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Abstract. This paper presents a novel method for detecting locations of damages in 

thin walled structural components made of fiber reinforced composites (FRC). 

Therefore, the change of harmonic distortion, which is found by current research to be 

very sensitive to delamination, under resonant excitation will be derived from FEM-

simulation. Based on the linear modal description of the undamaged structure and the 

damage-induced nonlinearities represented by a nonlinear measure, two spatial 

damage indexes have been formulated.  

The main advantage of this novel approach is that the information about  the defect is 

represented mainly by changes in the modal harmonic distortion (MHD), which just 

needs to be measured in one (or few) structural points. The spatial resolution is given 

by the pairwise coupling of the MHD with the corresponding mode shapes.  
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Acoustics, Harmonic Distortion, Nonlinear Vibration  

1. INTRODUCTION 

Due to their high stiffness and strength combined with design versatility, FRCs have 

massively gained in importance in recent years. However, as a consequence of their 

heterogeneous structure, the thin-walled structural components made of FRC are 

particularly susceptible to damages in the laminate, which are in most cases characterized 

by separation of the laminate layers (delamination). These local delaminations can already 

arise in the manufacturing process. Furthermore, they can be a consequence of a low and 

moderate energy input, such as bird strikes on aircraft or carelessness in the maintenance. 
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The particularly critical aspect of this type of damage is the fact that it is visually difficult 

to detect, spreads as a result of operating loads, and can give rise to total failure. 

Therefore, for safety-related applications, it is of crucial importance to be able to 

detect, locate and assess the defects and damages caused by imperfections in production 

and/or that appears in operation. The ultrasound and x-ray based inspections are 

conservative and highly accurate methods. However, they are also quite demanding in 

terms of the equipment, time and accessibility of the examined structural components. 

Therefore, especially for larger structures, the methods that are relatively easy to 

implement are needed in order to enable a coarse localization of potential damages. 

In this context, a great number of methods for Structural Health Monitoring (SHM) 

have been published in the past decades (e.g. reviews in [1-3]). Many of the developed 

methods are based on a damage-related alteration in the dynamic structural behavior [4, 

5]. These methods have also been applied to the structures made of fiber-reinforced 

composites [6] and extensively studied [7, 8]. 

1.1. Linear methods 

The idea that a local damage affects the global vibration response has led to a series of 

modal-based approaches to structural health monitoring [9]. Most of these “classical” 

methods are based on the fact that the damage locally reduces the stiffness, thus affecting 

the natural frequencies [10] and mode shapes, including derived quantities (e.g. modal 

strain) [11].  

A simple method of damage identification has been proposed by Montalvão, Ribeiro 

and Duarte-Silva [12]. They have extended the principle of damage indicators based on 

eigenmodes - in this case defined as the Mode-Shape-Curvatures - by weighting the 

eigenmodes with a relative change in the modal damping, ηr, induced by the damage. 

They invented the Damping-Damage-Indicator (DaDIi) which can be obtained by 

superposition of strain based modal shape functions weighted by Δηr. Montalvão, Ribeiro 

and Duarte-Silva could prove that it is possible to locate a defect in the composite panel 

made of carbon fibre prepreg by using the Damping-Damage-Indicator. However, 

experience has shown that especially the modal damping coefficients in FRC structures 

strongly depend on temperature. Additionally, the suitability of modal damping as a 

damage indicator is limited by the diversity of physical causes of damping and the 

interaction between the structure and the environment, which influences the damping in a 

way that is hard to forecast and/or control [13]. 

1.2. Nonlinear methods 

Methods of nonlinear analysis of the dynamic system response open up many 

possibilities for structural health monitoring. However, they are often strongly related to a 

specific problem [14]. The analysis of higher harmonic components of the vibration 

response in the frequency domain provides a relatively practical approach to damage 

detection and identification, which is sometimes superior compared to the classical linear 

methods. Considering a damaged beam, Prime and Shevitz [15] demonstrated that the 

higher harmonic components in the spectrum and the associated mode shapes are much 

more sensitive to damages than the modal parameters. 
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Considering thin-walled structural components made of FRC, delamination is the most 

frequent type of damage. Therefore, in the context of structural health monitoring, the 

research is focused on its impact on the dynamic behavior [16]. Experimental 

investigations carried out on a delaminated beam show that the alternating opening and 

closing of a delamination gap (delamination breathing) particularly changes the 

vibrational response compared to the undamaged case [17-19]. The beating normal 

contact between the gap's opposite surfaces and the resulting direction-dependent stiffness 

leads to a non-linear structural behavior as a consequence of an abrupt state change. 

Hence, when such a system is exposed to a harmonic excitation, the response spectrum is 

characterized by the occurrence of higher harmonics, obtained as integer multiples of the 

excitation frequencies [20, 21]. These nonlinearities can be quantified, for instance, in an 

integral form by means of the clapping factor [22]. 

2. THE IDEA OF NONLINEAR DAMAGE INDEX 

The new method presented in this paper aims at the coarse localization of damages 

within thin-walled structural FRC components made of fiber-reinforced composites in 

order to get an overview for more detailed investigations. For this purpose, usually weak 

non-linear effects in the vibration response, which are the consequence of the damage, 

should be quantified by means of a suitable quantity λr. In the present work this will be a 

value derived from harmonic distortion.  

The basic idea is that the structure is exposed to a resonant vibration excitation. It is 

also necessary that, despite of the damage, the original modal representation can still 

sufficiently describe the overall dynamic behavior of the structure, which implies that the 

damage induced changes in eigenmodes and eigenfrequencies are still negligible. The 

validity of this assumption has been confirmed in the literature (for example in [18, 23, 

24])  in the case of slighter damages of the laminates. Hence, a damage-induced nonlinear 

measure λr is assigned to the r
th

 mode (see Fig. 1). 

 

Fig. 1 Coupling of nonlinear-measure, modal strain and damage 

Using a suitable combination of linear modal description of the original structure and 

nonlinear measure λr associated with damage-induced changes, a spatial damage index,  

nonlinear damage index NLDIi, could be formulated in a similar way as was done by 

Montalvão, Ribeiro and Duarte Silva [12]: 
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Fig. 2 Flow chart of the suggested damage localization approach 

The necessary steps of the proposed method are depicted in Fig. 2. A prerequisite for 

successful damage localization is a valid linear FE model of the structure not including 

damages. This enables the determination of optimal measurement and excitation points 

for the experimental determination of λr. On the other hand, each eigenmode or a derived 

quantity, e.g., the curvature-dependent shape function used here as defined in Eq. (1), can 

be represented with a high spatial resolution. 

Nonlinear measures λr associated to the modes, are obtained by means of comparative 

measurements carried out on the original and potentially damaged structure. Change Δλr, 

is supposed to serve not only as a damage indicator, but also for the localization by means 

of proposed damage index NLDI. The formulation given in Eq. (1) takes advantage of an 

increased distortion when the referred mode shape is triggering the local damage induced 

nonlinear mechanism. Likewise, the linearity of each mode can be used to define a 

reciprocal nonlinear damage index: 
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3. NUMERICAL PROOF OF THE CONCEPT 

This section describes how the nonlinear response is obtained for test purposes by a 

numerical simulation of an experimental set up. All calculations stated below have been 

done using MATLAB. 
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3.1. Finite element model of a thin fiber reinforced composite plate 

For the numerical proof of the concept a rectangular glass fiber-reinforced polymer 

plate (GFRP) is modeled using the finite element method. For the sake of convenience it 

is assumed that the balanced and symmetric cross ply (0°/90°) laminate is used. Thus, by 

applying the classical laminate theory (see [25]) the membrane and bending problem is 

decoupled. Because of being easily stimulated and measured in the experiment, only 

bending modes will be considered here. Using the first order shear deformation theory the 

displacement field can be written similarly to the Reissner-Mindlin plate model as: 
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By applying derivation to the displacements the strain field becomes: 
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where the vectors for curvatures κ, resulting from bending moments m, and transverse 

shear strain γ, due to shear forces fs, can be written separately. 

The equation of motion can be derived by using Hamilton’s principle: 
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The generalized coordinates identified as independent “displacements” are: 
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Including the assumptions above, kinetic energy T follows to: 
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Applying the classical laminate theory (see [25]) and calculating the shear correction 

factors [26], strain energy Π can be integrated over the thickness: 
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where with the above given assumptions the laminate bending and shear stiffness matrices 

have the form:   
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Virtual work δ’W of non-conservative and external loads acting on plates surface A and 

its Edges s becomes: 

 .ddd' sAVW
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For discretization of plate surface A a planar four-node (Ne=4) quadrilateral element 

with bilinear shape functions Ni is used. Thus, element solution u
e
 of the displacement 

model for the plate is expressed as: 
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With substituting the displacement fields in Eq. (6) with these interpolation functions for 

one element domain the dynamical equilibrium reads: 
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where dissipative loads are assumed to be proportional to the nodes velocity. 

Because times t1 and t2 and virtual node displacements δq
e 

can be chosen arbitrarily 

this finally yields to: 
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where consistent element mass matrix M
e
 follows from numerical integration of the shape 

functions with the diagonal Kronecker product  
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The bending component of the element stiffness matrix is set up by using strain-

displacement matrix Bb according to  
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In order to avoid shear locking and hourglass modes (which might cause instabilities in 

time integration), the shear component of the element stiffness matrix is calculated by 

using the assumed natural strain approach (see [27]). Therefore, the out-of-plane shear 

strains at edge centers are firstly calculated. Subsequently, these values are used to 

interpolate shear strain field γ: 
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Due to the integral form of Eq. (6) the dynamical equilibrium for the whole plate 

domain follows with Eq. (15): 
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which can be integrated in time for a given external load vector fext and the initial 

conditions for node displacements q and velocities q  (see section 3.3). 

In the present work an unbounded plate with the characteristics as shown in Table 1 

was discretized using a regular quadrilateral mesh with 12x24 or 14x28 elements. Both 

configurations show a maximum error for the desired eigenfrequencies of 1% with respect 

to ABAQUS model (24x48 quadratic elements type S8R). 

In order to suppress rigid body motion and to achieve reasonable damping for the 

elastic modes a viscoelastic foundation is set up. So the frequencies of significantly 

damped rigid body modes are smaller than 1% of the first elastic mode and the modal 

damping of the elastic modes become approximately 0.1%, which is in good agreement 

with experimental studies. 

Table 1 Characteristics of the glass fiber-reinforced polymer plate 

Length a Width b Thickness t Density ρ D11 D22 D12 D66 S11= S22 

0.24 m 0.48 m 3.5 mm 2100 kg/m3 71.5 Nm 98.6 Nm 8.6 Nm 13.3 Nm 99.7 MNm-1 

3.2. Modeling the time dependent behavior of delamination  

Despite a great research effort, it is still not very well understood how the physical 

mechanisms appearing in delaminated structures affect the nonlinearities in dynamic 

response. For the wavelength range investigated in this paper, the phenomena on 

macroscopic scale [28], namely the clapping mechanism (see [29, 20]) and bilinear 

stiffness due to opening and closing the delamination [30], will affect the vibrational 

response mostly. Modeling the former would require a very fine spatial and time 

resolution of the delaminated area to represent the governing contact mechanisms. Taking 



28 T. RADEMACHER, M. ZEHN 

into account that for the method proposed in this paper many time integration steps (for 

every mode) over a quite long period of time (essential to obtain a sufficient frequency 

resolution) need to be calculated, this phenomenon is therefore not feasible  here. 

Whereas the state-dependent impedance mismatch, caused by a slight local stiffness 

reduction in the case of an open-state delamination, can be easily modeled with a lumped 

parameter model [31, 32]. 

In this paper the local curvature at the damage position is assumed to determine 

whether the delamination is open or closed and, accordingly, the local stiffness is reduced 

or not. Therefore, one characteristic value  , representing an overall curvature based on 

the local values given in Eq. (17), has to be defined. Therefore, the major curvature 

calculated by solving the eigenvalue problem: 
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The large magnitude is supposed to govern the delamination state (see Fig. 3). Hence, 

characteristic curvature value   is defined by: 
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Fig. 3 Major curvatures  

All element stiffness matrices K
e*

 corresponding to delaminated area are assumed to 

undergo a curvature-dependent degradation like:  
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where reasonable values for maximum degradation r


 range between 0 (no reduction) and 

1 (no remaining element stiffness). As shown in Fig. 4 the course of degradation is a 

Gaussian smoothed step function where the smoothness is controlled by value ̂ . This 
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smoothed shape is chosen instead of a sharp heavy side function for two reasons: on the 

one hand, delamination with its natively non-regular topology will not act upon a strict 

all-or-nothing law. On the other hand, the numerical time integration becomes less critical 

for discretization errors near the reversal point. This can finally improve the (physical) 

stability of the integration process. 

 

Fig. 4 Curvature dependent stiffness reduction r (left) and its time response  

3.3. Time integration 

To achieve the slightly nonlinear vibrational response of the damaged plate, the 

discretized equation of motion given in Eq. (15) has to be integrated in time until a steady 

state (or limit cycle) is reached. To avoid numerical overhead caused by transient 

oscillation with stimulated eigenfrequency fr the linear steady state solution is set up as 

the initial condition. To obtain a steady solution of the distorted response 32 periods of 

main frequency (Tpre=32/fr) are processed until the time span (Tana=32/fr) used for spectral 

analysis starts. To ensure a sufficient resolution of the degradation process one period is 

sampled with 128 time steps. Hence the sampling data for each mode r follows as: 
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To provide comparability between the modal triggered nonlinearities the excitation level 

has to be equalized for all the modes with respect to the related mode shape derivate. 

Here the curvature is assumed to be the governing characteristic related to generation of 

nonlinearity. Hence, each modal excitation force fext,r has been tuned in such a manner 

that for every mode the same rms-value of the characteristic curvature is achieved: 

  ..ˆwhere)2cos(ˆ 2

,,, rconsttf rrextrrextrext   fff  (25) 

The time integration is carried out by using the implicit HHT-α method (see [33]). In this 

generalization of the Newmark-β method, the equations of motion are modified, using a 

parameter α, which causes a numerical lag in internal and external forces. This method is 

chosen for two reasons. On the one hand, using the correct parameters it becomes at least 

second-order accurate and unconditionally stable. On the other hand, in this way it tends to 

dampen-out the response at high frequencies which is desirable for physical stability.   
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3.4. Extracting the nonlinear measure from time series 

As described above the nonlinear measure is extracted from a spectrum of a steady 

state response in one or only a few testing points. Therefore, the last 32 periods of the 

corresponding velocity signals are analyzed using the Fast Fourier Transform. In order to 

minimize the amplitude error the flat-top window HFT116D as suggested in [34] is used 

to process linear power spectra LPS. 

 

Fig. 5 Typical whole time response of nodes velocity (left) including a detailed view. 64 

periods of third mode (330.3 Hz) are shown, where the last 32 are used to calculate 

the linear power spectrum (right). The higher harmonics are marked  

As shown in Fig. 5 the peaks of higher harmonics (fhn=nfr with n = 2, 3, …) of (linear) 

frequency fr can be clearly determined. Starting with the 7
th

 harmonic a significant 

alternating behavior – low amplitudes for odd and high for even orders – can be seen. 

This is the reversal to the pattern which can be observed analyzing a SDOF-system having 

a bilinear stiffness (see [28]) and might be caused by the more complex modeling of 

damaged changed stiffness.  

In the present work nonlinear measure λr , which characterizes the nonlinearity, is 

estimated by the sum of the first four peaks of higher harmonics: 
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If more than one measurement point is used, then the overall nonlinear measure is simply 

averaged mode wise. 

Of course, a more complex and maybe more significant estimation rule could be 

deduced, e.g., discrimination between even and odd higher harmonics. However, as stated 

below, even this simple way leads to very promising results. 
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4. RESULTS 

In the present work the suggested approach for damage localization has been tested by 

a numerical simulation of experiments using the assumptions made in section 3. The first 

42 elastic modes of the undamaged structure, ranging between 135.6 Hz and 6272 Hz, are 

stimulated and analyzed as described above. 

4.1. Damage index for rectangular FRC-plate with a single damaged area 

A typical distribution of the plain (Eq. (1)) and the reciprocal (Eq. (2)) nonlinear 

damage indexes is displayed in Fig. 6. It is obvious that both of them show a symmetric 

pattern, which is a consequence of the fact that underlying shape functions (see Eq. (1)) 

are symmetric as well.  

However, despite this, both the indexes can sufficiently localize the defective area 

with the use of only one measurement point, where nonlinear measure λr is determined. 

This result varies only slightly when this measurement point is changed or if more points 

are taken into account. This is a major advantage of the proposed method: only a few 

measurement points have to be equipped with sensors while the structure is under test. 

While using the plain formulation of the damage index the shape functions seem to be 

“showing through” and some local maxima become apparent, but the reciprocal form 

gives a very clear result. This difference can be observed for most of the studied damage 

positions. But in some cases rNLDI tends to highlight whole lines or columns of elements 

(compare to Fig. 9). This might be caused by the strong repetitive characteristics of the 

mostly purely sine-like eigenforms of the plate under investigation.  

 

Fig. 6 Linear NLDI (left) and reciprocal rNLDI (right) nonlinear damage index.   

Excitation at (0, 0) (green) and the nonlinear measures are taken at (0.1 m, 0.07 m) 

(blue). Only one element (0.05 m, 0.12 m) is damaged (red) 
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4.2. Influence of position and characteristics of the damaged area 

It can be seen in Fig. 7 that the value of modal nonlinear measure λr scales very well 

with the squared maximum degradation. In case of heavy stiffness reductions (25% and 

higher), significantly distorted modes tend to slightly lower values for scaled λr. However, 

the influence of the maximum degradation to relative pattern of λr is negligible. Hence, it 

does not affect the validity of the damage index. But it has to be noted that the observed 

quadratic dependency of λr with respect to degradation might cause resolution problems 

in experimental studies. 

 

Fig. 7 Scaled nonlinear measures 2r/λr


 for different values of maximum degradation r


.  

Excitation at (0, 0). Nonlinear measures are taken at (0.02 m, 0.04 m). Only one 

element is damaged 

To ensure that a local damage can be found for any location, a huge amount of 

complete simulation cycles have been carried out. For every single element of the lower 

left quadrant of the plate (x in [0, 0.5a], y in [0, 0.5b]) damage is applied and the 

complete time integration procedure is performed. Subsequently, the spatial damage 

indices NLDI and rNLDI have been calculated. In order to decide whether the damage 

could be uniquely identified, the damage index ratio is computed between the real damage 

position and the maximum index value of the plate excluding the immediate surroundings 

of the damage. The result can be seen in Fig. 8.  

It can be observed that both the plain and the reciprocal nonlinear damage indexes 

succeed in the identical (excluding effects of symmetry) location of the damaged area in 

most cases. The distribution of values and, therefore, the few damage positions in which 

no identical localization was possible seems to be randomly distributed. However, using 

both proposed damage indices should ensure a coarse localization of damage for the 

engineering praxis as a preliminary check for more elaborate local investigations. 
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Fig. 8 Uniqueness of the nonlinear damage index and its reciprocal representation for the 

lower (left) quadrant. Damage positions were the damage index could not uniquely 

identified (values<1) are marked with a cross.  Excitation at (0, 0). Nonlinear 

measures are taken at (0.02 m, 0.04 m)  

An increase of the spatial spread of the delamination is implemented by involving 

more damaged elements. It is found that with an increased damaged area the values of the 

modal nonlinear measure rise as well although the significant differences between them 

which can be observed for small damages (see Fig. 7) seem to vanish. Hence, as shown in 

Fig. 9, the significance of the damage index is reduced. While for one damaged element 

 

Fig. 9 Reciprocal damage index for different spatial extends of damage. Damaged 

elements (degradation r = 12.5%) are highlighted red. Excitation at (0, 0) (green). 

Nonlinear measures λr are taken at (0.08 m, 0.08 m) (blue) 
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 rNLDI, regarding effects of symmetry, matches the damaged position, the affected area in 

the case of nine damaged elements is overestimated. However, the largest value is still 

located in the damaged area. In case of 13 damaged elements the supposed method fails 

completely – which can be slightly improved by using more points to estimate the 

nonlinear measure. This behavior is inherent for this approach. The larger the damaged 

area becomes, the more mode shapes are triggering the nonlinearities. So the weights for 

the superposed shape functions get equalized. 

4.3. Damage Index for a single damaged asymmetric FRC-Structure 

 Finally, the proposed method is tested for asymmetric structures, which might be 

more relevant for real world applications. Even symmetric structures can be easily 

misbalanced by a slight change in the boundary conditions or by attaching (known) 

masses while the device is under test. 

A simple asymmetric geometry, based on the rectangular plate as described above, can 

be seen in Fig. 10. It appears that both the indices mark the defective element with the 

highest value. While the linear damage index shows some areas having falsely high values 

in the lower part, the reciprocal nonlinear damage index fits perfectly. Once more it has to 

be emphasized that the nonlinear measure is the only value related to the damaged 

structure and this is achieved with only one (!) measurement point. 

 

Fig. 10 Linear and reciprocal damage index for asymmetric flat geometry.  

Damaged elements (degradation r


=12.5%) are highlighted red.  

Excitation at (0, 0) (green). Nonlinear measure λ is taken at (0.19 m, 0.3 m) (blue) 
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 5. CONCLUSIONS AND FUTURE WORK 

The results presented here are showing that combining the linear modal description of 

a structure and slight nonlinearities triggered by resonant excitation is a suitable approach 

for damage localization. By simulating an experimental set up it is found that the two 

suggested formulations of a spatial nonlinear damage index are able to reliably identify a 

moderately large defective area. Especially to be emphasized is the fact that the nonlinear 

measure, which is the only value associated with the damage, can be determined at any 

structural point.  

In the present paper the nonlinear damage indexes were processed in a very 

straightforward way – all first 42 bending modes were taken in account and the nonlinear 

measure is estimated as a sum of the first four higher harmonic amplitudes. In order to 

improve the validity of the damage localization more complex definitions, e.g., an 

appropriate selection of modes and/or discrimination between even and odd higher 

harmonics, might be adapted in future. For “real world” applications of this approach the 

assumed correlation between the modal shape and the nonlinear measure needs to be 

proven first. Preliminary experimental tests on a plate made of glass fiber-reinforced 

plastic show very promising results. 
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