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Abstract. The present paper deals with estimation of the elasto-damping parameters of a 

cone inertial crusher mounting. The numerical values of these parameters are crucial for 

accurate reproduction of the machine vibrational behavior and dynamical model 

adequacy. Due to the significant difficulties arising during the purely theoretical 

determination of the stiffness and damping parameters of the rubber vibroisolators it is 

well-suited to use a theoretical-experimental approach. The developed approach is based 

on the theoretical determination of the mounting stiffness parameters as a function of two 

experimentally measured natural frequencies of the mechanical system. The crusher is 

represented as a six degrees of freedom system with two planes of symmetry. By using the 

system characteristic polynomial, the theoretical derivation of mathematical relationships 

for the mechanical system natural frequencies as a function of stiffness, inertial and 

geometrical parameters is performed. A good agreement is shown when comparing the 

experimental and the theoretical results for the system kinematical characteristics. 
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1. INTRODUCTION 

In recent years, in some cases of their application, the cone inertial crushers have been 

established as the only option for an effective and low energy milling of mineral raw 

materials [1]. The design feature that makes them particularly preferred is the absence of 

a rigid kinematical connection between the driving system and the internal crushing cone. 

That is why this type of crushers is protected against damage in the case of an unbreakable 

object’s entering their crushing chamber. 
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Fig. 1 shows the kinematical scheme of a cone inertial crusher. An electric motor (pos. 

7), V-belt transmission (pos. 6), elastic rubber coupling (pos. 5), universal joint (pos. 4) and 

adjustable eccentric weight (pos. 3) realize the driving of the internal crushing cone (pos. 2). 

The outer crushing cone is rigidly mounted in the machine housing (pos. 1) placed on four 

rubber vibroisolators (pos. 8), rigidly connected to the ground. In the machine non-operating 

condition, the vertical axes of the outer and the internal cones and the eccentric weight axis 

of rotation are aligned, while in the operating mode this is not true due to the internal cone 

precession. 
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Fig.1 Kinematical scheme of the cone inertial crusher 

Generated by the eccentric weight, the centrifugal force causes the internal cone to 

travel along the inner surface of the outer cone. The inertial force of the internal cone in 

addition to the inertial force of the eccentric weight generates a crushing force and as a 

result the two cones are pressed toward each other and the mineral material (pos. 10) is 

fragmented. The change of the rotational speed of the adjustable eccentric weight causes 

change of the crushing force and the crusher operational characteristics. When an 

unbreakable object enters the crushing chamber, the internal cone stops its movement, but 

the eccentric weight continues to rotate and thus the machine is protected against damage.  

A general trend in the theoretical investigation of the cone inertial crushers is the study 

of their motions and kinematical characteristics through dynamical models that allow the 

mathematical description of the machine behavior in 3D space [2]. A crucial step during 

the dynamical models generation is the estimation of the numerical values of the elasto-

damping, geometrical, force and inertial parameters that provide the best match between 

the model and the real world machine behavior. Obviously, to achieve maximum accuracy, 

numerical values of the parameters should be set appropriately. There is a variety of methods 

for identification of the mechanical dynamical systems and estimation of their parameters 

values [3, 4, 5], a significant part of which are based on the study of the system properties 

in the time or frequency domain.  

While the geometrical and inertial parameters of the machine are determined relatively 

easily by use of CAD models, direct measurements or calculations, the estimation of the 

mounting elasto-damping parameters is accompanied by significant difficulties. The 

results, received by use of theoretical relationships or computer simulation are unreliable, 
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especially when the machine mounting is realized by rubber vibroisolators. Typically, the 

characteristics of the rubber vibroisolators are in general: nonlinear [6], changing over 

time due to ageing [7], dependant on the temperature [8] and vibration frequency [9] or 

are described by complex models depending on a set of experimentally determined constants 

[10]. In the engineering practice, the problem is overcome by the use of appropriately 

organized experimental research for elasto-damping parameters estimation. One commonly 

used method [11] is the experimental measurement of the most important characteristics of 

any mechanical oscillating system - the values of the natural frequencies and the subsequent 

estimation of the rigid body properties and stiffness parameters by the use of theoretical 

relationships derived from the conventional modal analysis of the system. 

The main goal of the present paper is to develop and validate a theoretical-experimental 

approach for estimation of elasto-damping parameters of the cone inertial crusher mounting. 

For this purpose, we should obtain theoretical relationships that relate stiffness, geometrical 

and inertial parameters of the system with natural frequencies that can be easily determined 

experimentally. 

The present paper is structured as follows: Section 1 comprises analyzed papers concerning 

some problems of estimation of the mounting system parameters and the goal of the paper 

is defined; Section 2 presents a developed dynamical model of the crusher which takes 

into account the geometrical and inertial symmetry of the system; Section 3 is devoted to 

the theoretical investigation of the oscillating system and development of mathematical 

relationships for natural frequencies of the system. Experimental setup, based on industrial 

crusher of type KID-300 and experimental measurements are presented in Section 4. Section 5 

presents the results of the developed approach together with validation. Section 6 comprises the 

conclusion. 

2. DYNAMICAL MODELING 

For the purposes of the present study, the cone inertial crusher is represented in 3D 

space as a rigid body with 6 DOF (pos. 1), mounted on four fixed to the ground similar 

rubber vibroisolators (pos. 2), see Fig. 2 а) and b)). The crusher has two vertical planes of 

geometrical and inertial symmetry and the vibroisolators are mounted symmetrically 

according to these planes – Fig. 2 b). Every vibroisolator is represented by a set of three 

linear elasto-damping elements whose directions are aligned with the global coordinate 

system axes. To the ground is connected a global immovable Cartesian coordinate system 

Оxyz and to the rigid body gravity center is fixed a Cartesian coordinate system Cxyz 

whose axes are principal axes of inertia of the body. In the static equilibrium, position 

origins O and C of the coordinate systems are coincident and the vector of generalized 

coordinates measured according to the equilibrium position is: 

[ ]Tx y z   q                                            (1) 

where by x, y and z are denoted the linear translations of body mass center C, and by ψ, θ 

and φ are denoted body rotations according to the corresponding axes, see Fig. 2. 
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                                   а)                                                                     b)                                                                      

Fig. 2 Dynamical model of the crusher: а) 3D view, b) top view  

Undamped free vibrations of the system are represented by the following linear system 

of homogeneous ordinary differential equations of second order:  

0 Mq Cq                                                        (2) 

where M is the mass matrix of the system, C is the stiffness matrix, and by [ ]Tx y z   q  

is denoted the vector of generalized accelerations. 

Kinetic T and potential P energies of the system are positive definite quadratic forms of the 

correspondingly generalized velocities [ ]Tx y z   q  and generalized coordinates – 

Eq. (1):  

1

2
T  T

q Mq                                                           (3) 

 
1

2
P  T

q Cq   (4) 

Under assumption of small motions, the elements of mass matrix M and stiffness matrix 

C are computed as: 
2
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                                                            (5) 
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Performing the differentiations in Eqs. (5) and (6) and taking into account the geometrical 

and mass symmetry of the system, for the mass and stiffness matrix we obtain [2]: 

( , , , , , )xy xy zdiag m m m J J JM                                              (7) 
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In  Eqs. (7) and (8) are used the following notations: m – mass of the crusher housing 

(pos.1, Fig.1) together with the contained movable elements (pos. 2, 3, 4 in Fig. 1); 

Jx=Jy=Jxy and Jz- the mass moments of inertia of the crusher according to coordinate 

system Cxyz axes; cx=cy=cxy and cz - stiffness coefficients of vibroisolators in x, y and z 

directions; Lz – distance in z direction between the gravity center and the point of 

connection of the vibroisolator to the ground;  Lxy - distance in x and y directions between 

the gravity center and the point of connection of the vibroisolator to the ground. 

3. DETERMINATION OF THE SYSTEM NATURAL FREQUENCIES AND MODE SHAPES 

Matrices M and C can be exploited to determine dynamical matrix H of the system 

and corresponding characteristic polynomial f(λ) [12]: 

 -1
H M C                                                                 (9) 

( ) det( )f   H I                                                       (10) 

where I is the identity matrix.  

After performing mathematical operations in Eqs. (9) and (10) for the characteristic 

polynomial we obtain: 
2
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Roots λi of characteristic polynomial f(λ) are the eigenvalues of matrix H and are equal to 

squared natural frequencies ωi of the mechanical system under consideration: 

2 2 1 2
1 2 1 2( ) ( )x y

xy z

k k

mJ J
   


                                             (12) 

2

3 3

4
( )z zc

m
                                                        (13) 

2 2 1 2
4 5 4 5( ) ( )

xy z

k k

mJ J

    


                                          (14) 

2

2

6 6

4
( )

xy xy

z

L c

J

                                                      (15)  



78 R. MITREV, S. SAVOV 

where:
2 2

1 (2 ( ) )z xy xy z xy zk J c J mL mL c    ,

2 2 2

2

2 2

(2 ( ) ) ...

... 8

xy xy z xy z

z

xy xy z xy

c J mL mL c
k J

mL c c J

   
 
  

 , 

and 
1

x , 
2

y , 
3

z , 
4

 , 
5

 , 
6

  are the natural frequencies associated to the corresponding 

coordinates. As can be seen from Eqs. (12) and (14), due to the symmetry of the system 

there are two repeated roots and that is why the system has only four unique natural frequencies. 

Eigenvectors ui corresponding to natural frequencies ωi are determined from the 

following equation: 

( ) 0i i H I u                                                      (16) 

Modal matrix Ф of the system is composed of the eigenvectors 

1 2 3 4 5 6[ ]Φ u u u u u u                                         (17) 

and for the real world machine parameters take the form: 
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The review of the modal matrix shows that the translation along z axis and rotation around 

z axis are uncoupled while the translations along x and y coordinates and rotations around 

y and x axes are coupled. 

Providing experimentally measured values for two unique natural frequencies and 

knowing the inertial and geometrical parameters of system, Eqs. (12-15) can be used for 

determination of unknown stiffness parameters cxy and cz. A total of six combinations in 

pairs are available for four unique natural frequencies, namely combinations 1 3 1( , )x z  , 

1 4 2( , )x   , 1 6 3( , )x   , 3 4 4( , )z   , 3 6 5( , )z   , 4 6 6( , )   . After the determination of the 

values of natural frequencies of a particular combination, using Eqs. (12-15) the corresponding 

system of equations can be solved analytically or numerically for unknown stiffness 

parameters. Least computational complexity has combination 3 6 5( , )z    for which from 

Eqs. (13) and (15) we obtain: 
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Due to the large weight of the machine and its design features, a particular problem in 

using this combination are the difficulties during excitation of oscillations along z-axis 

and around z-axis. The easiest way to excite oscillations is along axis x (or y) and the 
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coupled oscillations around y (or x) axis and thus values of the natural frequencies for 

second combination 1 4 2( , )x    can be determined. These values along with the Eqs. (12) 

and (14) can be used for calculation of cxy and cz. The system has two solutions and due to 

the vibroisolator design, one must choose the solution for which is fulfilled cz>cxy: 

1 2

24
z

n n
c

L m


                                                                 (21) 

1 2
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where 
2

1 4 1( )x

xyn m J   , 2 2 2 2 2 2 2

2 4 1 4 1( (( ) ( ) ) ) 4 ( ) ( )x x

xy xy zn m J J m L       . 

4. EXPERIMENTAL SETUP AND MEASUREMENTS 

For determination of natural frequencies 1

x  and 4

  an experimental study is conducted. 

The used experimental setup (Fig. 3) is based on the industrially used cone inertial crusher of 

type KID-300. The numerical values of the experimental setup parameters are shown in 

Table 1. 

Table 1 Numerical values of the experimental setup parameters 

Parameter Value and dimension 

Mass of the crusher vibrating parts m=838.6 kg 

Inertial moments Jxy=61.44 kg.m
2
, Jz=51.52 kg.m 

Distances Lxy=0.486 m, Lz=0.3 m, L=0.212 m 

Mass of the eccentric weight mv=43.1 kg 

Radius of rotation of the eccentric weight e=0.03 m 

Angular velocity of the eccentric weight ω=113 rad/s, 157 rad/s 
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                               a)                                                                     b) 

Fig. 3 Scheme of the experimental setup and accelerometers layout 
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In Fig. 3 a) and b) the mounting positions of the used piezoelectric accelerometers are 

shown. At point A, situated on the housing and on local x axis, is mounted one two-axial 

accelerometer whose axes are directed along x and y axes of the local coordinate system – 

Fig. 3 b). The second accelerometer is uniaxial and is mounted also on the housing in 

point B situated above point A. Its axis is directed along local y axis. Accelerometer-

measured linear accelerations sAx, sAy and sBy are used for calculation of the generalized 

accelerations along coordinates x and ψ under the small motion assumption: 

Axx s                                                           (23) 

By Ays s

L



                                                        (24) 

The vibration signal captured for 4 seconds which occurred as a result of an artificial 

impulse excitation along x axis is shown in Fig. 4 a). In the same Fig. the signal after the 

high frequency filtering is shown. The value of natural frequency 1

x  is determined as 

shown in Fig. 4 b) FFT spectral analysis of the vibration signal. Similarly, two other signals 

are captured and according to Eq. (24) the angular acceleration is computed and natural 

frequency 4

 is determined. The received values for the two frequencies are 1 17.71 rad/sx   

and 
4 64.10 rad/s  . 

Additionally, the filtered acceleration signal, shown in Fig. 4 a) is used to determine 

vibroisolator damping parameter bx. Exponentially decaying consecutive amplitudes of 

the acceleration suggest predominantly viscous damping in the system and asymptotically 

stable motion [13]. In Fig. 5 the filtered acceleration signal and decaying exponential 

curve, which is a regression line for amplitudes peak points, are shown. The exponential 

curve is described by Eq. (25), where the constants determined by the least-squares method 

are A0=1.209 m/s
2
 and n=-0.804.  
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Fig. 4 Measured vibration signal a) and spectral analysis b) 
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Fig. 5 Filtered acceleration signal and exponential curve 

If along x axis the system is considered as that of a single degree of freedom, then the total for 

all four vibroisolators damping coefficient is determined as: 

2xyb mn                                                            (26) 

and its value is 1348.8 Ns/mxyb   and correspondingly, the damping coefficient for one 

vibroisolator is bxy=337.2 Ns/m. Similarly, the measured value for damping coefficient in 

z direction is bz=1039 Ns/m. 

5. NUMERICAL EXAMPLE AND DISCUSSION 

To illustrate and validate the developed approach, the stiffness parameters of the 

experimental setup mounting are determined. If the already experimentally determined 

values of natural frequencies 1 17.71 rad/sx   and 4 64.10 rad/s  are substituted in 

Eqs. (21) and (22) then the values of the stiffness coefficients are computed as 

472.3 kN/mzc   and 74.4 kN/m
xy

c   for a single vibroisolator. According to Eqs. (13) and 

(15) the stiffness values are used for computation of the two other unique natural frequencies. 

The computed values are 3 47.46 rad/sz  and 6 36.93 rad/s   which are very close to the 

experimentally measured values 46.60 rad/s and 36.91 rad/s correspondingly. 

To validate the dynamical model and check the reliability of the estimated values of 

the stiffness and damping parameters additional experimental measurements are carried 

out. The system excitation is performed by the generated due rotation of the eccentric 

weight force – pos. 3, Fig. 1. In this case, the eccentric weight rotation causes a harmonic 

excitation and the resultant motion of the system is described by the following system of 

equations: 

  Mq Bq Cq F                                                  (27) 

where B is the damping matrix, received in a formal way by replacing symbol “c” in C by 

symbol “b”, and F is a vector of generalized forces: 
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 [ 0 0 0 0]T

x yF FF                                        (28) 

In Eq. (28) Fx and Fy denote the harmonic excitation forces generated by the eccentric 

weight rotation: 
2 sin( )x vF m e t                                                     (29) 

2 cos( )y vF m e t                                                     (30) 

where mv is the eccentric weight mass, e is eccentricity of the weight, ω is the eccentric 

weight angular velocity. 

In Fig. 5 the captured experimental vibration signal is shown as well as the numerical 

solution for acceleration of system of Eqs. (27) in which the determined values of the 

stiffness and damping coefficients are used.     
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Fig. 6 Graphs of numerical and experimental vibration signal:  

a) ω=157 rad/s, b) ω=113 rad/s  
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The experiments are performed for two typical values of the angular velocities in the 

crusher operating range - ω=157 rad/s and ω=113 rad/s. As can be seen, the experimental 

and numerical results show good agreement both in amplitude and in frequency and this is 

confirmation of the determined values correctness and adequacy of the dynamical model. 

6. CONCLUSION 

The significant difficulties arising during the purely theoretical estimation of the 

elasto-damping parameters of the cone inertial crusher mounting can be successfully 

overcome by using the developed theoretical-experimental approach. The single performed 

experiment allows - by capturing vibration signals of the suitable mounted one two-axial and 

one uniaxial accelerometers - to determine two unique natural frequencies of the crusher. 

By using Eqs. (12-15), Eq. (21) and Eq. (22) along with measured natural frequencies, the 

stiffness parameters and two other unique frequencies can be calculated. Because of good 

agreement has been shown when comparing the experimental and theoretical results it can 

be concluded that the developed approach is suitable for estimation of the elasto-damping 

parameters of a cone inertial crusher mounting. The approach could be easily applied to 

other mechanical structures with two planes of symmetry according to the vertical planes. 
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