in a stick-area in the center and 

a slip-area on the outside. The stick-area will have the shape of a circle and the slip-area 

will encircle it in the shape of an annulus.  By moving it further in the chosen direction, 

the stick-area gets smaller and smaller before it disappears completely and we reach 

macroscopic slipping.  

If we move the indenter in one direction without reaching macroscopic slipping and 

subsequently perform a small displacement in the opposite direction, we will observe that: 

the former stick-area is still in stick-state. More inner parts of the former slip-area are now 

also in stick-state. The outermost border of the former slip-area is in slip-state again. 

Thus, we will observe different displacement areas: in the center, there will be a circle 

where the displacement equals the macroscopic displacement of the indenter, then there is 

an annulus in a stick-state, which was at some former time in a slip-state, and finally on 

the outermost border there will always be an annulus in slip-state. That is, by simply 

alternating the direction of the indenter several times, we can create a strongly fragmented 

displacement field.  

If now, for example, we drag the indenter until the whole contact is in slip-state, we could 

create a growing stick-area with a fragmented displacement field, by simply moving in a certain 

back-and-forth motion with falling amplitudes. As the displacement field determines the shear 

stress distribution, we can manipulate the stress by moving the indenter in a given way. 

In order to minimize the shear stress, the following procedure is discussed. 
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On a rigid plane base, we push a spherical indenter until an indentation depth d and 

related normal force FN are reached. We keep this configuration for the normal contact 

throughout the following procedure.  

The origin of coordinate ux
(0)

 is placed on the rigid plane. 

Subsequently we displace the indenter horizontally by uxmax
(0)

 in ux
(0)

 - direction so that 

the stick area disappears completely according to Eq. (4) and the indenter reaches 

macroscopic slipping. Now we drag the indenter back and forth with linearly falling 

amplitude around the origin of ux
(0)

-coordinate. 

Let NR be the total preselected amount of reversal points and k the current reversal 

point, then the analytic expression describing the position of the indenter relative to the 

rigid plane is: 
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For example, if we choose NR=1, the indenter moves to uxmax
(0)

  and then back to 0. If 

we choose NR=2, the indenter goes to ux
(0)

=uxmax
(0)

 , then to   - uxmax
(0)

/2 and back to 0. 

Hence, the whole procedure is path-controlled by sequence ux
(0)

(k) . Shear stress τ(r) 

and tangential force Fx are only evaluated at each reversal point. Note that Eq. (20) only 

describes these points of the movement. The inertial forces of the indenter are not 

considered and the problem is seen as quasi-static. Therefore, it does not matter in what 

exact fashion the indenter moves back and forth. Instead of moving linearly, it might as 

well follow a sinusoidal movement, as depicted in Fig. 1. 

Finally, it should be pointed out that the movement always ends (for k=NR+1) at 

starting point ux
(0)

=0. 

 

Fig. 1 Normalized position of the indenter on the rigid plane versus the reversal points. 

uxmax
(0)

 is the minimum displacement to reach macroscopic slipping. Total amount 

of reversal points is 20.  
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Fig. 2 Normalized tangential force versus reversal points. Total amount NR of reversal 

points is 20. FN is the constant normal force 

As aforementioned, we have chosen to move the indenter path-controlled. From this, 

we obtained the tangential forces at each reversal point. Fig. 2 shows the absolute value of 

the alternating forces. We would get exactly the same motion if we picked our reversal 

points according to this force sequence. For example the first reversal point (k=1) was 

defined so that we reach macroscopic slipping, that is:  Fx= μFN. 

 

Fig. 3 Shear stress in the contact area after 6 and 6.5 reversal points (A and B in [6]). a is 

the contact radius and pmax the  maximum normal stress in the contact surface of a 

spherical indenter and a rigid plane. Total amount NR of reversal points is 20. 
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At every state of the movement, we can calculate the shear stress distribution 

according to Eq. (19). Fig. 3 shows the stress distribution after six back and forth movements 

(continuous line; point A in Fig. 1), thus exactly at a reversal point. We can see that inside 

the outer ring of the contact area (approximately 0.5a<r<a), the shear stress follows 

τ(r)=μp(r) from which we can conclude that the contact surface in this area is slipping over 

the plane. In the inside, the shear stress decreases and we have a stick area.  

With further back and forth movements at falling amplitude, the stick area will grow 

more and more towards the edge. The second curve shows the state if we move from the 

sixth reversal point back to our starting point (dashed line; point B in Fig. 1). Note that 

there is stick for approximately r<0.75a. In the outer ring, all points are sliding but the 

orientation has changed (negative shear stress in the figure). 

More generally, we can see that in the MDR space, every spring has a specific 

maximum tangential deflection. Due to the higher normal deformation, this maximum 

deflection is greater for the springs in the middle of the contact. With falling amplitude of 

the movement, little by little those springs enter the stick state, so that they can follow the 

macroscopic movement of indenter ux
(0)

. At the outer edge, the springs can only slightly 

deform tangentially and are practically always in a slip-state, except shortly after 

switching orientation at each reversal point. 

Fig. 4 shows the shear stress distribution after 20 back-and-forth displacements and 

return to the origin.  As we can see, the residual stress alternates between positive and 

negative values. That is, the springs are pointing in both directions. It is interesting to see, 

that the different peaks take almost the same value. 

 

Fig. 4 Shear stress in the contact area after 20 reversal points.  

Total amount NR of reversal points is 20 
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The ultimate purpose of the procedure is to minimize shear stress in the contact area. 

For this, we can evaluate the shear stress distribution that remains after the dragging as 

showed Fig. 4. For the evaluation, we want to focus on the extreme values of the stress 

and calculate therefore the minimum, maximum and arithmetic mean of the absolute 

values of the shear stress at the end of the dragging. If we do this for different NR, we get 

Fig. 5. As Fig. 4 already illustrated, the peaks are quite evenly and that is why the minima and 

maxima of the absolute values are close together. 

As Fig. 5 further shows, we can easily reduce the shear stress in the contact by moving a 

few times back and forth. If for example we created the maximum achievable shear stress by 

reaching macroscopic sliding, then it would be sufficient to invert the initial movement 

direction twice with falling amplitude according to Eq. (20), to almost halve this stress (NR=2). 

 

Fig. 5 Minimum, maximum and arithmetic mean of the shear stress at the end of the 

dragging (k = NR+1) versus different reversal point amounts. 

4. CONCLUSION 

We have analyzed the Hertz contact with the Coulomb friction for the case that the 

spherical indenter is being moved with falling amplitudes tangentially to a plane. With the 

aid of the method of dimensionality reduction (MDR), we divided the contact area at 

every step into a stick and a slip area and subsequently determined the shear stress 

distribution. 

We find that after the movements, the remaining stress has comparable portion in both 

directions. With respect to the radial coordinate, it changes orientation in close 

succession. The peaks of this curve are equally large in good approximation.  
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The back-and-forth tangential movement proves to be a good way to reduce the 

residual shear stress inside a frictional contract. With only a few iterations, the maximum 

stress value can be reduced effectively. 
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