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Abstract The Craig-Bampton model order reduction (CBMOR) method based on the 

Rayleigh-Ritz approach is applied to dynamic behavior simulation of a composite 

structure in order to verify the method's feasibility and accuracy. The principle of this 

method is to represent a coupled component model based on the mass, damping and 

stiffness matrices. The methodology consists of a finite element model based on the 

classical laminate theory (CLT), a design of experiment to improve the modal 

assurance criteria (MAC) and experimental results in order to validate the reduced 

model based on CBMOR method and substructures (super-elements). Experimental 

modal analysis has been performed using a scanner laser Doppler vibrometer (SLDV) 

in order to assess the quality of the finite element models. The MAC and cross 

orthogonality MAC (XOR) values are computed to verify the eigenfrequencies and 

eigenvectors. This approach demonstrates the feasibility of using CBMOR for 

composite structures. The example is prepared and solved with MSC/NASTRAN 

SOL103. The design of experiments (DOE) method has been applied in order to 

identify the critical parameters and thus obtain high MAC values.  
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1. INTRODUCTION

Many techniques have been proposed to obtain reduced order finite element models 

(known as model order reduction (MOR) methods) by reducing the order of mass and 

stiffness matrices of structures made of conventional materials [1-3]. The substitution of 

conventional materials by composite materials in the aeronautic, space and automotive 

industry is becoming increasingly important today for the production of industrial high-

performance components [11-13]. The state-of-the-art MOR techniques are classified in 
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four groups [19]: direct reduction, modal methods, reduction with Ritz vectors and the 

component mode synthesis (CMS). According to this classification, the last two groups 

yield the best results. The Ritz vectors improve the accuracy-cost ratio and the CMS 

combines the first three classes of methods. Hence the MOR method based on the 

Rayleigh-Ritz approach is used to improve the accuracy-time ratio in civil and 

aeronautical engineering applications in many areas of structural dynamics [6, 14, 19, 22, 

23]. Thus, it is necessary to study the feasibility and efficiency of using the CMS with the 

Rayleigh-Ritz reduction basis in order to describe the dynamic behavior of a composite 

structure [14, 19]. The sections 2-4 introduce to MOR based on the Ritz vectors, classical 

CMS and substructures, respectively. The classical laminate theory (CLT) is introduced in 

Section 5. Sections 6-8 demonstrate a sensitivity analysis performed by using different 

tools – design of experiment (DOE), finite element method (FEM) and modal assurance 

criteria (MAC). 

2. MODEL ORDER REDUCTION WITH RITZ VECTORS  

It is typical for coupled problems with model sub-structuring [6, 14, 22, 23] to have an 

accurate second order representation in the form:  
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where s is the Laplace variable, [M], [C], [K] are mass, damping and stiffness matrices, 

respectively, {q} are generalized degrees of freedom (DOFs), [b] and [c] are input and 

output matrices, respectively, {u} are the inputs describing the time/frequency dependence, 

and {y} are the physical outputs. 

In this description, two - not very classical and yet important - assumptions are made:  

1) The decomposition of discretized loads F(s) as the product of the fixed input shape 

matrix specifying the spatial localization of loads [b] and inputs {u}. 

2) The definition of physical outputs {y} is a linear combination of DOFs {q}. 

The Ritz/Galerkin displacement methods seek approximations of the response within a 

subspace characterized by matrix [T] associated with generalized DOFs {qR}:  

 }]{[}{ RqTq  , (2) 

where {q} is the original set of DOF and {qR} is the reduced set of DOF, substituting Eq. 

(2) into Eq. (1) leading to an overdetermined set of equations. The Ritz approximation 

assumes that the virtual work of displacements in the dual subspace generated by [T]
 T

 is 

also zero, thus leading to a reduced model: 

 
 [ ] [ ][ ] [ ] [ ] [ ] [ ] [ ] [ ] { ( )} [ ] [ ] { ( )}

{ ( )} [ ] [ ] { ( )}

T 2 T T T

R

R

T M T s T C T s T K T q s T B u s

y s c T q s

  


. (3) 



 Application of the Craig-Bampton Model Order Reductio Method to a Composite Structure: MAC and XOR  39 

3. CLASSICAL CMS BASES AS APPROXIMATION OF THE FREQUENCY RESPONSE 

The method was first developed by Walter Hurty in 1964 [1] and later expanded by Roy 

Craig and Mervyn Bampton [2] in 1968. Component mode synthesis and model reduction 

methods provide for the means for building appropriate [T] bases (the subspace spanned 

rectangular matrix). There are many ways of proving classical bases [22]. Their validity is 

associated with two assumptions: the model needs to be valid over a restricted frequency 

band and the number of inputs is limited. One needs to translate this hypothesis into the 

requirement to include mode shapes and static responses into [T] basis. Most of the literature 

on CMS implies the fundamental assumption for coupling, which states that the 

displacement is continuous at the interfaces. Considering the response of an elastic structure 

to applied loads F(s)=[b]{u(s)}, the exact response at a given frequency [H(s)] is given by: 

 2 1 1[ ( )] [ ]{[ ] [ ]} [ ] [ ][ ( )] [ ]H s c M s K b c Z s b    , (4) 

where [Z(s)] is the dynamic stiffness. If there is no external excitation: 

 1[ ( )] { } {0}j jZ    , (5) 

and the solutions are known as free modes of the structure, where j is  j
th

 eigenvalue of 

the matrix and {j} is j
th

 eigenvector. A reduction model should include these shapes to 

allow for an accurate representation of the resonances which are associated with the 

singularities of the dynamic stiffness. A point of particular interest is the static response at 

s=0. The associated deformation is: 

 1{ ( 0)} [ (0)] [ ]{ (0)} [ ]{ (0)}sq s Z b u T u   . (6) 

The columns of [Ts] are also called attachment modes [22]. For the case of free 

floating structures (structures with rigid modes), [Z(0)] is singular and one defines 

attachment modes as responses of all modes except for the rigid body modes. 

The bases combining free modes and attachment modes are valid over a certain frequency 

range (truncation of the series of free modes) and certain inputs characterized by [b].  

One, thus, considers the response of the structure with enforced displacements on a 

subset of DOFs. Division of the DOFs in two groups – active or interface DOFs denoted 

by I in the subscript, and complementary, denoted by C in the subscript, leads to: 
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where <{qI(s)}> and <{0}> denotes a known quantity. The exact solution to this problem is: 
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The subspace found here is frequency dependent and can only be used in very 

restricted applications [23]. A classical approximation is to evaluate the static (s=0) value 

in this subspace for the active or interface DOFs denoted by CI in the subscript, and 

complementary, CC in the subscript: 
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Reduction on this basis is known as static or Guyan condensation [4]. The columns of 

[T] are called constraint modes [22]. They correspond to unit displacements of the 

interface DOFs. Significant deviations can be expected when [ZCC(s)]
-1

 differs from 

[ZCC(0)]
-1

=[KCC]
-1

 Such difference is significant for singularities of [ZCC(s)]
-1

 which are 

computed by the eigenvalue problem: 
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The use of a basis combining constraint, Eq. (9), and fixed-interface modes, Eq. (10), 

is proposed in [2]. It yields the Craig-Bampton method: 
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where [NM,C] is the interior part of the matrix of kept fixed-interface modes. There are many 

results reported by Balmès et al. [6, 14, 15] obtained by the Craig-Bampton model order 

reduction (CBMOR) and the Rayleigh-Ritz vectors approach in order to solve coupled 

problems related to model sub-structuring  (also known as component mode synthesis).  

One should be aware of the fact that the use of Raleigh-Ritz vectors leads to dense matrices, as 

opposed to not reduced FEM models characterized by a sparse form of the matrices. 

4. SUBSTRUCTURES OR SUPER-ELEMENTS 

Sub-structuring is a procedure that condenses a group of finite elements into one 

element. It implies that the whole structure is divided into smaller structures (see Figs. 1 

and 2), and the resulting elements are referred to as super-elements. In the considered 

case (Fig. 1), the structure is divided into two substructures using 123 nodes at the 

interface. The model size is reduced from 37,698 DOF to 579 DOF.  

                 
 a) b) 

Fig. 1 Prototype and FEM model in NASTRAN and SDTools:  

a) Composite structure –  front and back; b) FEM model 
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The basic sub-structuring idea is to consider a part of the model separately and extract 

the degrees of freedom needed to connect this part to the rest of the model. Therefore, the 

result of sub-structuring is a collection of finite elements whose response is defined by the 

stiffness and mass of the retained degrees of freedom. The categories of modal truncation 

sub-structuring and static condensation approaches have been widely applied relying on the 

eigenfrequency information [3, 23]. 

       
 a) b)  

Fig. 2 Sub-structuring: a) Substructure 1; b) Substructure 2 

5. LAMINATE THEORY  

The classical laminate theory is applicable to linear and composite elastic materials [21] 

by means of the Discrete Kirchhoff Theory (DKT) elements [20]. The CLT has been used 

extensively to predict elastic behavior of the traditional fiber-reinforced polymers (FRP). 

FRP materials (carbon or glass FRP) are widely used in aerospace and construction 

applications. One important consideration is to have perfectly bonded layers with a uniform 

thickness (see Fig. 3). The mechanical properties measured in ply level experiments are used 

to populate the stiffness matrix for each ply. The stiffness matrices for the individual plies 

are combined to form the laminate stiffness matrix – the ABC matrix: 
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The ABC matrix relates forces (Ni) and moments (Mi) to strains (i) and curvatures 

(i). The components of the ABC matrix are given in Eqs. (7-9), where N is the number of 

plies, Qk is the stiffness matrix of each ply, and Zk denotes the distance from the laminate's 

mid-plane to the edges of single plies: 
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Fig. 3 Configuration of composite layers  

The prototype and the finite element (FE) model are shown in Fig. 1. The composite 

structure incorporates three parts (properties in Table 1). The first component is made of 

Hunts-man Ly 564 + Hexcel Gewebe G0926 (HTA-Faser) with dimensions of 0.390m  

0.810m (Fig. 2). The middle shell that connects the two principal parts (Fig. 2a) has 

dimensions of 0.710m  0.030m. Finally, there is the C-section Hexcel RTM6 + Saertex 

Multi-Axial-Gelege (MAG) with a IM7-Faser with dimensions of 0.710m  0.030m. All 

the parts have symmetric layer distribution [45/-45/45/-45/]S. 

6. DESIGN VIA FINITE ELEMENT ANALYSIS (FULL AND REDUCED MODEL)  

Our study is divided into two parts.  

The first part is a full modal analysis using the same model but with two different 

solvers for reference purposes. Two types of elements have been used: CTRIA3 shell 

(from MSC/NASTRAN) and PSHELL (from SDTools).  

The second part is setting the reduced model by using SDTools for MATLAB. The 

reduced model is built up defining two super-elements. Super-element 1 (Fig. 2a) has 4,753 

nodes and 9,219 elements, while super-element 2, (Fig. 2b) has 1,615 nodes and 3,026 

elements. The defined super-elements share 579 DOF distributed in 123 nodes along the 

common border with different DOF per node, according to the CMS that has defined an 

appropriate [T] matrix, used in [3]. We have calculated the same number of modes in each 

super-element and performed a cross orthogonality MAC (XOR) evaluation to verify the 

approximation of the MOR used in low (12 mode pairs) and/or high frequency range (29 

mode pairs) versus the full model. 

In order to estimate the main parameters (qualitative and quantitative) that affect our 

MOR based on the number of substructures and nodes, we have performed a DOE using 

first the full model and the experimental analysis. The DOE study is performed using the 

methodology implemented in Minitab 16 [7]. Fig. 4a shows the main effects of each 

parameter in the composite structure based on the physical characteristics selected. The 
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main effect is identified through the slope generated due to the eigenfrequency values 

between the limits defined for each parameter – a bigger slope means a strong parameter 

effect. Due to the number of parameters, it is necessary to perform first a DOE-screening 

with 2
10-5

=32 "runs" and then a full factorial with the identified principal parameters 

based on the DOE-screening. 

  
 a) b)  

Fig. 4 DOE: a) Parameters main effects, b) Surface response 

The results shown in Fig. 5a (vertical left side) are eigenfrequencies. The MAC 

correlation between the full model and experimental data help us validate the MOR 

results. The Young Modulus, density, number of nodes and substructure parameters have 

a strong influence reflected in the slope (Fig. 4b) and in the MAC values (section 7). 

Once we have selected the main parameters based on the DOE-screening, we perform a 

DOE full factorial 2
4
 and obtain a surface response (see Fig. 4b) that help us find the best 

model for the parameter limits selected. This process is known in literature as updating. 

Jing [8], Barner [9] and Xiaoping et al. [10] reported the use of design of experiments in 

order to quantify and qualify different key parameters in mechanical components 

(stresses, displacements, low and high cycle fatigue, and frequencies). The DOE is a 

sensitivity analysis tool used to estimate the critical input parameters. 

     

 a) b)  

Fig. 5 Cross orthogonality MAC reduced vs. full model: (a) low frequencies  

(b) higher frequencies (green bars MAC, blue bars frequency difference) 
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In Fig. 5, we can see the low and high mode pairs selected between the full and 

reduced model (12 and 29 mode pairs), respectively. The green bars show the eigenvector 

criteria and the blue bars the eigenfrequency difference between the reduced and the full 

model. The low frequencies show a larger difference in the 3
rd

, 4
th
 and 12

th
 mode pair. The 

largest difference in the frequencies is about 1.2% (low eigenfrequencies) between the full 

and reduced model. Increasing the number of pairs, the eigenfrequency difference increases 

up to 3% for 29 pairs. However, the mode pairs 3, 4 and 12 have improved suggesting that 

the accuracy using CBMOR method depends on the number of retained constraint modes. 

Most of the pair selections have a correlation above 90%, except for the 12
th
 mode pair in 

the low frequency range and the 23
rd

 and 24
th
 pair in a high frequency range. Table 2 shows 

the values comparing the full with a reduced model for low frequency. A 3D plot of the 

XOR for high frequency pairs is given in Fig. 6.   

Table 1 Orthotropic elastic mechanical properties per thickness 

Modulus Th1(m) E(GPa) (-) Shear G(GPa) ρ(Kgm-3) 

E1 0.035 71.3 0.3 G1 7.0 2600 

E2  97.3 0.3 G2 5.0  

    G3 7.0  

Modulus Th2(m) E(GPa) (-) Shear G(GPa) ρ(Kgm-3) 

E1 0.007 71.3 0.2 G1 6.0 1500 

E2  68.3 0.2 G2 5.0  

    G3 6.0  

Modulus Th3(m) E(GPa) (-) Shear G(GPa) ρ(Kgm-3) 

E1 0.035 71.3 0.2 G1 6.0 1500 

E2  68.3 0.2 G2 5.0  

    G3 6.0  

Table 2 MAC values: full versus CBROM reduced model 

 Full  Reduced DF/FA MAC 

7 57.218 7 57.218 0.0 100 

8 106.02 8 106.21 0.2 100 

9 167.50 9 167.79 0.2 93 

10 168.2 10 168.29 0.1 94 

11 234.99 11 235.12 0.1 100 

12 236.83 12 236.93 0.0 100 

13 315.26 13 315.33 0.0 100 

14 323.93 14 326.82 0.9 98 

15 401.72 15 401.77 0.0 100 

16 408.39 16 408.57 0.0 100 

17 432.89 17 433.39 0.1 99 

18 494.90 18 501.41 1.3 69 

The correlation of nearly double modes 9-10,11-12,13-14 and 15-16 in Table 2 

suggests the possibility of having bending and torsional modes at close frequencies in the 

composite structure (mode veering) [24]. Thus, a lower MAC value is expected in some 

mode pairs in the experimental validation. There are only three types of structures made of 
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the conventional materials that have been identified to exhibit veering: symmetric or 

cyclic structures, multi-dimensional structures such as plates having bending and torsion at 

close frequencies and structures with fully uncoupled substructures. The considered 

structure corresponds to the second type – multi-dimensional plate structures. 

7. MODAL ASSURANCE CRITERION (MAC) 

There are two general categories for correlation criteria: eigenfrequencies and 

eigenvectors [18]. The MAC is one of the most useful comparison methods that relies on the 

eigenvector information according to Eq. (10). The MAC is a known vector correlation 

between the experimental and the FE model. To approximate the measurements through a 

polynomial function, (Fig. 9), we use the frequency domain identification of structural 

dynamics applying the pole/residue parameterization [15]. 
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The MAC value of 100 % corresponds to an absolute correlation. The less this value 

becomes, the worse the eigenvector correlation is (cjid is the j
th

 mode shape at sensors 

and cjk is the j
th

 analytical mode shape), provided that the observability law for the 

selection of DOFs is not violated. A MAC coefficient of a magnitude larger or equal than 90% 

implies a satisfactory correlation. In Fig. 8, we observe some mode shapes of the reduced and full 

models. Figs. 10a, 10b, and 10c, show the MAC between the full and the experimental 

measurements in MATLAB, NASTRAN, and CBMOR model, respectively. The correlation 

is performed for a low frequency range (up to 400 Hz), based on the fitting model generated 

from the experimental measurements [3, 15]. 

 

Fig. 6 Cross orthogonality MAC (XOR): higher frequencies  reduced vs. full model 
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Fig. 7 FRF(blue) and fitting curve (green) of composite model at node 183y 

8. EXPERIMENTAL MODAL ANALYSIS 

All the measurements are performed with the Scanning Laser Doppler Vibrometer 

(SLDV) PSV 840 (Fig. 9a). It is a complete and compact system including a sensor head, 

a PC with DSP boards and Windows NT-based application software packages [16]. 

Discrete Fourier transform is applied to response x(t) and excitation f(t) to give X(ωi) and 

F(ωi), respectively [17]. The frequency response function (FRF), H(ωi), is defined as the 

ratio of the transformed excitation [18]: 

 
)(

)(
)(

i

i
i

F

X
H




 , (11) 

where H(i) is the identified (predicted) FRF transfer function matrix , H(i) the measured 

FRF transfer function matrix, X(i) the Fourier spectrum of response, and F(i) is the 

Fourier spectrum of excitation force. The FRF in Eq. (11) is the inverse of the dynamic 

stiffness matrix: 

 2 1( ) [ [ ] [ ] [ ]]i i iH M C K       . (12) 

Mass [M], damping [C] and stiffness [K] matrices in Eq. (12) are dependent on physical 

parameters such as material's density, Young's and shear moduli and Poisson ratio. 
 

  

Fig. 8 CBMOR  (in green) vs full model in MATLAB (in blue) 

Mode 7 at 57.22 Hz, 

Mode 7 at 57.22 Hz reduced 

Mode 8 at 106 Hz, 

Mode 8 at 106.22 Hz reduced 

Mode 9 at 167.5 Hz, 

Mode 9 at 167.8 Hz reduced 

Mode 10 at 168.2 Hz, 

Mode 10 at 168.3 Hz reduced 
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 a) b) c) 

Fig. 9 Experiment: a) Experimental set-up; b) 153 Y-direction sensors; c) 153 sensors in 

the FEM model 

The SLDV employs a laser to sweep over the structure continuously while measuring, 

capturing the response of the structure from a moving measurement point. Various methods 

have been devised to determine the mode shapes of the structure everywhere along the scan 

path measurement [16]. A bandwidth of 2% is used in order to localize the eigenfrequencies. 

The composite structure has rather small internal damping and the experimental modal 

analysis below 400 Hz is performed. The structure is excited by means of a shaker at node 

17 (Fig. 9a and Fig. 9b) that is located in the right bottom corner. The input force is 

measured using a force transducer type 8200 in combination with a charge to CCLD 

converter Type 2646 in order to record the excitation in the transverse direction.  

The interpolation between the experimental measurements uses Frequency Response 

Functions (FRF) [15], (Fig. 7). The FRFs allow comparison of the experimental modal 

parameters (frequency, damping, and mode shape) with those of the FE model. The Fast Fourier 

Transform (FFT) is a fundamental procedure that isolates the inherent dynamic properties of a 

mechanical structure and in our case with respect to the full and reduced FE model. The MAC 

analysis (Fig.10) shows a high correlation between the full model, the reduced model and 

the experimental measurements. The nearly double correlation in the experimental results 

identified in Table 3 (previously identified applying the CBMOR method in Table 2), 

suggests the presence of the veering phenomena (bending and torsional mode at the same 

frequency) in the considered composite structure. This is reflected in the MAC values for 

the corresponding modes.  

    

 a) b) c) 

Fig. 10 Comparative MAC: a) SDtools-Exp, b) MSC/NASTRAN-Exp, c) CBMOR-Exp 
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Fig. 11 Experimental mode shapes 

Pierre [25] reported how localization and veering are related to two kinds of "coupling": 

the physical coupling between structural components, and the modal coupling set up 

between mode shapes through parameter perturbations.  

His studies show that, in structures with close eigenvalues, small structural irregularities 

(could be our case) result in both strong localization of modes and abrupt veering away of 

the loci of the eigenvalues when these are plotted against a parameter representing the 

system disorder. The study of the presence of this phenomenon in the composite structure is 

beyond the scope of this work. 

Table 3 shows the MAC values obtained for each case between the full and reduced 

model versus the experimental results. The mode shapes depicted in Fig. 11 are the 

experimental results. 

Table 3 Full and reduced FEM model results versus experimental results 

 Experimental  Full DF/FA MAC CBMOR DF/FA MAC 

1 49.243 7 57.218 16.2 100 57.218 16.2 100 

2 92.265 8 106.02 14.9 97 106.21 15.1 97 

3 93.756 8 106.02 13.1 90 106.21 13.3 90 

4 145.29 10 168.20 15.8 83 168.29 15.8 84 

5 160.05 10 168.20 5.1 86 168.29 5.1 71 

6 164.18 9 167.50 2.0 98 167.79 2.2 92 

7 226.36 12 236.83 4.6 86 236.93 4.7 85 

8 243.40 11 234.99 -3.5 96 235.12 -3.4 97 

9 307.33 14 323.93 5.4 81 326.82 5.4 80 

10 314.18 14 323.93 3.1 66 326.82 4.0 65 

11 324.83 13 315.26 -2.9 74 315.33 -2.9 74 

12 329.67 13 315.26 -4.4 90 315.33 -4.3 89 
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9. CONCLUSIONS 

The results have shown a good correlation in dynamic behavior of the composite 

structure model using the DKT elements with different solvers. The MAC values with the 

full and reduced models have also shown a good agreement with the experimental results. In 

order to achieve high quality models that can adequately capture the dynamic behavior, the 

material properties are updated through the DOE and are crucial in the MOR correlation 

with the experimental results. The updated mass and stiffness matrices in the full model play 

an important roll in this procedure. Furthermore, the reduced model obtained by means of 

the Craig-Bampton MOR method (the reduced model couples 2 substructures through 123 

nodes and 579 DOF) has demonstrated a good agreement with the experimental results. The 

MAC values for the FEM models as well with the experimental results suggest a presence of 

mode veering phenomenon (bending and torsional mode at the same frequency in the 

considered composite structure). And finally, the experimental results using a SLDV as well 

as the identification of pole/residues used in [15], are suitable to validate the dynamic 

analysis using modal order reduction. It is improper to draw conclusions from a single 

example, but the obtained results using two different solvers are coherent. This conducted 

work obviously leaves much room for further research. Other modal assurance criteria need 

to be performed, such as coordinate modal assurance criteria (COMAC), enhanced modal 

assurance criteria (ECOMAC) and scale coordinate assurance criteria (S-COMAC) and also 

other model order reduction and/or mode shape expansion methods should be assessed.  
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PRIMENA CRAIG-BAMPTON REDUKCIJE MODELA NA 

STRUKTURU OD KOMPOZITNOG MATERIJALA: MAC I XOR 

Craig-Bampton metoda za redukciju modela (CBMOR) zasnovana na Rayleigh-Ritz pristupu je 

primenjena u simulaciji dinamičkog ponašanja kompozitnih struktura u cilju verifikacije izvodljivosti i 

tačnosti ove metode. Princip ove metode je da predstavi model spregnutih komponenti preko matrica 

inercije, prigušenja i krutosti. Metodologija uključuje model primenom konačnih elemenata (MKE) na 

osnovu klasične teorije laminata (CLT), zatim postavku eksperimenta sa ciljem poboljšanja vrednosti 

koeficijenata poređenja modova (MAC), kao i eksperimentalne rezultate sa ciljem validacije 

redukovanog modela primenom CBMOR metode i substruktura (superelemenata). Eksperimentalna 

modalna analiza je sprovedena korišćenjem laserskog Doplerovog vibrometra da bi se ocenio kvalitet 

MKE modela. MAC vrednosti za pripadajuće i nepripadajuće modove su sračunate da bi se 

verifikovale sopstvene frekvence i modovi. Ovaj postupak pokazuje izvodljivost primene CBMOR 

redukcije modela u slučaju kompozitnih struktura. Model je pripremljen i rešen primenom 

programskog paketa MSC/NASTRAN SOL103. Metodom dizajna eksperimenta identifikovani su 

kritični parametri, što je kasnije omogućilo dobijanje visokih MAC vrednosti.  

 

Ključne reči: SDTools-MATLAB, NASTRAN, modalna analiza, kompozitni materijali 




