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Abstract. The presented paper deals with the analysis of energy transfer in the visco-

elastically connected circular double-membrane system for free transverse vibration of 

the membranes. The system motion is described by a set of two coupled non-homogeneous 

partial differential equations. The solutions are obtained by using the method of 

separation of variables. Once the problem is solved, natural frequencies and mode shape 

functions are found, and then the form of solution for small transverse deflections of 

membranes is derived. Using the obtained solutions, forms of reduced kinetic, potential 

and total energies, as functions of dissipation of the whole system and subsystems, are 

determined. The numerical examples are given as an illustration of the presented 

theoretical analysis as well as the possibilities to investigate the influence of different 

parameters and different initial conditions on the energies transfer in the system. 
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1. INTRODUCTION

Membrane structures and compound systems are widely used in many industrial 

applications. In addition, in the micro world the system of compound membranes may 

represent a biological model of a cell membrane. The application involves several 

disciplines and industrial contexts as, for example, microfiltration systems in biological, 

medical, food, dairy and beverage products and application in aeronautics, cosmonautics, 

civil and mechanical engineering (see Refs. [1] and [2]). Membrane, string, beam, plate 

or cable [3] structures can perform linear and nonlinear vibrations. Despite the fact that 

the membrane systems are, in general, strongly nonlinear systems, under certain assumptions 

they can be considered as linear. By assuming that the amplitude of a membrane deflection is 
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smaller than its thickness and considering the initial tension on the membrane [4], the 

dynamic behavior of such structures can be observed within the linear vibration theory. 

Opposite to this, when no or small initial tension is applied and the membrane deflection 

amplitude is close to the value of the membrane thickness, the system is performing 

nonlinear vibration [4]. The linear as well as the nonlinear vibration analysis of membrane 

systems is important from the theoretical and practical point of view. Several papers have 

been published on the vibration analysis of elastically coupled double-membrane or 

plate-membrane systems, continuously connected by an elastic layer. Oniszczuk [5, 6], 

Noga [7, 8] and Karliĉić [9] present analytical expressions for the undamped free and 

forced vibrations of double-membrane and plate-membrane systems connected with the 

Winkler type of layers. Knowing the principles of phenomenological mapping and 

mathematical analogy, [10], it is clear that the composite membrane systems can be 

studied like coupled plate, beam or belt systems.  Hedrih and Simonović [11-13] have 

studied transverse vibrations of the rectangular and circular plates connected with elastic 

or visco-elastic layers for both linear and nonlinear dynamic problems. Kelly [14] 

examines vibration of the elastically connected multiple beams system. Energy transfer 

problem is studied in [15-17] for the vibrations of double-membrane and double-plate 

systems, connected with elastic or visco-elastic type of layers.  

In spite of many vibration studies on various types of hybrid systems, where different 

structures are coupled with different types of layers, according to the best of authors’ 

knowledge, an energy transfer analysis of free transverse vibration of the visco-elastically 

connected circular double-membrane system has not been considered in the literature yet. 

Under the assumptions of small transverse vibration of the membranes and constant 

initial tension for both the membranes, we analyze our system within the linear vibration 

theory. Governing equations of the system are derived and the solution is proposed by 

using the method of separation of variables. Natural frequencies and mode shape functions 

are determined by solving the boundary and initial value problem. The expressions for time 

functions are used in order to find analytical forms of reduced kinetic, potential and total 

energy of the system. 

2. FORMULATION OF GOVERNING EQUATIONS 

As a model problem, we consider two circular membranes connected through visco-

elastic layer, modeled by continuously distributed elements of the Kelvin-Voigt type. The 

scheme of such a mechanical model is depicted in Fig. 1. Both the membranes are 

assumed to be thin with mass densities ρi, for i=1,2 corresponding to the lower and upper 

membrane, respectively, ideally elastic and with neglected thickness. 

The membranes are stretched and fixed along their entire boundaries in xy plane. The 

tensions per unit length σi [N/m], caused by stretching, are the same at all points in all 

directions and do not change during the motion. Small transverse deflections of 

membranes wi(r,φ,t), i=1,2 are considered, where b[Ns/m] is denoting the damping 

coefficient and c [N/m] is the constant stiffness coefficient per surface unit area of the 

distributed visco-elastic layer between the membranes. Using the D`Alambert principle, 

the governing system of non-homogenous coupled partial differential equations for free 

vibration of the double-membrane system is expressed in the following form: 
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Fig. 1 The physical model of circular double-membrane compound system 
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where i = 1,2; ci = (σi /ρi)
1/2

[m/s] are velocities of the transverse wave propagation for 

both the membranes,  is Laplacian operator, and ai
2

 
= c  /ρi, 2δi=b/ρi are notations for 

reduction coefficients.  

Analytical solutions of the system of coupled partial differential equations are 

obtained by using the method of separation of variables. For the system of two coupled 

partial equations Eq. (1), for free vibration, we separate variables in wi(r,φ,t), i=1,2 and 

considering the eigenamplitude functions as Wi(nm)(r,φ); n,m=1,2,...,∞ and the time 

expansion with coefficients in the form of unknown time function as Ti(nm)(t) we describe 

their time evolutions in the form: 
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wherein m =1,2,...,∞ denotes an infinite number of possible vibration modes.  

Here, eigenamplitude functions Wi(nm)(r,φ) are the same for both the membranes and 

written in the following form: 

 W(i)nm(r,) = Jn(knmr)cos(n + (i)0n),
 (3) 

which are obtained for the decoupled system and for the same boundary conditions of 

membranes. In Eq. (3) Jn(knmr) are Bessel`s functions of the first kind of n-th order, and 

knm=xnm/a are characteristic numbers for every m-th root of n-th Bessel`s functions over 

membrane radius a.  

After introducing Eq. (2) into the governing system of Eq. (1), we obtain the 

following system of the homogeneous second order ordinary differential equations with 

respect to unknown time functions Ti(nm)(t) for nm-family mode, in the following form: 
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where ωi
2

(nm)= ω0i
2

(nm)+ai
2
=ki

2
(nm)ci

2
+ai

2
; i=1,2; n,m =1,2,...,∞, are natural frequencies for 

the first and second membrane for the nm-th mode of vibration. To solve the system of 

two coupled ordinary differential Eqs. (4), it is necessary to form the frequent determinant 

and determine the eigenvalues of the system. We introduce matrices corresponding to the 

nm-th mode of the observed dynamical system: inertia Anm matrix, stiffness coefficients 

matrix Cnm and damping coefficients matrix Bnm in the following forms: 
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The coupled system of Eqs. (4) for time domain may be treated as a system of equations 

corresponding to a two-degree-of-freedom discrete system with defined matrices in Eq. (5). 

The characteristic equation of the linearized coupled system is given in the form: 
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We obtain eigenvalues of the system in nm modes as two pairs of complex conjugate 

roots in the form:

  1,2( )( ) ( )( ) ( )( ) ,  1, 2s nm s nm s nmλ i s      (7) 

where δ (s)(nm) and ω (s)(nm) are real and imaginary parts of the corresponding pair of roots of 

the characteristic equation. 

Now, the solution of the system of ordinary differential Eqs. (4) can be expressed as: 
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We obtain eigenamplitude numbers A
(s)

i(nm) and their conjugates
( )
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where K
(s)

2i(nm) are cofactors of the determinant in Eq. (6) and Cs(nm) are known constants 

determined from the corresponding characteristic equation.  

Considering the time functions in Eqs.(8) corresponding to frequencies ω (s)(nm) of the 

damped coupling and taking into account conjugate complex roots (Eq. (7)) yields: 
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The constants of integration uis(nm) and vis(nm) are defined as follows: 
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As(nm) and Bs(nm) can be obtained through application of the initial conditions. The initial 

conditions are assumed as known functions:  
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Now, the particular solutions for a non-homogenous system of the coupled partial 

differential equations, for free vibrations, as membrane deflections, are: 
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The solutions from Eq. (13) are analytical results of our research on transversal vibrations 

of the visco-elastically connected double circular membrane system.  

On the basis of the orthogonality properties of the mode shape functions, unknown 

constants As(nm) and Bs(nm) can be determined from the assumed initial conditions Eq. (11) 

and Eq. (12). Introducing the known functions of membranes’ point displacements and 

velocities Еq. (11) and Eq. (12) into the solutions Eq. (2) and applying the classical 

orthonormality conditions of eigenamplitude functions Wi(nm)(r,φ) and Wi(sr)(r,φ), in the 

form: 
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we obtain the values of the initial time functions:   

 

2

( )

0 0
0( )

( )

( , ) ( , )

a

i nm

i nm
i nm

g r W r rdrd

T
M



  



 
  and  

2

( )

0 0
0( )

( )

( , ) ( , )

a

i nm

i nm
i nm

g r W r rdrd

T
M



  



 
.   (15) 

In order to find the final forms of the transverse vibrations, the initial-value problem has 

to be solved: 
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From analytical solutions, Eq. (13), and corresponding solutions of constant system, 

Eq. (16), we can conclude that in one mode of vibration, two circular frequencies of 

coupling and a two-frequency time function Ti(nm)(t) correspond to one eigenamplitude 

function. The first time mode is with lower damped frequency ω (1)(nm), and the second one 

is with higher damped frequency ω (2)(nm). Hence, the visco-elastic layer introduces into 

the system duplication of the number of circular frequencies which correspond to the one 

eigenamplitude function of the nm-family mode n,m=1,2,...,∞. 

We can rewrite the solutions for time functions in the form: 
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The constants of integration Di(nm) can be calculated by solving a system of simultaneous 

algebraic equations formulated in the matrix form as: 
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where T0(nm) is the vector of inital condition constants given by Eq. (15). The system 

matrix Eq. (18) has two pairs of complex conjugate eigenvalues the same as values Eq. 

(7). Therefore, we conclude that the solutions given in Eq.(17), Eq. (8) and Eq. (9) are 

actually the same. 

3. ENERGY ANALYSIS  

We can analyze energy transfer in the double-membrane system by using reduced 

components of kinetic and potential energy of membranes, potential energy of the light 

distributed visco-elastic layer and the reduced Rayleigh function of dissipation for 

corresponding nm-family mode. Also, we can use the system of two ordinary differential 

Eqs. (4) for corresponding nm-th mode, which is considered as a system with two degrees 

of freedom. For the system of Eqs. (4) it is possible to write forms of kinetic and potential 

energies by using the matrices Eqs. (5). Reduced forms of energies corresponding to the 

nm-th mode are given as: 
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where Ek(nm) and Mi(nm) are kinetic energy and orthogonality function Eq. (14), respectively. 
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b) Reduced potential energy ( )p nmE : 

 

1( )

( ) 1( ) 2( )
2( )

( )2 2 2 2 2
2( ) 1( ) 1 01( ) 1( ) 2 02( ) 2( )

( )

1
( )

2

1
[ ] ( ) ( )

2

nm

p nm nm nm
nm

p nm

nm nm nm nm nm nm
i nm

T
E T T

T

E
c T T T T

M
   

  
  

  

     
 

C  

,  (21) 

where Ep(nm) is potential energy. 

c) Reduced Rayleigh function of dissipation ( )nm lay , which is related to the layer, is of 

the form: 
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Also, we can separate terms for the kinetic and potential energies which correspond to 

the first and the second membrane, [8, 14, 15]: 

a.1) Reduced kinetic energy of the membranes: 
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b.1) Reduced potential energy of the membranes and reduced potential energy of a 

visco-elastic layer for the corresponding membranes: 
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b.2) Reduced potential energy of pure interaction between membranes induced by a 

visco-elastic layer: 
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b.3) Reduced potential energy of the membranes without reduced part of the potential 

energy of layer for the corresponding membranes: 
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b.4) Full reduced potential energy of a visco-elastic layer interaction between the 

membranes: 
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From the previous equations, we can see that the reduced potential energy is obtained 

by considering membranes’ vibration on the elastic foundation of the Winkler type. Both 
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the membranes share potential energy of the visco-elastic layer, and only one part is 

interaction between the membranes depending on layers rigidity and on both time 

functions of the membranes. In the following, we will introduce: 

c.1) Rayleigh function of dissipation-reduced part of a visco-elastic layer for the 

corresponding membranes: 
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c.2) Part of the Rayleigh dissipation function – pure interaction between the membranes 

induced by visco-elastic layer 
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If we use the solutions from Eq. (9) of free vibrations and their derivatives with 

respect to time, the reduced total membranes energy for the nm-th mode can be expressed 

as follows. 

Reduced total energy of the first, i=1, and second, i=2, membranes in the nm-mode 

are: 
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Therefore, the reduced total energy of both membranes is: 
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Reduced total energy of the system in the nm-th mode is equal to the sum of the reduced 

total energy of both the membranes and the reduced potential energy of pure interaction 

between them (Eq. (25)): 

 ( ) ( )( 1, 2) ( )intnm system nm m m p nmE E E  . (32) 

As concluded in [17] for transverse vibrations of the double membrane system with 

elastic layer, the total energy of the system remains constant and equal to the energy in 

the initial moment during the whole dynamic process which is indeed a property of 

conservative systems. Here, for a non-conservative system, we have energy dissipation 

which is equal to: 
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nm nm lay

E

dt
      ,        (33) 

where Φ(nm)lay is the Rayleigh function. 

This means that the dissipation function is a measure of the degradation of the 

mechanical energy of system, notwithstanding the choice of system parameters and the 

initial conditions that is also confirmed in the numerical results section. 
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4. NUMERICAL RESULTS FOR THE SYSTEM ENERGY 

For the numerical calculation and representation of Eqs. (32) and (33), the following 

parameter values are considered: tension per unit length σ1=600[N/m], density 

ρ1=200[kg/m
3
] and radius a=1m for the upper membrane and for the lower membrane we 

consider the same radius but different tension and density. For the discussion of the 

results their values are presented in Table 1. We introduce the following coefficients 

ξ=ρ2/ρ1 and η=σ2/σ1 with values presented in Table 1. All the simulations are performed 

in the first shape mode nm=01 when k01=2.40483. 

When we have ξ=η=1, it could be noticed that the damped higher frequency of the 

second time mode is constant ω 2=4.16528[s
-1

]=k01(σ1 /ρ1)
1/2

=const and that mode is not 

damped δ 2=0 for different values of layer parameters. The lower frequency aptly 

corresponds to the changes of stiffness coefficient c  and damping coefficient b. Lower 

natural frequency ω 1 increases for an increase of the layers stiffness and it decreases for 

an increase of the damping coefficient.  

Table 1 The eigenvalues of the system in Eq. (7) for proper 01-mode, for different 

system parameters 

a=1[m] 50.  1  2  

c   

[N/m] 

b 

[Ns/m] 

 50.  1  50.  1  50.  1  

100 

100 λ1,2(1) 

λ1,2(2) 

-0.75 ± 4.28i 

0 ± 4.17i 

-0.53 ± 5.87i 

-0.22 ± 4.27i 

-0.27 ± 4.16i 

-0.23 ± 3.06i 

-0.5 ± 4.25i 

0 ± 4.16i 

-0.26 ± 4.2i 

-0.11 ± 2.14i 

-0.26 ± 4.19i 

-0.11 ± 3.0i 

200 λ1,2(1) 

λ1,2(2) 

-1.50 ± 4.07i 

0 ± 4.16i 

-1.10 ± 5.52i 

-0.39 ± 4.46i 

-0.5 ± 3.89i 

-0.5 ± 3.22i 

-1.0 ± 4.16i 

0 ± 4.16i 

-0.51 ± 4.11i 

-0.24 ± 2.17i 

-0.53 ± 4.07i 

-0.21 ± 3.06i 

300 λ1,2(1) 

λ1,2(2) 

-2.25 ± 3.71i 

0 ± 4.16i 

-1.9 ± 5.02i 

-0.35 ± 4.69i 

-0.3 ± 3.61i 

-1.2 ± 3.31i 

-1.5 ± 4.01i 

0 ± 4.16i 

-0.76 ± 3.97i 

-0.36 ± 2.21i 

-0.84 ± 3.86i 

-0.28 ± 3.18i 

250 

100 λ1,2(1) 

λ1,2(2) 

-0.75 ± 4.53i 

0± 4.16i 

-0.57 ± 6.02i 

-0.18 ± 4.34i 

-0.32 ± 4.26i 

-0.18 ± 3.16i 

-0.5 ± 4.43i 

0 ± 4.16i 

-0.27 ± 4.29i 

-0.1 ± 2.22i 

-0.28 ± 4.29i 

-0.09 ± 3.05i 

200 λ1,2(1) 

λ1,2(2) 

-1.50 ± 4.34i 

0 ± 4.16i 

-1.18 ± 5.72i 

-0.32 ± 4.48i 

-0.64 ± 4.01i 

-0.35 ± 3.31i 

-1.0 ± 4.34i 

0 ± 4.16i 

-0.54 ± 4.21i 

-0.21 ± 2.24i 

-0.57 ± 4.18i 

-0.17 ± 3.1i 

300 λ1,2(1) 

λ1,2(2) 

-2.25 ± 4.00i 

0 ± 4.16i 

-1.94 ± 5.28i 

-0.31 ± 4.66i 

-1.21 ± 3.6i 

-0.29± 3.55i 

-1.5 ± 4.19i 

0 ± 4.16i 

-0.81 ± 4.07i 

-0.32 ± 2.28i 

-0.89 ± 4i 

-0.23 ± 3.18i 

500 

100 λ1,2(1) 

λ1,2(2) 

-0.75 ± 4.93i 

0 ± 4.16i 

-0.62 ± 6.27i 

-0.13 ± 4.42i 

-0.38 ± 4.47i 

-0.12 ± 3.27i 

-0.5 ± 4.7i 

0 ± 4.16i 

-0.29 ± 4.45i 

-0.08 ± 2.32i 

-0.30 ± 4.46i 

-0.07 ± 3.11i 

200 λ1,2(1) 

λ1,2(2) 

-1.50 ± 4.75i 

0 ± 4.16i 

-1.27 ± 6.03i 

-0.23 ± 4.51i 

-0.78 ± 4.29i 

-0.22 ± 3.36i 

-1.0 ± 4.62i 

0 ± 4.16i 

-0.58 ± 4.38i 

-0.17 ± 2.34i 

-0.62 ± 4.37i 

-0.12 ± 3.15i 

300 λ1,2(1) 

λ1,2(2) 

-2.25 ± 4.45i 

0 ± 4.16i 

-2 ± 5.66i 

-0.25 ± 4.63i 

-1.27 ± 4.0i 

-0.22 ± 3.48i 

-1.5 ± 4.48i 

0 ± 4.16i 

-0.87 ± 4.25i 

-0.25 ± 2.37i 

-0.96± 4.23i 

-0.17 ± 3.2i 

 

It is interesting to note that the same is true for ξ=η=const, which is marked with gray 

cells in Table 1. This mechanism of changes is also the same for other arbitrary values of 

σ1 and ρ1 when ξ=η=const, where we have obtained ω 2=k01(σ1 /ρ1 )
1/2

=const and δ 2=0 for 

all values of layers parameters.  

Comparing to the other values in Table 1, it is obvious that the damped natural 

frequencies increase for an increase of the layers stiffness, whereas damped lower 

frequency ω 1 decreases and higher frequency ω 2 increases for an increase of damping 

coefficient. The final forms of time functions, Eqs.(9) rely on the values of vector α(nm). 

The relations for time functions and their time derivatives determine the values of 

reduced energies, Eqs. (30-32), and dissipative function, Eq. (33), of subsystems and the 
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system itself. It is possible to obtain the diagrams for the system and subsystems energies 

for every particular value of parameters. For the qualitative analyses several different 

parameters for membranes and layers are selected for the diagrams of energies and 

presented in the following Figures.  

Fig. 2a shows the reduced total energy of the system, Eq. (32), in appropriate 01-

mode for different values of visco-elastic layer stiffness and the same initial conditions. 

The parameters used in simulation for this Figure are σ1=2σ2=600 [N/m], ρ1=5ρ2= 

200 [kg/m
3
], b=200 [Ns/m] for three different values of c ={100, 250 and 500}[N/m], and 

initial conditions w10=0.0025W01, w20=0.001W01, 10w = 20w =0. As can be seen from Fig. 

2a, the total energy of the system is larger and more slowly dissipated for higher values 

of the visco-elastic layer stiffness coefficient than for the lower values. At initial time, 

total energy depends on the energy given to the system by appropriate initial conditions, 

as they are the same for those three lines starting from the same appropriate point. 

Fig. 2b shows the double reduced Rayleigh function of the dissipation, Eq. (29), in the 

upper part of diagrams, and time exchange of reduced total energy of the system    (nm)system/dt 

in the lower part of diagrams. Those diagrams are obtained for the same values of 

parameters and initial conditions as in Fig. 2a. Also, as it stems from Eq.(33), time 

exchange of total energy is equal to the negative double value of dissipation function and 

diagrams from Fig. 2b are completely symmetric. 

Figs. 3a and 3b show similar diagrams as Figs. 2a and 2b, respectively, with the same 

initial conditions but for different system parameters: σ1=5σ2=600 [N/m], ρ1=ρ2/2=200 [kg/m
3
], 

c =250[N/m] and for varied values of damping coefficient b={100, 200 and 300}[Ns/m]. 

In this case, the total system energy dissipates faster as the damping constant increases.  

In order to investigate the effect of change of the initial conditions, numerical 

simulations are performed for the same stiffness and damping coefficients. Diagrams in 

Figs. 4a and 4b are similar to those in Figs. 2a and 2b, respectively. However, in this case 

calculations are performed for different system parameters: σ1=5, σ2=600 [N/m], 

ρ1=ρ2/2=200 [kg/m
3
],  c =250[N/m], b=300 [Ns/m]. In addition, three different cases of 

initial displacements and velocities on the first and the second membranes are employed: 

I) w10=0.002W01, w20=0, 10w = 20w =0, the lower membrane is at rest in the initial moment; 

II) w10=0.002W01, w20=0.002W01, 10w = 20w =0, the membrane points are having the 

opposite initial positions corresponding to the first amplitude shape function, so-called 

initially anti-phased membranes, and  III)w10=w20=0.002W01, 10w = 20w =0, the membrane 

points are having the same initial positions corresponding to the first amplitude shape 

function, so-called initially phased membranes. The shapes of membranes at the initial 

moment for the three cases are presented in Figs. 5a, 5b and 5c, respectively. 

The forms of membrane deflection and velocity at the initial moment determine the 

mechanical energy given to the double membrane system. In Fig. 4a one can see different 

starting points of the total energy function for different initial conditions. The largest 

values obtained for the case of initially anti-phase membranes, since the system has 

received the greatest potential energy in the initial moment when the membrane points 

are having the opposite positions corresponding to the first amplitude shape function. 

Since the system is damped, after some period of time the total energy of the system is 

dissipated to the zero value. As can be seen from Fig. 4 for all the three simulated conditions 

the period of time needed for dissipation of the total energy does not change and we can say 

that the system’s damped properties depend only on the system parameters.   
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a)                                                              b) 

Fig. 2 a) The reduced total energy of the system and b) the double reduced Rayleigh 

function of dissipation and time exchange of the system’s reduced total energy in 

appropriate 01-mode for system parameters and different values of stiffness 

coefficient c  

 
          a)        b) 

Fig. 3 a) The system’s reduced total energy and b) the double reduced Rayleigh function 

of dissipation and time exchange of the system’s reduced total energy in 

appropriate 01-mode for system parameters and different values of damping 

coefficient b 

 
a)         b) 

Fig. 4 a) The system’s reduced total energy and b) the double reduced Rayleigh function 

of dissipation and time exchange of the system’s reduced total energy in 

appropriate 01-mode for system parameters and different three values of initial 

displacement and velocity on the first and the second membranes (I, II, III)  
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Fig. 5 The shape of membranes at different initial moment: a) the lower membrane is at 

rest at the initial moment; b) so-called initially anti-phased membranes, and c) so-

called initially phased membranes  

5. CONCLUSIONS 

In this paper, the free vibration and energy analysis of a double-membrane system 

joined by the Kelvin-Voigt type layer is performed analytically and numerically. The 

obtained forms of solutions for time functions Eq.(9) in proper mode shape are rather 

down-to-earth solutions since they are applicable in numerical experiment. Furthermore, 

those forms of solutions could be used in the analysis of forced and nonlinear system 

oscillations. The analytical analysis showed that the Kelvin-Voigt type layer is responsible 

for the appearance of two-frequency regimes, which corresponds to one eigenamplitude 

function. Time functions for different modes of vibrations are uncoupled and energy 

transfer appears in a single mode. The system is non-conservative and damped by a visco-

elastic layer, so the dissipation function is a measure of the degradation of system’s 

mechanical energy, notwithstanding the choice of system parameters and the change of 

the initial conditions. The mechanical energy given to the system at the initial time decreases 

until the whole energy of the system is dissipated.  It can be concluded that influence of 

the system parameters is more significant for the mechanical energy analysis than the 

change of the initial conditions, which is, in general, a property of the linear systems. 
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ENERGIJSKA ANALIZA SLOBODNIH TRANSVERZALNIH 

VIBRACIJA SISTEMA VISKO-ELASTIČNO SPREGNUTIH 

MEMBRANA  

Predstavljeni rad je posvećen analizi prenosa energije kod slobodnih transverzalnih oscilacija 

sistema visko-elastično spregnute dve membrane. Kretanje sistema je opisano sistemom dve 

spregnute nehomogene parcijalne diferencijalne jednačine.  Rešenja su dobijena primenom metode 

razdvajanja promenljivih. Rešavajući problem dobijaju se sopstvene kružne frekvencije i osnovni 

amplitudni oblici oscilovanja sistema, a potom i oblici rešenja za male transverzalne pomeraje 

membrana. Koristeći dobijena rešenja određene su redukovane vrednosti kinetičke, potencijalne 

energije i funkcije rasipanja kako celog sistema tako i podsistema. Primeri numeričkog proračuna 

su dati kao ilustracija prikazane teorijske analize i kao mogućnost da se prouče uticaji različitih 

parametara sistema i različitih početnih uslova na prenos energije u sistemu. 

Kljuĉne reĉi: sistem dve membrane, visko-elastični sloj, funkcija rasipanja, prenos energije, više-

frekventne oscilacije. 

 




