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Abstract. In this paper, we propose a thermal buckling analysis of a functionally 
graded (FG) circular plate exhibiting polar orthotropic characteristics and resting on 
the Pasternak elastic foundation. The plate is assumed to be exposed to two kinds of 
thermal loads, namely, uniform temperature rise and linear temperature rise through 
thickness. The FG properties are assumed to vary continuously in the direction of 
thickness according to the simple power law model in terms of the volume fraction of 
two constituents. The governing equilibrium equations in buckling are based on the 
Von-Karman nonlinearity. To obtain the critical buckling temperature, we exploit a 
semi-numerical technique called differential transform method (DTM). This method 
provides fast accurate results and has a short computational calculation compared with 
the Taylor expansion method. Furthermore, some numerical examples are provided to 
consider the influence of various parameters such as volume fraction index, thickness-
to-radius ratio, elastic foundation stiffness, modulus ratio of orthotropic materials and 
influence of boundary conditions. In order to predict the critical buckling temperature, 
it is observed that the critical temperature can be easily adjusted by appropriate 
variation of elastic foundation parameters and gradient index of FG material. Finally, 
the numerical results are compared with those available in the literature to confirm the 
accuracy and reliability of the DTM to determine the critical buckling temperature. 
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1. INTRODUCTION  

One of the most important undesired phenomena in a mechanical structure as observed 

in plates is thermal buckling. The response of the plate to buckling depends on its 

mechanical properties. Functionally graded materials (FGM) are made of ceramic and metal 

constituents, including high mechanical strength, good machinery ability, and high thermal 

resistance. FGMs are a good choice to be employed as the material constituents in a plate 

exposed to high thermal gradients. They are less likely to delaminate at high temperatures 

due to the continuity of their physical and mechanical properties. In addition, the 

orthotropic properties of FGMs have received great attention because they increase the 

tolerance of plates to various types of loading. Numerous studies have been conducted on 

thermal plate buckling. In what follows, we mention the studies related to the subject of this 

paper. Dewey and Costello [1] proposed an analytical and experimental method to 

investigate the thermal buckling of flat plates where the modulus of elasticity changes due 

to the thermal gradient. Najafizadeh and Eslami [2] discussed the thermo-mechanical 

response of plates based on the first-order shear deformation theory. They derived nonlinear 

and linear governing equations from the energy method and by using the calculus of 

variations. In another work, Najafizadeh and Eslami [3] discussed the thermoelastic 

buckling of the circular orthotropic composite plates under various kinds of thermal 

loading. They obtained the governing equations based on the Love-Kirchhoff hypothesis 

and the Sanders’ nonlinear strain-displacement relation. Li et al. [4] examined the nonlinear 

vibration and thermal buckling of orthotropic annular plates with a centric rigid mass. They 

employed the Hamilton’s principle to derive the governing equations based on the Von-

Karman nonlinearity. Najafizadeh and Heydari [5] assessed the thermal buckling of circular 

plates in functionally graded materials under uniform radial compression subject to various 

types of thermal loads. They established the governing equations in buckling, using 

variational method and solved them via Bessel functions. Prakash and Ganapathy [6] 

applied the finite element method to analyze the vibrations and thermal buckling of circular 

FGM plates. Zhao et al. [7] studied the thermal and mechanical buckling behavior of plates 

with arbitrary geometry, including plates containing square and circular holes in the center. 

Zenkour and Sobhy [8] investigated the thermal buckling of FG sandwich plates, using 

sinusoidal shear deformation plate theory. The thermal loads are assumed to have uniform, 

linear, and non-linear distribution through thickness. Jalali et al. [9] assessed the thermal 

buckling of circular FGM plates with varying thickness, using the pseudo-spectral method 

(PSM). Evaluating the reaction of plates resting on elastic foundations and subject to 

different types of loads has a great scientific importance, particularly in modern engineering 

structures. Kiani and Eslami [10] studied the exact solution of thermal buckling in annular 

FGM plates resting on the Pasternak elastic foundation. They examined the effects of 

geometrical parameters, power-law index, and coefficients of the elastic foundation on the 

critical buckling temperature. Jabbari et al. [11] studied the buckling of a solid porous 

circular plate subjected to thermal loading. They derived the governing equations based on 

the Sanders’ nonlinear strain-displacement relation and determined the pre-buckling 

temperatures and the critical buckling temperatures. Yaghoobi and Fereidoon [12] proposed 

the thermal and mechanical buckling of functionally graded (FG) plates resting on elastic 

foundation, using nth-order shear deformation theory. They obtained the governing 

equations via exploiting the minimum total potential energy method. Mansouri and Shariat 

[13] predicted the thermal buckling response of heterogeneous orthotropic plates based on 
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the high-order theories. They employed a new version of the DQM (Differential Quadrature 

Method) to solve the governing differential equations. Mirzaei and Kiani [14] investigated 

the thermally induced bifurcation buckling of rectangular composite plates reinforced with 

single-walled carbon nanotubes. They revealed that in most cases, the FG-X pattern of CNTs 

is the most influential case since it results in higher critical buckling temperatures. Yu et al. 

[15] evaluated the new numerical results of thermal buckling of functionally graded plates 

(FGPs) with internal defects (for example, crack or cutout), using an effective numerical 

method. They employed the new formulation of the first-order shear deformation plate theory 

associated with extended isogeometric analysis (XIGA) and level sets. Moreover, they 

investigated the influences of various aspect ratios, including gradient index, crack length, 

plate thickness, cutout size, and boundary conditions on the critical buckling temperature rise 

(CBTR). Tung [16] studied the nonlinear bending and post-buckling behavior of functionally 

graded sandwich plates resting on elastic foundations and subject to uniform external pressure, 

thermal loading, and uniaxial compression in the thermal environment. Sun et al. [17] 

numerically investigated the thermomechanical buckling and post-buckling of a functionally 

graded material (FGM) Timoshenko beam resting on a two-parameter non-linear elastic 

foundation and subject to only a temperature rise, using the shooting method. 

In the present research, we accomplish the thermal buckling of an orthotropic FG circular 

plate. To that end, the Differential Transformation Method (DTM) is applied to solve the 

governing equation of thermal buckling. The literature review indicates that the present work 

is the first attempt to exploit DTM to evaluate the critical buckling temperature. A number of 

studies have been carried out by this method [18-24]. The results are presented in four 

categories based on linear and uniform thermal load and simply supported and clamped edge 

conditions in the proceeding sections. The effects of parameters such as volume fraction 

index, stiffness of the Pasternak elastic foundation, thickness-to-radius ratio, and modulus 

ratio of orthotropic material to critical temperature are also investigated.  

2. MATHEMATICAL FORMULATION OF CONSTITUTIVE EQUATIONS 

Consider a functionally graded circular solid supported on the Pasternak elastic 

foundation (Fig. 1). A polar coordinate system (r, θ, z) is employed to label the material 

points of the plate in radial, circumferential, and thickness directions. 

 
Fig. 1 Schematic of problem 

Based on the Sanders’ kinematic relations and the Von-Karman nonlinear assumption, 

the strain-displacement relationships are written in polar coordinates system as follows: 
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where rr ,  , and r  are mid-surface strains and krr, kθθ, and krθ are the curvatures defined 

as follows: 
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where u, v, and w represent the middle-plane displacements in the polar coordinates. 

Stress-strain relationships in polar coordinates are expressed as follows:  
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where εT is the thermal strain, αr and αθ  are the thermal expansion coefficients in radial 

and circumferential directions, respectively. Moreover, T and T0 are the current and 

reference temperatures, respectively. The readers interested in the thermo-elastic stress-

strain relations in a symmetrical case of deformation can find more details in the study 

conducted by Kiani et al. [10]. Upon substituting Eq. (4) into Eq. (3), the constitutive 

relations for orthotropic FG plate can be re-written as follows: 
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 (5) 

In addition, Grθ is shear modulus, and Er and Eθ are Young’s modulus of the plate in 

radial and circumferential directions, respectively. Based on the power-law model in 

polar coordinates, the material properties are as follows:  
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where h, n and subscripts m and c represent the thickness, FG power index, the metal and 

ceramic properties, respectively. By assuming the polar orthotropic characteristics of 

plate, Young’s modulus in the circumferential coordinate is defined as follows: 
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where μ is the orthotropic modulus ratio. 

3. GOVERNING EQUATIONS IN THERMAL BUCKLING 

Stress resultants and stress couples are obtained as follows:  
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Substituting Eq. (5) into Eqs. (11) and (12) yields the stress resultants and stress 

couples as follows: 
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When the plate is subjected to the mechanical loading, the total energy is given by: 

                                                           V U                                                              (17) 

where Ω and U are the potential energy of the external loading and the strain energy, 

respectively. Ω is the summation of the potential energy of mechanical loading and two 

parameters elastic foundation reaction. The elastic foundation is exerted on the lower surface 

of the plate, as shown in Fig. 1. In this research, the mechanical loading is absent. U is the 

summation of thermal strain energy, membrane strain energy, bending strain energy, coupled 

bending-membrane strain energy, and elastic foundation strain energy:
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 By integrating through thickness, U can be expressed as follows:
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where kw and kg denote the stiffness of Pasternak elastic foundation (tension and shear 

foundation parameters, respectively). By substituting Eqs. (13-16) into Eq. (19), setting the 

resultant expression into the expression of the total potential energy function, Eq. (17), and 

employing Euler equations [5], the governing equilibrium equations in the buckling of the 

plate resting on the Pasternak foundation based on the von-Karman nonlinearity are obtained 

as follows [10]:  
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The governing equations of equilibrium can be expressed in terms of displacement 

components by assuming the symmetric state of buckling which gives the variation with 

respect to the circumferential direction set to zero, substituting Eqs. (13-16) into Eqs. 

(20), and utilizing Eq. (2): 
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3.1. Types of thermal loading 

In this study, two cases of temperature rise are considered: uniform and linear 

temperature differences. When the plate is not thick enough, the assumption of linear 

distribution is reasonable [10]. But when the temperature on the top and bottom surfaces 

of the plate is constant and no source of heat is available in it, the temperature variation 

can be defined as a linear function of thickness coordinate; for instance, the temperature 

distribution in aircraft window, walls of the building, or furnace. By assuming that the 

reference temperature of plate is T0 and the displacement in the radial direction is 

prevented due to restraint on the edge of the plate, N
T

r and N
T
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stress resulting from the thermal gradients can be determined in two categories due to the 

temperature rise across thickness as follows: 
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 (27) 

where ∆T=T(z)-T0. By eliminating the radial displacement components of u and after 

performing some mathematical manipulations, the equations of the equilibrium can be 

summarized in one equation in terms of out-plane displacement component of w as follows:  

   

4 3 2 2

4 3 2 2 3 2

2 1
)( ) ( 0T T

E r g g w

w w w w w w
D N k N k k w

r r r rr r r r r r


       
         

     
   (28) 

where, 2 2

2 1 3 1( ) / E (1 )E rE E ED    . Based on the adjacent equilibrium criteria, the 

state of stable equilibrium may be designated by w0; in addition, it is w0+w1 in the 

neighborhood of stability state when w1 can be represented to any small increment of 

displacement. Similar to out-plane displacement, the stress resultants are divided into two 

terms representing the stable equilibrium and the neighboring state [10]. Upon substituting 

w0+w1 and stress resultants in two terms into the governing equation (28) and performing 

some mathematical manipulations, the stability equation is obtained as follows:  
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 (29) 

where N
T

r0 and N
T
θ0 are the pre-buckling thermal loading, and the following relation can 

be established: N
T

r0= N
T
θ0= -NT

. The following dimensionless quantities are defined to 

deal with the problem under consideration in the dimensionless forms:  

22 42

1Φ , , ,  , ,
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gT T wr
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Φ
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T
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T
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d d d d d
n K

dd d d d

d
n K K

d



    

   

 


    

   

               (30) 

4. SOLVING THE GOVERNING EQUATION BY DTM 

The differential transform method (DTM) is a numerical method based on the Taylor 

series expansion that proposes the solution in the form of polynomials [24]. This method is 

a fast convergent method in comparison with the Taylor series in order to solve the differential 

equations. The advantage of this method is its low computational manipulation and its 

applicability to handle linear and non-linear ordinary and partial differential equations. By 
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exploiting the DTM, the differential equations are reduced to the recurrence relations and 

convert the boundary conditions into a set of algebraic equations. The differential transform 

of the k-th derivative of function f(r) is defined as follows: 

                                                   0

1 ( )
[ ]   

!

k

k

r r

d f r
F k

k dr


 
  

 
   

    (31) 

where f(r) and F[k] are the original function and transform function, respectively. The 

inverse differential transform of F[k] is defined as follows [5]: 

                                                  
0

0

( ) [ ]( )k

k

f r F k r r




                                       (32) 

 In the domain of R, original function f(r) is considered to be analytical, and r=r0 

represents any point in R. f(r) is represented by power series whose center is located at r0. 

From Eqs. (31) and (32), it can be concluded that: 

                                                0
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Table 1 demonstrates the fundamental mathematical properties of the differential 

transform method (DTM):  

Table 1 Fundamental theorems of DTM [22]  

Original Function Transformed Function 
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if k n
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
 


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Hence, function Ф[ξ] is obtained as follows: 

 

0 1 2

0

Φ[ ] [ ] [0] [1] [2]  
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k
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

      (34) 

To solve Eq. (35), we use the differential transform relationships of the k-th derivative 

of the function of non-dimensional out-plane displacement Ф; moreover, DTM theorems 

are listed in Table 1: 
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Substituting the aforementioned relationships into the governing equation in thermal 

buckling Eq. (28) yields: 
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        (36) 

By utilizing the appropriate theorems of the DT method (see Table 1 and the 

simplified form of Eq. 36), we have the following recurrence relation: 
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where A1=n
T

r+Kg and A2=n
T
θ+Kg. 

The following boundary conditions are imposed as clamped and simply supported 

boundary conditions on the edges of the plate. However, by applying differential 

transformation method to boundary conditions, we can obtain: 
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 Non-dimensional clamped edge: 
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                                              (38) 

 Differential transform of clamped edge condition with DTM: 

                                              0 0

[ ] 0, [ ] 0 
N N

k k

k k k 
 

  
        

                                     (39) 

 Non-dimensional simply supported boundary condition: 
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 Differential transform of simply supported edge condition with DTM: 
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In this study, the symmetrical thermal buckling behavior of a plate is considered, and 

the regularity condition is imposed besides the boundary conditions. The non-dimensional 

form of regularity condition and its differential transform are as follows: 
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Upon substituting k=3,5,7,… into the recurrence Eq. (37), we get: 
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 (43) 

It can be concluded that for odd values of k in Eq. (34), φ[k] equals zero [23-24]. 

Therefore, by using recurrence Eq. (37), we can find that φ[k] can be determined in terms of 

φ[0] and φ[2]. By using recurrence relation (37) for k=2, 4, 6,…, we can obtain the 

following equations: 
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Hence, all the φ[k] with even values of k in Eq. (34) can be expressed in terms of φ[2], 

φ[0].     
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In order to determine the critical buckling temperature, recurrence relation (42) and 

imposed boundary conditions of Eq. (39) are simultaneously employed for clamped edges. 

Therefore, a set of two homogenous equations are established in terms of φ[0] and φ[2], as 

follows: 
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where H11, H12, H21, and H22 are the coefficients of polynomials of N-th order. 
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  (46) 

For a non-trivial solution of Eq. (45), the determinant of coefficients must vanish, 

leading to the eigenvalue problem. Hence, we have: 

                                                             

11 12

21 22

      
0

       

H H

H H
  (47) 

In a similar manner, we can obtain the solution for the simply supported plate by 

utilizing the recurrence relation (37) and the imposed boundary conditions of Eq. (41). 

5. NUMERICAL RESULTS 

In this section, some numerical results are presented for the thermal buckling of 
orthotropic FG circular plates of two categories of uniform and linear temperature rise under 
clamped and simply supported boundary conditions. Due to the high volume of the 
calculations required, the system of algebraic equations presented in the preceding section are 
implemented in a computer code in MATLAB software, and the numerical results are 
presented in a tabulated form. For the numerical results, an FG plate composed of aluminum 
(as metal) and alumina (as ceramic) is considered. Young’s modulus of aluminum (Al) and 
alumina are Em=70 Gpa and Ec=380 Gpa, respectively. The thermal expansion coefficients 
are αm=23×10

-6
 K

-1
 and αc=7.4×10

-6
 K

-1
 for metal and ceramic constituents, respectively. 

Poisson’s ratio remains constant at ν=0.3. It is assumed that the material properties are 
assumed to be temperature-independent. To examine the convergence rate of DT method, we 
obtain the results for a clamped isotropic homogeneous circular plate with the thickness-to-
radius ratio of h/R=0.01. We observe that the number of terms (k=20) is sufficient to get 
precise values of the critical temperature. This trend remains constant in other numerical 
results as presented in the following section. 
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5.1. Uniform loading - clamped boundary condition 

Table 2 shows the variation of the critical buckling temperature with respect to FG 

power-law index, thickness-to-radius ratio, and orthotropic ratio. As it is observed, the 

critical temperature increases as the value of μ rises. According to Table 2, for a specific 

h/R ratio, the buckling critical temperature is reduced by increasing the value of n; 

however, increasing the h/R ratio increases the values of the critical temperature. 

Table 2 Variation of the critical temperature (
o
K) of the clamped plate versus FG  

power-law index, orthotropic ratio, and thickness-to-radius ratio in case  

of uniform thermal loading 

  n 

μ 
 

 h/R  
 

0 0.5 1 2 5 10 

 

 

0.50 

0.010 

0.150 

0.020 

0.030 

0.040 

7.070 

15.911 

28.280 

63.641 

113.132 

4.081 

9.104 

16.081 

36.153 

64.214 

3.163 

7.390 

12.851 

28.934 

52.560 

2.914 

6.552 

11.652 

26.214 

46.603 

2.151 

6.060 

11.141 

26.042 

46.142 

2.002 

5.950 

10.860 

25.851 

45.823 

        

 

 

0.70 

0.010 

0.150 

0.020 

0.030 

0.040 

13.780 

31.020 

55.131 

124.061 

220.552 

7.813 

17.570 

31.232 

70.280 

124.944 

6.422 

14.414 

25.611 

55.412 

98.503 

5.684 

12.780 

22.714 

51.091 

90.831 

5.164 

11.181 

21.421 

52.732 

93.721 

5.010 

10.551 

21.090 

50.261 

92.361 

        

 

 

0.9 

0.010 

0.150 

0.020 

0.030 

0.040 

21.381 

48.110 

85.541 

192.462 

342.152 

12.112 

27.260 

48.460 

109.033 

193.842 

9.5404 

21.480 

38.881 

89.412 

152.872 

8.812 

19.823 

35.234 

79.270 

140.920 

9.150 

20.444 

36.341 

81.841 

145.382 

9.040 

20.121 

33.370 

80.124 

142.534 

        

 

 

1 

0.010 

0.150 

0.020 

0.030 

0.040 

24.950 

56.150 

99.824 

224.581 

399.270 

14.142 

31.813 

56.552 

127.240 

226.214 

11.594 

25.083 

46.370 

104.343 

185.480 

10.280 

23.132 

41.113 

92.504 

164.451 

10.001 

21.863 

38.411 

89.432 

161.652 

8.901 

20.520 

38.604 

88.104 

160.412 

        

 

 

1.5 

0.010 

0.150 

0.020 

0.030 

0.040 

51.633 

114.280 

203.141 

456.602 

807.412 

29.262 

64.744 

115.081 

258.660 

457.411 

23.480 

53.091 

94.421 

213.192 

360.590 

21.260 

47.120 

83.662 

188.150 

332.542 

21.941 

48.562 

80.311 

194.121 

343.150 

22.561 

49.933 

78.760 

199.480 

352.761 

        

 

 

2 

0.010 

0.150 

0.020 

0.030 

0.040 

87.150 

200.051 

349.374 

794.632 

1408.221 

49.371 

113.361 

197.942 

450.160 

797.630 

40.634 

89.381 

162.401 

355.991 

651.631 

35.890 

82.393 

143.881 

327.270 

579.880 

33.151 

78.050 

141.450 

322.644 

558.262 

31.134 

77.412 

140.661 

320.180 

555.180 



558 F. FARHATNIA, M. GHANBARI-MOBARAKEH, S.R. JAZI, S. OVEISSI 

 

Table 3 exhibits the critical buckling temperature with respect to elastic foundation 

coefficient, orthotropic ratio, and FG power-law index. As elastic foundation coefficients 

increase by increasing the orthotropic ratio, the critical temperature increases. On the 

other hand, when the FG power-law index increases, the critical temperature decreases. 

This shows that the pure ceramic plate, compared to the metal-ceramic plate, is more 

stable at the elevated working temperature. 

Table 3 Variation of the critical temperature (
o
K) of the clamped plate versus FG  

power-law index, orthotropic ratio, and elastic foundation on the critical 

temperature in case of uniform thermal loading, h/R=0.020  

 kw, kg

 

μ n (0,0) (100,0) (200,0) (500,0) (100,10) (200,20) 

 0 55.131 63.121 67.341 81.470 77.470 96.911 

 0.50 31.232 35.690 38.150 46.151 43.880 54.880 

0.7 1 25.611 29.341 31.280 37.851 35.903 44.841 

 2 22.714 26.030 27.741 33.581 31.960 39.801 

 5 21.422 23.822 24.633 31.610 30.841 37.250 

        

 0 99.824 114.293 121.780 147.531 140.050 175.360 

 0.5 56.552 64.520 69.270 83.812 79.512 99.5281 

1 1 46.370 53.141 56.343 68.301 65.381 81.334 

 2 41.113 47.282 50.480 61.012 57.722 73.982 

 5 38.411 44.690 47.742 59.553 53.801 71.552 

        

 0 203.142 232.570 248.150 300.222 285.450 357.153 

 0.5 115.081 131.764 140.580 170.244 161.711 202.300 

1.5 1 94.421 108.111 115.342 139.544 132.680 165.823 

 2 83.662 95.781 102.233 123.644 117.583 147.221 

 5 80.313 92.812 100.433 120.810 115.283 145.342 

5.2. Linear loading - clamped boundary conditions 

Table (4) represents the effect of increasing the thickness-to-radius ratio on increasing 

the critical temperature in case of linear thermal loading condition. This table clearly 

shows that the trend of variation of the critical temperature is confirmed in Table 2 as 

well. The comparison of the two tables indicates that the rate of increase is higher for 

linear thermal loading as compared to the uniform one. Nevertheless, for small h/R and 

non-zero quantities of n, this trend is reversed.  
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Table 4 Variation of the critical buckling temperature (
o
K)  for the clamped plate  

in case of linear thermal loading, (kw, kg)=0 

μ h/r
 n 

0 0.5 1 2 5 

 

 

0.50 

0.010 

0.150 

0.020 

0.030 

0.040 

8.480 

26.531 

50.740 

67.592 

220.670 

2.652 

12.780 

26.521 

37.052 

122.801 

0.843 

8.673 

19.272 

27.860 

93.292 

 

0.351 

6.640 

15.472 

22.873 

77.060 

0.305 

6.062 

14.763 

20.160 

73.893 

 

 

0.70 

0.010 

0.150 

0.020 

0.030 

0.040 

15.173 

43.640 

93.142 

234.551 

432.540 

4.750 

21.021 

48.682 

128.581 

240.714 

1.511 

14.272 

35.372 

96.700 

182.851 

 

0.523 

10.920 

28.403 

79.370 

151.231 

0.451 

10.284 

27.932 

77.370 

150.681 

 

 

0.9 

0.010 

0.150 

0.020 

0.030 

0.040 

22.772 

76.230 

151.082 

364.921 

664.300 

7.123 

36.710 

78.962 

200.153 

369.6821 

2.274 

24.922 

57.371 

150.444 

280.832 

 

0.650 

19.110 

46.122 

123.480 

231.901 

0.563 

18.713 

44.920 

122.212 

231.493 

 

 

1 

0.010 

0.150 

0.020 

0.030 

0.040 

29.912 

92.291 

179.632 

429.171 

778.532 

8.273 

43.632 

93.131 

234.563 

432.552 

2.980 

30.171 

68.214 

176.932 

329.124 

0.731 

23.101 

54.772 

145.231 

271.880 

0.660 

21.860 

53.790 

143.053 

264.810 

       

 

 

1.5 

0.010 

0.150 

0.020 

0.030 

0.040 

62.510 

197.501 

355.670 

931.304 

1572.631 

19.562 

95.113 

185.882 

510.520 

875.182 

15.032 

71.954 

151.512 

390.711 

671.040 

10.080 

57.064 

118.450 

322.131 

555.614 

 

9.840 

55.860 

115.042 

315.793 

551.260 

 

 

2 

 

 

 

0.010 

0.150 

0.020 

0.030 

0.040 

101.694 

325.971 

617.394 

1511.632 

2266.591 

31.813 

156.981 

322.672 

828.650 

1261.371 

30.290 

124.653 

251.290 

639.903 

971.882 

22.394 

100.291 

205.614 

528.782 

805.652 

 

21.350 

98.140 

205.380 

524.433 

803.570 

 
Table (5) shows the effect of the presence of elastic foundation on the critical 

buckling temperature for linear loading condition. As it is observed, the critical temperature 
decreases when the elastic foundation coefficient gets more values. 

In order to validate the present solutions, we compare them with the results obtained 
from the study conducted by Ghiasian et al. [25]. Table (6) shows the critical temperature 
for the clamped plate without elastic foundation. The values are Em=201 Gpa, 
αm=12.33×10

-6
 K

-1
, Ec=350 Gpa, and αc=5.87×10

-6
 K

-1
, and the Poisson’s ratio is ν=0.3. 
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Table 5 Effect of elastic foundation on the critical buckling temperature  

for linear temperature rise, h/R=0.020  

 (kw, kg) 

μ n (0,0) (100,0) (200,0) (500,0) (100,10) (200,20) 

 0 93.140 107.621 114.160 136.523 142.211 163.120 

 0.50 48.681 56.560 60.163 71.362 74.610 54.442 

 1 35.371 41.212 43.363 51.851 54.661 61.681 

0.7 2 28.401 33.280 35.222 41.634 43.362 49.742 

 5 27.931 33.111 35.022 41.411 43.331 48.040 

        

 0 179.632 207.291 219.152 264.062 274.664 312.511 

 0.5 93.131 105.611 111.761 134.290 141.562 158.322 

 1 68.210 79.390 83.900 100.812 104.361 118.692 

1 2 54.772 64.361 66.274 80.2380 85.331 117.322 

 5 54.390 65.830 65.182 79.012 83.030 98.190 

        

 0 355.670 416.954 439.520 521.322 545.123 622.433 

 0.5 185.880 217.913 229.722 272.253 284.620 325.342 

 1 151.510 177.622 187.244 222.363 234.163 265.253 

1.5 2 118.450 138.863 146.370 173.632 180.853 207.283 

 5 117.841 140.721 145.342 172.884 180.052 206.220 

        

Table 6 Comparison of the results of the present study with those of Ref. [25] 

h

R
 

   

 

p.e.
*
 0.040 p.e.

*
 0.030 p.e.

*
 0.020 p.e.

* 
0.010 n  

0.857 
199.644 

0.884 
112.291 

0.893 
49.910 

1.11 
12.731  Present  

201.369 113.293 50.360 12.591 0 Ref. [25] 

          

0.015 
141.149 

0.264 
83.142 

0.146 
37.001 

2.88 
9.532  Present  

141.170 83.362 37.055 9.265 0.5 Ref. [25] 

          

0.038 
133.358 

0.105 
74.921 

0.654 
33.120 

2.41 
8.536  Present  

133.307 75.000 33.338 8.335 1 Ref. [25] 

          

0.676 
122.314 

0.768 
68.752 

0.792 
30.554 

0.792 
7.761  Present  

123.147 69.284 30.798 7.700 2 Ref. [25] 

          

0.253 
114.452 

0.356 
64.326 

0.732 
28.486 

2.718 
7.370  Present  

114.742 64.556 28.696 7.175 5 Ref. [25] 
*The percentage of error 
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5.3. Effect of boundary conditions on the critical buckling temperature 

 In circular FG plates, due to the stretching-bending coupling exposed to uniform 

thermal loading, the asymmetric material distribution induces the pre-buckling thermal 

moments. Therefore, the bifurcation buckling may not occur, and the buckling critical 

temperature is not available [26]. However, the plates with clamped edges can tolerate the 

bending moments and remain in an un-deformed configuration. In this study, we consider 

that the variation of the critical buckling temperature is tabulated for a homogeneous 

orthotropic circular plate under simply supported boundary condition, as shown in Table 7.  

Table 7 Variation of the critical buckling temperature for a homogeneous orthotropic 

circular plate under simply supported boundary condition and linear and uniform 

temperature rises 

  μ  

h

R
 

0.50 0.70 0.90 

Uniform Linear Uniform Linear Uniform Linear 

0.010 2.06 4.12 3.72 7.45 5.37 10.74 

0.150 4.63 9.26 8.37 16.74 12.08 24.17 

0.020 8.23 16.46 14.88 29.76 21.48 42.96 

0.030 18.52 37.04 33.49 66.97 48.34 96.67 

0.040 32.92 65.84 59.53 119.04 85.93 171.86 

h

R
 

1.0 1.50 2.00 

Uniform Linear Uniform Linear Uniform Linear 

0.010 6.03 12.07 10.31 20.76 15.80 34.28 

0.150 13.58 27.15 23.29 46.24 39.64 79.55 

0.020 24.13 48.27 41.46 73.41 70.46 126.31 

0.030 54.30 108.60 93.10 187.88 159.56 318.12 

0.040 96.54 193.08 165.95 333.14 253.41 569.59 

6. CONCLUSIONS 

In this paper, we have analyzed the thermal buckling of a circular FGM plate resting 

on the Pasternak elastic foundation and subjected to uniform and linear thermal loading 

by employing the differential transform method (DTM) to obtain the solutions. Some 

remarkable conclusions obtained in this study are as follows: 

 By utilizing the differential transform method (DTM), the governing differential 

equation in the thermal buckling can be transformed to algebraic equations in the 

sub-domains. DTM is capable of deriving the analytical solution to determine the 

critical buckling temperature for FG orthotropic plate resting on two-parameter 

(Pasternak) foundations. 

 Comparing the results with those existing in the literature indicates that DTM is a 

fast convergent, precise, and cost-efficient tool to analyze the thermal buckling 

behavior of functionally graded plates.  
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 By increasing volume fraction n, the flexural rigidity is reduced as the plate becomes 

more metal-rich. Consequently, the critical buckling temperature is reduced. This 

leads to the conclusion that for a ceramic-rich plate, the value of the critical 

temperature is the maximum. 

 The present study has investigated the effect of the presence of elastic foundation, 

as a controlling parameter, on the critical temperature for two boundary conditions, 

namely clamped and simply supported edges. The numerical results indicate that 

increasing the parameters of elastic foundation increases the critical temperature. 

Hence, the critical temperature in buckling can be adjusted effectively. 

 According to the results, when the temperature rises linearly, the critical temperature 

gets higher values in comparison with the uniform temperature rise. 

 As the ratio of Young’s modulus in the circumferential direction to that in the 

radial one increases, the plate demonstrates a more resistant behavior. Therefore, 

the critical buckling temperature increases.  

REFERENCES    

1. Dewey, B.R, Costello, G.A., 1968, Thermal buckling of nonhomogeneous plates, Nuclear Engineering 

and Design, 7(3), pp. 249-261. 

2. Najafizadeh, M.M., Eslami, M.R., 2002, First-order-theory-based thermoelastic stability of functionally 
graded material circular plate, AIAA J, 40(7), pp.1444–1450. 

3. Najafizadeh, M.M., Eslami, M.M., 2002 Thermoelastic stability of orthotropic circular plates, Journal of 

Thermal Stresses, 25(10), pp. 985-1005. 
4. Li, S.R., Zhou, Y.H., Song, X., 2002, Non-linear vibration and thermal buckling of an orthotropic 

annular plate with a centric rigid mass, Journal of Sound and Vibration, 251(1), pp. 141-152. 

5. Najafizadeh, M.M., Heydari, H.R., 2004, Thermal buckling of functionally graded circular plates based 
on higher order shear deformation plate theory, European Journal of Mechanics A/Solids., 23, pp. 1085–

1100. 

6. Prakash, T., Ganapathi, M., 2006, Asymmetric flexural vibration and thermoelastic stability of FGM 
circular plates using finite element method, Composites: Part B. Engineering, 37(7–8), pp.642–649. 

7. Zhao, X., Lee, K.M., Liew, K.M., 2009, Mechanical and thermal buckling analysis of functionally 

graded plates, Composite Structure, 90(2), pp.161-17. 
8. Zenkour, A.M., Sobhy, M., 2010, Thermal buckling of various types of FGM sandwich plates, Composite 

Structure, 93(1), pp. 93-102. 

9. Jalali, S.K, Naei, M.H., Poorsolhjouy, A., 2010, Thermal stability analysis of circular functionally 
graded sandwich plates of variable thickness using pseudo-spectral method, Mater. Des., 31(10), 

pp.4755–63. 

10. Kiani, Y., Eslami, M.R., 2013, An exact solution for thermal buckling of annular FGM plates on an 
elastic medium, Composites Part B: Engineering, 45(1), pp.101-110. 

11. Jabbari, M., Hashemitaheri, M., Mojahedin, M.R., 2014, Thermal Buckling Analysis of Functionally 

Graded Thin Circular Plate Made of Saturated Porous Materials, Journal of Thermal Stresses, 37(2), pp. 
202-220. 

12. Yaghoobi, H., Fereidooni, A., 2014, Mechanical and thermal buckling analysis of functionally graded 

plates resting on elastic foundations: An assessment of a simple refined nth-order shear deformation 
theory, Composites Part B: Engineering, 62, pp. 11-26. 

13. Mansouri, M.H., Shariyat, M., 2014, Thermal buckling predictions of three types of high-order theories 

for the heterogeneous orthotropic plates, using the new version of DQM, Composite Structure, 113, pp. 
40-55. 

14. Mirzaei, M., Kiani, Y., 2016, Thermal buckling of temperature-dependent FG-CNT-reinforced composite 

plates, Meccanica, 51(9), pp. 2185–2201 
15. Yu, T., Bui, T.Q., Yin, S., Doan, D.H., Wu, C.T., Do, T.V., Tanaka, S., 2016, On the thermal buckling 

analysis of functionally graded plates with internal defects using extended isogeometric analysis, 

Composite Structures, 136, pp. 684–695. 

https://link.springer.com/journal/11012/51/9/page/1
http://www.sciencedirect.com/science/journal/02638223/136/supp/C


 Thermal Buckling Analysis of Functionally Graded Circular Plate ... 563 

16. Tung, H.V., 2015, Thermal and thermomechanical post-buckling of FGM sandwich plates resting on 

elastic foundations with tangential edge constraints and temperature-dependent properties, Composite 
Structures, 131(1), pp. 1028–1039. 

17. Sun, Y., Li, S.R., Batra, R.C., 2016, Thermal buckling and post-buckling of FG Timoshenko beams on 

nonlinear elastic foundation, Journal of Thermal Stresses, 39(1), pp. 11-26. 
18. Attarinejad, R., Semnani, Sh.J., Shahba, A., 2006, Basic displacement functions for free vibration 

analysis of non-prismatic Timoshenko beams, Journal of Finite Elements in Analysis and Design, 46 

(10), pp. 916–929. 
19. Ozdemir, O., Kaya, M.O., 2006, Flap wise bending vibration analysis of a rotating tapered cantilever 

Bernoulli–Euler beam by differential transform method, Journal of Sound and Vibration, 289, pp. 413–420. 

20. Yalcin, H.S., Arikoglu, A., Ozkol, I., 2009, Free vibration analysis of circular plates by differential 
transformation method, Computational and Applied Mathematics, 212, pp.377–386. 

21. Yeh, Y.L., Wang, C.C., Jang, M.J., 2007, Using finite difference and differential transformation method 

to analyze of large deflections of orthotropic rectangular plate problem, Applied Mathematics and 

Computation, 190(2), pp.1146-1156.  

22. Abbasi, S., Farhatnia, F., Jazi, S. R., 2013, Application of Differential Transformation Method (DTM) for 

bending Analysis of Functionally Graded Circular Plates, Caspian Journal of Applied Sciences 
Research, 2(4), pp. 17-23. 

23. Abbasi, S., Farhatnia, F., Jazi, S.R., 2014, A semi-analytical solution on static analysis of circular plate 

exposed to non-uniform axisymmetric transverse loading resting on Winkler elastic foundation, Archives 
of Civil and Mechanical engineering, 14, pp. 476-488. 

24. Lai, R., Ahlawat, N., 2015, Axisymmetric vibrations and buckling analysis of functionally graded circular 

plates via differential transform method, European Journal of Mechanics A/Solids, 52, pp. 85-94. 
25. Ghiasian, SE., Kiani, Y., Sadighi, M., Eslami, M.R., 2014, Thermal buckling of shear deformable 

temperature dependent circular/annular FGM plates, International journal of Mechanical Sciences, 81, 

pp.137-148. 
26. Li, S., Zhang, J., Zhao, Y., 2007, Nonlinear thermomechanical post-buckling of circular FGM plate with 

geometric imperfection, Thin-Walled Structures, 45(5), pp. 528-536. 

http://www.sciencedirect.com/science/journal/02638223/131/supp/C

