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Abstract. Composite laminates consisting of passive and multi-functional materials 

represent a powerful material system. Passive layers could be made of isotropic materials or 

fiber-reinforced composites, while piezoelectric ceramics are considered here as a multi-

functional material. The paper is focused on  linear and geometrically nonlinear dynamic 

analysis of smart structures made of such a material system. For this purpose, a linear 3-

node shell element is used. It employs the Mindlin-Reissner kinematics and the discrete shear 

gap (DSG) technique to alleviate the transverse shear locking effects. The electric potential is 

assumed to vary linearly through the thickness for each piezoelectric layer. A co-rotational 

formulation is used to handle the geometrically nonlinear effects. A number of examples 

involving actuator and sensor application of piezoelectric layers are considered. For the 

validation purposes, the results available in the literature and those computed in Abaqus are 

used as a reference.  

Key Words: Shell Element, Piezoelectricity, Active Laminates, Co-rotational FEM, 
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1. INTRODUCTION 

Laminated thin-walled structures made of isotropic or orthotropic materials are widely 

used in engineering practice. This is a consequence of the optimization strategy to reduce 

the structural dead-load whereby the structural carrying capacity is kept at a very high 

level. Besides numerous advantages offered by thin-walled structures, they also tend to 

suffer from structural stability issues and are rather sensitive to vibrations. The use of 

multi-functional materials offers a great potential to cope up with those challenges. 
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Piezoelectric materials are characterized by a sufficiently strong coupling between the 

mechanical and the electric fields, so that they can be employed for an adequately 

designed actuator as well as sensor devices. In the actuator case, the inverse piezoelectric 

effect is used to affect the mechanical field through a purposeful change of the electric 

field. Oppositely, the direct piezoelectric effect is used for sensors to gain information on 

the induced deformation, i.e. strain-field in the material.  

The Finite Element Method (FEM) has established itself as the method of choice in 

the field of structural analysis including coupled-field problems, such as the piezoelectric 

effect. Over the last couple of decades, numerous elements have been developed for static 

and dynamic analyses of piezoelectric thin-walled structures. A survey of piezoelectric 

solids, beams, plates and shells developed in the 90’s is given by Benjeddou [1]. Solid 

elements, such as those proposed by Lee et al. [2] and Willberg and Gabbert [3], provide 

high fidelity FE modeling but at the price of a high numerical effort when applied to thin-walled 

composites. Therefore, shell type finite elements are usually addressed as numerically more 

efficient for this type of structures when the global structural behavior is aimed at.  

Most of the composite shell FE formulations are based on the equivalent single-layer 

approach and mainly rely on the Kirchhoff-Love or Mindlin-Reissner kinematics. The 

Kirchhoff-Love kinematics leads to zero transverse shear strains/stresses and is therefore 

applicable to rather thin shells. The Mindlin-Reissner kinematics takes the transverse 

shear strains into account, so that the resulting theory is referred to as the first-order shear 

deformation theory (FSDT). The Mindlin-Reissner plate and shell elements are notorious for 

shear locking when rather thin structures are modeled. Various techniques have been 

developed to eliminate the effect, such as the Assumed Natural Strain (ANS) [4], Enhanced 

Assumed Strain (EAS) [5], reduced integration schemes and the Discrete Shear Gap (DSG) 

method [6]. All of them were also used in the development of piezoelectric shell elements. 

Marinković et al. [7] developed a full biquadratic degenerated shell element with a choice 

between the full and uniformly reduced integration scheme. The element was used to check 

the convergence of FE results for the coupled electro-mechanical field [8] and it was also 

implemented in Abaqus [9] for the users’ convenience. Zemčík et al. [10] developed a linear 

4-node element with the DSG method implemented to resolve shear locking effects and EAS 

to handle the membrane locking effects. Yang et al. [11] presented a linear quadrilateral 

piezoelectric shallow shell element with the ANS technique, while Nguyen et al. [12] 

proposed a linear triangular shell element based on the DSG approach. 

Besides the equivalent single-layer theories, layer-wise theories were also addressed in 

modeling of smart laminated structures. A number of those approaches rely on the Carrera 

Unified Formulation (CUF) for multilayered plates and shells [13]. Cinefra et al. [14] 

proposed a 9-node plate element that implements mixed interpolation of tensorial 

components (MITC) approach and variable through-the-thickness layer-wise kinematics to 

perform linear static analyses. This development was extended to free-vibration analyses of 

piezoelectric plates [15]. Milazzo [16] used both equivalent single-layer and layer-wise 

approaches for piezoelectric laminated plates whereby the coupled-field problem was 

reduced to mechanical one. 

The theoretical contributions of Tzou [17] and numerical developments by Rabinovitch 

[18], Kulkarni and Bajoria [19], Lentzen et al. [20], Klinkel and Wagner [21] addressed the 

geometrically nonlinear effects in the behavior of smart thin-walled smart structures. However, 
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so far this aspect was much less in the focus of the researchers compared to the developments 

for linear analysis; thus, further contributions would be worthwhile.  

In the present work a recently developed linear 3-node shell element [22] is applied to 

resolve a linear and geometrically nonlinear dynamic response of piezoelectric laminated 

shells. The basic features of the element are briefly described and several dynamic linear 

and nonlinear sensor and actuator cases are considered to verify the applicability of the 

developed element formulation by comparing the obtained results with the solutions from 

the available literature. 

2. FEATURES OF THE LINEAR PIEZOELECTRIC SHELL ELEMENT 

Only the most important features of the triangular piezoelectric shell element, which is used 

in this work, are presented here. A detailed element formulation can be found in [22]. 

The element uses five mechanical degrees of freedom, three translations and two 

rotations, per node and, in addition, as many electrical degrees of freedom as piezolayers. 

The electrical degrees of freedom are the differences of electric potentials between the 

electrodes of a piezolayer.  

The mechanical field of the element is enhanced by the Cell Smoothed – Discrete 

Shear Gap (CS-DSG) formulation. The Mindlin-Reissner kinematical assumptions are 

implemented and, hence, the transverse shear effects are included. The discrete shear gap 

technique proposed by Bletzinger [6] is implemented to alleviate the transverse shear 

locking. The strain smoothing technique suggested by Nguyen et al. [12] is applied to 

improve the accuracy and stability of the element, and, furthermore, to render the element 

formulation independent of the node numbering sequence.  

Two different coordinate systems presented in Fig. 1 are used within the formulation: 

global (x, y, z) and local (x, y, z). The structural displacement field is given with respect 

to the global coordinate system that is fixed in space. 

 

Fig. 1 Geometry and coordinate systems of the 3-node shell element 

 The local element coordinate system (x, y, z) is used to derive the mechanical strain 

and stress fields as well as the electro-mechanical coupling. 

Regarding the piezoelectric layers, they are assumed to operate by using the piezoelectric 

e31-effect, which implies that the in-plane strain field is coupled to the electric field acting in the 

thickness direction. Electric field E within the piezoelectric layers is assumed to be 
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constant, which leads to a linear distribution of electric potential across thickness  so 

that the following relations hold: 
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where k is the difference of electric potentials between the electrodes and hk is the layer 

thickness (k in the subscript pertains to the layer number in the sequence of layers).  

The element formulation is also extended to the geometrically nonlinear analysis. For 

this purpose the element-based co-rotational (CR) FE formulation [22, 23] is used, thus 

covering structural deformations characterized by the finite local rotations, whereby the 

strains remain small. 

3. FINITE ELEMENT EQUATIONS 

The coupled electro-mechanical dynamic FE equations may be derived using the 

Hamilton’s principle for a piezoelectric continuum [24]. The FE system of equations for a 

geometrically nonlinear dynamic analysis by means of an implicit time integration scheme 

reads: 
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where [Muu] is the mass matrix, [Cuu] the damping matrix, [Kuu], [Ku], [Ku] and [K] are 

mechanical stiffness, piezoelectric direct and inverse coupling, and dielectric stiffness 

matrices, respectively, while vectors {∆}, {∆u}, { u }, { u } comprise the incremental 

differences of electric potentials of the piezolayers, incremental displacements, nodal 

velocities and accelerations, respectively. Vectors {Fext}, {Fin}, {Qext} and {Qin} on the 

right hand-side of the FE equations are external and internal mechanical forces and 

electric charges, respectively. Index k in the superscript denotes the iteration number. 

Rayleigh damping is used to introduce the dissipative effects in the FE equations. It 

consists of stiffness and mass proportional terms: 

 uu uu uu[C ] [K ]  [M ]    (3) 

where α and β are the Rayleigh damping coefficients [25]. 

4. NUMERICAL EXAMPLES 

In what follows, a set of examples is studied to demonstrate the applicability of the 

element for linear and geometrically nonlinear dynamic analysis of smart thin-walled 

structures. The considered structures are made of composite laminates with various 

combinations of fiber-reinforced, isotropic and piezoelectric layers. The properties of all 
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the used materials are given in Table 1, where Y denotes the Young’s modulus and  the 

Poisson’s ratio (with indices referring to the material orientation). The values in empty 

cells of Table 1 are considered to be equal to zero in the studied examples. The thickness 

and stacking sequence of layers vary in the examples and will be specified for each 

example separately.  

Table 1 Layers material properties (given in principal material directions)  

 T300/976 Aluminum Steel PTZ-4 Gr/Ep PIC 151 PTZ 

Y11 [Gpa] 150.0 70.3 210 81.3 132.28 61.0 63.0 

Y22 [Gpa] 9.0 70.3 210 81.3 10.76 61.0 63.0 

Y33 [Gpa] 9.0 70.3 210 64.5 10.76 48.4 63.0 

υ12 [-] 0.3 0.345 0.3 0.33 0.24  0.3 

υ13 [-] 0.3 0.345 0.3 0.43 0.24  0.3 

υ23 [-] 0.3 0.345 0.3 0.43 0.49  0.3 

Density [kg/m³] 

 1600 2690 7800 7600 1578 7760 7600 

Piezoelectric constants 

e31 = e32 [Cm-2]    -14.8  9.6 -22.87 

Dielectric constant [F m-1] 

d31 (× 10-8)    1.1505  1.710 1.5 

The examples include both actuator and sensor cases. In the actuator case the piezo-

patches are subjected to a predefined electric voltage, thus causing mechanical excitation 

due to the inverse piezoelectric effect. In the linear analysis the computation of induced 

mechanical loads 
t
{F,e} is performed on the element level as follows: 

 
t t

,e u ,e a,e{F } [K ] { }    (4) 

where the matrices and vectors are defined on the element level. In the nonlinear analysis 

the system matrices, including the piezoelectric coupling terms, have to be updated first. 

In the framework of the CR-formulation, the element piezoelectric coupling matrix is 

updated using element rotation matrix 
t
[Re]: 

 t t 0

u ,e e u ,e[K ] [R ] [K ]   (5) 

In the sensor case, the direct piezoelectric effect is used to induce electric voltage 
t
{s,e} (again, computed on the element level) due to the external mechanical loads, 

whereby the external electric charges are equal to zero:  

 
t 1 t

s,e ,e u,e e{ } [K ] [K ] {u }

     (6) 

where, again, all the vectors and matrices are defined on the element level (index ‘e’). In the 

linear analysis the above equation is used directly, whereas in the geometrically nonlinear 

analysis the rotation-free (i.e. purely deformational) displacements are computed first. As a 

sensor patch/layer is discretized by a number of finite elements, a constraint is introduced 

that the induced electric voltages in the sensor layer are equal in all those elements. In this 

manner, the obtained sensor voltage reflects the average value of the in-plane strains caused 

in the sensor layer by the action of external mechanical loads.  
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4.1. Modal analysis of a simply supported piezoelectric plate 

In the first case a modal analysis of a composite piezoelectric plate is performed. In 

order to verify the CS-DSG3 formulation and to illustrate the influence of the electro-

mechanical coupling on the dynamic properties two cases with different electric boundary 

conditions are investigated. In the first one, the electrodes of the piezolayers are short-

circuited (SC). Hence, the electric potential {} is equal to zero. This leads to the purely 

mechanical eigenvalue problem, i.e. the natural frequencies and modes are the same as if 

only purely mechanical field was considered.  

In the second case, the electrodes are assumed to be open (O) which implies zero 

electric charge as a boundary condition. From Eq. (2) follows: 

 1

s u{ } [K ] [K ]{u}

     (7) 

Hence, an electric potential difference is generated in the sensor layer if the shell is 

deformed. Due to the open electrodes, the electric voltage induces mechanical stresses 

through an inverse piezoelectric effect. In the modal analysis these stresses are taken into 

account by a modified stiffness matrix obtained by substituting {s} into Eq. (2): 

 * 1

uu u u[K ] [K ] [K ][K ] [K ]

     (8) 

The electro-mechanical coupled eigenvalue problem reads then: 

 *

uu[K ] ²[M ] {u} 0     (9) 

It is obvious that the natural frequencies and mode shapes are in this case influenced by 

the properties of the piezoelectric material. The natural frequencies are increased in the open 

electrodes case compared to the short-circuited case because of the additional stiffness term. 

Both the cases are studied on the same structure, at all edges simply supported square 

laminated piezoelectric plate (dimensions aa = 0.20.2m, see Fig. 2). 

 

Fig. 2 Geometry of the simply supported plate with different  

electric boundary conditions (SC) and (O) 

The composite ply layup is [p/0°/90°0°/p]. The outer layers are made of piezoelectric 

PTZ-4 ceramics and the composite layers of Graphite Epoxy (Gr/Ep). The thickness of 

each piezoelectric layer is 0.0004 m and each composite layer is 0.001068 m thick. 

Saravanos [26] computed the first natural frequency for this structure using different 
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meshes. These results are used for the comparison with the current formulation. In order 

to make the results comparable to [26] the value of density of all layers is set to one 

kg/m³. Table 2 shows the result convergence for the first natural frequency determined by 

using three different meshes (32, 128 and 288 elements). For an easier comparison these 

results are normalized with respect to a reference solution. For the SC-case the reference 

solution is obtained with Abaqus using a 24×24 elements mesh and the biquadratic S8 

element while the reference solution of case (O) is analytical and presented in [26]. The 

difference to the reference solutions is in both cases less than 0.5 % for the mesh with 288 

elements.  

Table 2 The normalized first eigenfrequency – convergence analysis 

 

Closed circuit 

f1,ref =22915 Hz 

(Abaqus S8 24×24 mesh) 

Open electrodes 

f1,ref =24594 Hz  

[26] 

Mesh Present Abaqus [26] Present [26] 

32 1.203 1.220 1.090 1.193 1.109 

128 1.045 1.050 1.034 1.040 1.054 

288 1.003 1.024 1.023 1.001 1.044 

4.2. Transient analysis of an active beam structure (linear dynamic actuator case) 

The undamped dynamic behavior of a clamped beam with two pairs of piezopatches 

bonded onto its outer surfaces is studied in this example. The beam geometry is depicted 

in Fig. 3. It is made of aluminum, while the piezopatches are made of PIC 151 (Table 1). 

 

Fig. 3 Geometry of the active beam structure with two pairs of piezopatches 

The oppositely polarized piezopatches are subjected to a time-varying voltage. The 

voltage is a sinusoidal function with amplitude of 100 V and frequency of 100 Hz. This induces 

time-varying bending moments with respect to the structure’s mid-surface, which are uniformly 

distributed over the patch edges. The resulting transverse beam tip deflection (w) is observed in 

a time interval of 0.1 s with constant time-step of 0.0001 s (1000 steps) using the Newmark 

time integration scheme [25]. The first three eigenfrequencies of the beam considered as a 

purely mechanical structure are 31.1 Hz, 131.8 Hz and 349.9 Hz. Hence the answer of the 

structure subjected to an excitation with the frequency of 100 Hz is dominated by the first 



38 G. RAMA 

two natural mode shapes. The transient analysis is carried out using a FE mesh with 320 

elements, which yielded a converged solution for the first three eigenfrequencies and 

mode shapes. For the purpose of verification, a transient analysis of the same structure 

was computed in Abaqus using the S3 shell element, the same mesh and time-step, 

whereby the equivalent mechanical nodal excitations were pre-computed and directly 

applied. The obtained time histories of the tip deflection are shown in Fig. 4. The results 

of the present formulation are in a very good agreement with those from Abaqus.  

 

Fig. 3 Linear dynamic behavior of the active beam (1000 steps) 

4.3. Nonlinear dynamic analysis of a two-edge-simply-supported laminate 

The previous example was computed using the assumption of linearity. Hence, the 

structural stiffness and induced piezoelectric loads were calculated using the initial 

configuration as a reference configuration. This example will be calculated using both the 

assumption of linearity and a geometrically nonlinear approach. The geometry of the 

laminate composite plate simply supported over two shorter parallel edges is shown in Fig. 

5. The laminate consists of three layers. The aluminum mid-layer is 0.5 mm thick and each 

outer PTZ-4 layer has a thickness of 0.25 mm.  

 

Fig. 5 Geometry of the two-edge-simply-supported structure 

The same type of excitation from the previous case is used here as well. It is the time-

variable electric voltage with amplitude of 100 V and frequency of 100 Hz. The response of the 

structure is computed for a time interval of 0.1 s with a constant time-step of 0.0001 s using the 

Newmark scheme. The comparison between linear and nonlinear dynamic response is obvious 

in Fig. 6. It shows that, even in the range of relatively small deformations, the linear and the 

geometrically nonlinear response could differ significantly. Such a result emphasizes the 
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necessity of taking into account nonlinear effects. The geometrically nonlinear computation is 

verified by means of Abaqus. As already mentioned in the previous example, the equivalent 

mechanical excitation is first pre-computed and then directly applied in Abaqus. It should be 

emphasized that the induced bending moments are of the follower type as their orientation 

depends on the current structural configuration, and this is how they are defined in Abaqus (the 

option ‘follow nodal rotation’ was used). Again, observing the structure’s mid-point deflection, 

practically congruent geometrically nonlinear results obtained by means of the developed 

element and in Abaqus can be seen in Fig. 6. 

  

Fig. 6 Two-edge-simply supported structure under harmonic excitation  

4.4. Clamped piezoelectric plate (linear dynamic sensor case) 

A composite plate clamped over one edge is considered next. The plate geometry is shown 

in Fig 7. The composite consists of six layers. The outer two are oppositely polarized PTZ 

layers and the remaining four are T300/976 plies. Each T300/976 layer has a thickness of 0.25 

mm and each PTZ layer is 0.1 mm thick. The antisymmetric composite stacking sequence is 

[p/-45°/45°/-45°/45°/p] with respect to the global x-axis. This structure has been already 

considered in the available literature [27, 28] as a static linear actuator case. For this reason, the 

exact same static case will be computed here first. After that, a dynamic sensor case will be 

addressed.  

In the linear static case a uniform surface load p = 100 N/m² acts upon the plate. Both 

PTZ layers are used as actuators subjected to three different voltages: 0 V, 30 V and 50 V.  

 

Fig. 7 Clamped piezoelectric plate subjected to uniform surface load 
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The shape of the plate centerline is computed using a mesh of 200 elements. The 

comparison between the obtained results and the solutions of Lam et al. [27] and Zhang [28] 

shows a rather good agreement. For the sake of better readability, only the results of Lam et 

al. [27] and those obtained by the present formulation are presented in Fig. 8. 

 

Fig. 8 Centerline deflection subjected to uniform load and different input voltages 

In the linear dynamic analysis, the piezolayers are used as sensors and the composite 

plate is subjected to harmonic varying concentrated force. The force acts at point A (see 

Fig. 9) with an amplitude of 0.2 N and frequency of 1 Hz. The induced sensor voltage of 

the lower layer is observed in a period of 4 s with a time-step of 0.005 s using the 

Newmark scheme and the same mesh as in the previous static analysis.  

 

Fig. 9 Clamped piezoelectric plate subjected to harmonic varying concentrated force 

Zhang et al. [29] studied this example using the SH851URI biquadratic shell element 

(uniformly reduced integration) along with the modal superposition method using the first 

12 modes. Fig. 10 shows a good agreement in the amplitude and frequency of the sensor 

potential response between the current formulation and Zhang et al. [29]. The minor local 

differences are attributed to a different time-step (not specified in [29]) and a different 

damping definition. 
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Fig. 10 Dynamic sensor response of piezoelectric plate under harmonic concentrate force  

4.5. Simply supported piezoelectric plate (nonlinear dynamic sensor case) 

The next example illustrates the influence of geometrically nonlinear effects on the 

dynamic sensor response when piezoelectric plate structures are considered. Fig. 11 shows 

the plate geometry together with the boundary conditions. The laminate consists of three 

layers. The outer two are oppositely polarized piezoelectric PTZ layers with a thickness of 

0.1 mm, while the mid-layer is 0.5 mm thick and made of steel. The plate is discretized so 

that the FE mesh consists of 512 elements. The plate is subjected to a concentrated force 

with periodic time dependent amplitude (see Fig. 11). The vertical displacement of point B 

(see Fig. 10) and sensor response of the upper (1) and lower (2) layers is observed in a time 

period of 0.2 s using a time-step of 0.005 s. 

 

Fig. 11 Simply supported piezoelectric plate geometry 

In the first step the dynamic response of the structure is determined with Abaqus using 

the same mesh and time-step. Fig. 12 shows the vertical deflection of point B computed as 

linear and geometrically nonlinear dynamic response. Again, a good agreement between 

the results from Abaqus and the present formulation can be noticed. 
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Fig. 12 Vertical deflection of a simply supported piezoelectric plate under harmonic excitation 

In the second step, the linear and nonlinear sensor voltage response is computed for 

the same test case. The obtained results for the upper (1) and lower (2) piezoelectric 

layers are presented in Fig. 13. In the linear analysis, the stiffness matrix is determined for 

the initial configuration and the mechanical excitation leads to bending deformation. As a 

result of the opposite polarization of the PTZ layers, the computed sensor voltages of the 

layer (1) and (2) are equal (see Fig. 13). 

In the nonlinear analysis the stiffness matrix changes continuously with the structural 

deformation. The deformation involves membrane and bending effects and, consequently, the 

sensor voltages of the upper and lower layer differ. The difference between the linear and the 

nonlinear results depends on the boundary and loading conditions. In this case, one can easily 

notice the differences in periods and amplitudes of the linear and nonlinear sensor response, 

demonstrating the importance to account for the geometrically nonlinear effects for adequate 

accuracy. 

 

Fig. 13 Sensor voltage response of a simply supported piezoelectric plate  

under harmonic excitation 
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5. CONCLUSIONS  

The dynamics is of particular importance for smart structures as their advantages are 

quite often used to achieve active vibration suppression, radiated noise attenuation, etc. 

Simulation of the smart structures dynamic behavior is a significant prerequisite for their 

successful design, including control laws, i.e. algorithms that define the control strategy. 

The recently developed linear triangular shell type finite element [22] was used in this 

paper to perform dynamic analyses of thin-walled piezoelectric laminated structures. Both 

linear and geometrically nonlinear computations were performed. Actuator and sensor 

cases were considered. For the nonlinear computations, the co-rotational FE formulation 

was used. The verification of the results was done using either results available in the 

literature or the results from Abaqus by properly prepared equivalent mechanical models. 

A high agreement of the results validates the developed element. Furthermore, the 

geometrically nonlinear examples demonstrate that, depending on the boundary and 

loading conditions, the nonlinear effects can play a significant role even when relatively 

small deformations are caused. This is particularly valid for thin-walled structures. 
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