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Abstract: The JKR-adhesive frictionless normal contact problem is solved for the flat 

annular and the conical or spherical concave rigid punch indenting an elastic half 

space. The adhesive solution can be derived analytically from the non-adhesive one, the 

latter one being calculated by the boundary element method. It is found that the annular 

flat punch will always start to detach at the outer boundary. The pull-off forces for both 

concave punch shapes almost do not depend on the pull-off boundary regime and can be 

significantly larger than the pull-off force for the cylindrical flat punch. 

Key Words: Contact Mechanics, Axis-symmetry, Annular Contact Area, Adhesion, 

JKR-theory, Boundary Element Method, Concave Rigid Punch, Flat 

Annular Punch 

1. INTRODUCTION 

Due to the ongoing miniaturisation of indenting devices in microscopy or material 

testing, adhesion in those systems is getting more and more important. Moreover, as the 

biological systems seem to have developed very efficient and powerful solutions for 

making use of adhesive interactions, the study of the contact mechanical interactions with 

their environment of insects, geckos – and other organisms relying on adhesion – has 

gained a lot of research interest in the past years. Spolenak et al. [1] found out that 

toroidal or concave shapes of the contact geometry – as they are used by these organisms 

– lead to a much better attachment of the indenting body to the surface. The contacting 
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bodies are usually considered to be soft, which is why the interaction range for the 

adhesion is small compared to the range of the elastic interaction. In this case the 

frictionless, adhesive normal contact problem can be solved by the theory developed by 

Johnson, Kendall and Roberts (JKR), [2]. The JKR-adhesive contact problem, though, 

can be turned back to the Boussinesq-problem, i.e. the frictionless non-adhesive normal 

contact problem of a rigid indenter pressed into an elastic half space. 

Thereby many publications have dealt with the axisymmetric Boussinesq problem of an 

annular flat punch. Gubenko and Mossakovskij [3] and Collins [4] and [5] reduced the problem 

to an integral equation of the Fredholm type, which can be solved iteratively. For different 

approximate approaches see Borodachev and Borodacheva [6], Shibuya et al. [7] or Gladwell 

and Gupta [8]. A complete analytic - however recursive - solution was found by Roitman and 

Shishkanova [9]. A closed formulation could later be obtained by Antipov [10] using advanced 

applied mathematics including Riemann vector problems and Mellin transforms.  

The Boussinesq problems for a conical or spherical concave rigid punch were tackled 

by Barber [11], Gladwell and Gupta [8] and Shibuya [12]. Barber –  based on his idea 

presented earlier [13] that the actual contact area maximizes the normal force and can hence 

thereby be determined if not known a priori – gave series expansions of the solution for the 

ratio of the contact radii being close to zero or close to unity.  

The JKR-adhesive problem for axisymmetric indenters and an annular contact area was 

first studied by Kesari and Lew [14]. Argatov et al. [15] demonstrated how the adhesive 

solution in this case can be obtained from the non-adhesive one and applied their method 

to conical concave (based on Barber’s non-adhesive solutions) and toroidal (based on 

asymptotic non-adhesive solutions for narrow contact areas) indenters. 

In the present paper we will analyze the JKR-adhesive normal contact problem of an 

axisymmetric annular flat or either conical or spherical concave rigid punch. The non-

adhesive solutions presented in Section 2 are obtained via fast boundary element method 

(BEM) simulations – the fundamentals of which were described by Pohrt and Li [16] – 

and will be approximated by simple analytic expressions. Afterwards in Section 3 the 

adhesive solutions are derived analytically from these non-adhesive results. Section 4 will 

give conclusions. 

2. THE NON-ADHESIVE SOLUTION 

We consider the Boussinesq problem for an annular flat or concave rigid punch 

pressed into an elastic half space. The normal force shall be FN, the indentation depth d 

and the inner and outer contact radii b and a, respectively. The hole has depth h. The 

concave profile shall be either conical or spherical. Sketches of the problems considered 

and notations are shown in Fig. 1, 2 and 3. 

In the case of the annular flat punch it is shown that the normal force can be written in 

the form: 

 
*2 ( ),NF E da    (1) 

with effective Young’s modulus E
*
 and the ratio of the contact radii: 

 .
b

a
   (2) 
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As the closed form analytical solution given by Antipov [10] is hard to handle, we 

calculated it again using boundary element simulations. Function γ() can be approximated by 

the expression: 

 ( ) (1 ) ,m n     (3) 

with: 

 2.915, 0.147,m n   (4) 

obtained via a simple least-squared-error, gradient-based parameter optimization. The results of 

the BEM calculations together with the perfectly fitting analytical approximation are shown in 

Fig. 4. 

 

Fig. 1 Cross section of an annular flat rigid punch indenting an elastic half space 

  

Fig. 2 Cross section of a conical concave 

rigid punch indenting an elastic 

half space 

Fig. 3 Cross section of a spherically 

concave rigid punch indenting an 

elastic half space 
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Fig. 4 Results of BEM simulations (circles) and analytic approximation (3) (solid line) for 

normalized normal force γ = FN / 2E
*
da, as a function of the ratio of contact radii 

=b/a  for the frictionless, non-adhesive indentation of an elastic half space by an 

annular flat rigid punch 

In the case of a conical or spherical concave rigid indenter the inner contact radius b is 

not fixed but depending on the indentation depth or the normal force. If we put  as the 

governing parameter for the contact problem, the solution in either case can be written in 

the form: 

 
1

*

2

( ),

2 ( ).N

d h

F E ha

  

  
 (5) 

Barber [11] gave solutions for dimensionless functions γ1 and γ2 in the cases of  being 

close to zero or close to unity. For the conical hole results of our BEM calculations are 

shown in Fig. 5. Apparently it is: 

 1 2( ) ( )con con      (6) 

and hence: 

 *2 ,NF E da  (7) 

i.e. the indenter almost behaves like a rigid flat cylindrical punch. This is especially true 

for values of  close to zero. Note that =0 can never be reached as this would require an 

infinite normal force [11]. 
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Fig. 5 Results of BEM simulations for normalized indentation depth γ1=d/h (crosses) and 

normal force γ2 = FN / 2E
*
ha (circles), as functions of the ratio of contact radii =b/a 

for the frictionless, non-adhesive indentation of an elastic half space by a conical 

concave rigid punch 

In more detail, both conical solutions can be approximated in the form: 

 2( ) ( ln ) ( ), 1,2,incon

i i i ia b c i          (8) 

with the fitted parameters: 

 
1 1 1 1

2 2 2 2

0.874, 2.09, 0.54, 0.15

0.945, 1.85, 0.45, 0.12

n a b c

n a b c

   

   
 (9) 

For the spherical concave indenter the solutions can be approximated very well by the 

functions: 

 ( ) (1 ) , 1,2i im nsph

i ia i      (10) 

with the parameters: 

 
1 1 1

2 2 2

3, 2.034, 0.91

8 / 3, 2.015, 1.03.

a m n

a m n

  

  
 (11) 

Note, that it can be easily proven analytically – for the spherical concave indenter – that 

full contact, i.e. b = 0, is established for d = 3h and FN = 16/3E
*
ha [11]. Parameters ai in 

Eqs. (11) therefore have not been object to optimization. 

The results of the BEM calculations for both concave indenter profiles together with 

the fitted analytic approximations from Eqs. (8) and (10) are shown in Fig. 6. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6 BEM simulations (circles) and analytic approximations (solid lines) for normalized 

indentation depth γ1 = d / h and normal force γ2 = FN / 2E
*
ha as functions of the 

ratio of contact radii  = b / a for the frictionless, non-adhesive indentation of an 

elastic half space by an either conical or spherical concave rigid punch:  

(a) γ1, conical (b) γ2, conical (c) γ1, spherical (d) γ2, spherical 

3. THE ADHESIVE SOLUTION 

In the following we will denote the non-adhesive solutions by an upper index “na”. 

For example, 
na

NF  shall be the normal force given above for the non-adhesive problem, 

whereas  FN shall be the full adhesive normal force. 

Let us again consider the annular flat punch first. The non-adhesive normal force as a 

function of the non-adhesive indentation depth was given in Eq. (1). Within the JKR-

theory the adhesion is modeled via an additional energy term: 

 
,adU A w  
 (12) 

with contact area A and effective surface energy per unit area w. Hence, the total energy 

will be: 

 * 2 2 2( ) (1 ) .tot el adU U U E d a a w         (13) 
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The normal force is given by the derivative: 

 *2 ( ).tot

N

U
F E da

d


   


 (14) 

As the contact radii are fixed and not connected to the indentation depth, this is the same 

relation as in the non-adhesive case. The contact loses its stability and detaches at the 

outer boundary r=a, if: 

 * 2[ ( ) ( )] 2 0,

c

tot
c

d d

U
E d a w

a 


         


 (15) 

from which we deduce the critical indentation depth: 

 0 ,
( ) ( )

c

d
d  

    
 (16) 

and the critical adhesion force: 

 0 ( )
,

( ) ( )
c

F
F

 
 

    
 (17) 

with the respective values for the flat cylindrical punch of radius a obtained by Kendall [17]: 

 3 *

0 0*

2
, 8 .

a w
d F a E w

E

 
     (18) 

The condition for detachment starting at the inner boundary r=b is analogously given 

by the relation: 

 * 2 ( ) 2 0,

c

tot
c

d d

U
E d b w

b 


      


 (19) 

rom which we obtain the critical indentation depth: 

 0 .
( )

cd d


 
 

 (20) 

Derivative γ() is always negative so this indeed will be a real length. As it can be 

seen in Fig. 7 the absolute value of the critical indentation depth is always smaller for the 

detachment at the outer boundary. Thus, the contact detachment will indeed start there. 
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Fig. 7 Critical normalized indentation depths for the detachment at the inner (r=b) and outer 

(r=a) boundary for the JKR-adhesive normal contact of a rigid annular flat stamp 

Let us compare our results to analytical calculations obtained earlier. For small values 

of  Collins [4] gives the analytical series expansion: 

 3 5 6 7

2 2 4

4 8 16
( ) 1 [ ],

3 15 27
O          

  
 (21) 

which can be used in Eqs. (16) and (17) to calculate the critical contact configuration. For 

narrow contact areas, i.e.  near unity, Argatov et al. [15] gave the asymptotic expressions: 

 
*

3 3 *

16 ( )
2ln ,

( ) ,

c

c

a b w
d

E

F a b E w

 
  

 

     

 (22) 

with the transformed (small) variable: 

 
1

.
1

 
 

 
 (23) 

In Fig. 8 the results of Argatov et al. [15]  for  > 0.85 together with the series 

expansion (21) used in the relations (16) and (17) are shown as dashed lines. Also the 

results, if the approximation (3) is used for Eqs. (16) and (17), are given as solid lines. 

Obviously, the curves overlap nicely for the limiting cases. The approximation obtained 

by non-adhesive BEM calculations also shows the transition behavior for intermediate 

values of , for which the two analytical but asymptotic approaches do not agree with 

each other very well. Thereby it has to be pointed out that the sixth-order series expansion 

by Collins gives very good results for approximately  < 0.6. 
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Fig. 8 Normalized critical indentation depth (red) and normal force (blue) as a function 

of the ratio of contact radii  = b/a. Dashed: analytical results by Collins [4] 

(together with Eqs. (16) and (17)) for  < 0.85 and by Argatov et al. [15] for  > 0.85. 

Solid line: approximation (3) together with Eqs. (16) and (17) 

To solve the adhesive problem for the concave indenters we recall the non-adhesive 

solution from Eq. (5): 

 
na na *

1 2( ), 2 ( ).Nd h F E ha       (24) 

Thereby one can define the non-adhesive contact stiffness: 

 
na

na * 2

na

1

d ( )
( ) 2 ,

( )d

N
N

F
k E a

d

 
  

 
 (25) 

the prime denoting a derivative. According to Argatov et al. [15] the adhesive solution is 

given by: 

 

na

na na

( ) ( ) ( ),

( ) ( ) ( ) ( ),

c

N N N c

d d l

F F k l

    

      
 (26) 

with the length: 

 
2

na

4
.

d / dN

b w
l

k b

 
    (27) 

Using the non-adhesive solution obtained above, thus inserting Eq. (25) into Eq. (27) we 

obtain: 

 
2

1
0

1 2 2 1

( )
( ) .

( ) ( ) ( ) ( )
cl d

 
  

           
 (28) 
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The critical state, for which the contact loses its stability, can be derived from the 

relations: 

 * 0
2 2

1 2 2 1

d d
2 ( ) ( ) 0,

d d ( ) ( ) ( ) ( )

NF d
E ha

h

   
         

                

 (29) 

for fixed loads, and: 

 0
1 1

1 2 2 1

d d
( ) ( ) 0,

d d ( ) ( ) ( ) ( )

dd
h

h

   
         

                

 (30) 

for fixed grips.  

In normalized variables d/h and FN / (2E
*
ha) the solution obviously only depends on 

dimensionless surface energy d0/h and ratio .  

In Fig. 9 the normalized relations between indentation depth and normal force for 

different values of d0/h are shown for the conical and the spherical concave indenter 

(using the approximations of the non-adhesive solutions obtained in Section 2). 

 
(a)  

 
(b)  

Fig. 9 Normalized relation between indentation depth d/h and normal force FN / (2E
*
ha) 

for different values of the surface energy 
* 2

0 / 2 /d h a w E h   for the  

JKR-adhesive normal contact of a concave indenter with the profile shape being:                                  

(a) conical and (b) spherical 

In Fig. 10 we give the results for the critical state for both indenters. The values of  and 

the normal force – normalized for comparison on 
3 * *

0 08 2F a E w E ad     – for which the 

contact loses stability and detaches, are given in dependence of the dimensionless surface 

energy for both fixed grips and fixed loads. Obviously crit is always larger for the fixed-

grips-regime. Interestingly the critical normal force, often called adhesive or pull-off force, 

almost does not depend on the regime, as the curves for the fixed grips and fixed loads 

overlap for both the conical or spherical concave indenter. Also it is visible that for d0 >> h 

the concave indenters can achieve pull-off forces significantly larger (up to 50% for conical 

and 60% for spherical profiles) than F0, i.e. the pull-off force for a flat cylindrical punch 

with radius a. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 10 Dependence of critical ratio crit and normalized adhesion force Fcrit / (2E
*
ad0)  

on normalized surface energy d0/h with fixed grips and fixed loads for the  

JKR-adhesive normal contact of a conical or spherical concave punch. 

(a) crit, conical, (b) Fcrit / (2E
*
ha), con., (c) crit, spherical (d) Fcrit / (2E

*
ha), spher. 

4. CONCLUSIONS 

Based on the formalism in [15], the JKR-adhesive normal contact problem with a ring-

shaped contact area has been solved for the annular flat and spherical or conical concave 

indenter. The non-adhesive problem was solved using fast boundary element simulations 

and the solutions were approximated by simple analytic expressions. After that the adhesive 

solutions can be obtained analytically from the non-adhesive one without problems. The 

method used can be applied to different axisymmetric concave indenters as well.  

We find that the annular flat punch will always start to detach at the outer boundary. 

The pull-off forces for both concave punch shapes almost do not depend on the pull-off 

boundary regime, i.e. fixed grips or fixed loads, and can be significantly larger than the 

adhesion force on a cylindrical flat punch. We also gave solutions for intermediate values 

of the ratio of contact radii, in which case the asymptotic results obtained in the literature 

– with this ratio being either close to zero or unity – do not overlap each other very well. 
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