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Abstract. We analyse the oblique impact of linear-viscoelastic spheres by numerical 

models based on the Method of Dimensionality Reduction and the Boundary Element 

Method. Thereby we assume quasi-stationarity, the validity of the half-space hypothesis, 

short impact times and Amontons-Coulomb friction with a constant coefficient for both 

static and kinetic friction. As under these assumptions both methods are equivalent, their 

results differ only within the margin of a numerical error. The solution of the impact 

problem written in proper dimensionless variables will only depend on the two 

parameters necessary to describe the elastic problem and a sufficient set of variables to 

describe the influence of viscoelastic material behaviour; in the case of a standard solid 

this corresponds to two additional variables. The full solution of the impact problem is 

finally determined by comprehensive parameter studies and partly approximated by 

simple analytic expressions. 

Key Words: Oblique Impacts, Friction, Viscoelasticity, Standard Solid Model, Method 
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1. INTRODUCTION 

Collisions of macroscopic particles determine the dynamics of granular gases. As long 

as the particle density in the granular gas is small enough and hence the impact durations 

are small compared to the mean free time between two collisions, these will in general be 

binary. In many cases the difference of the particle velocities before and after the impact 
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can be described by two coefficients of restitution, one for each the normal and tangential 

direction of the impact. Due to friction, adhesion, viscoelasticity, plasticity or other effects 

those coefficients of restitution will in general exhibit strong and non-trivial dependencies 

not only of the geometric or material parameters but of the impact velocities themselves. 

Among the vast literature about granular media only few publication lines account for this 

velocity-dependence, which is mostly because of two reasons: on the one hand, the various 

analytical methods of statistical physics applied to deal with granular media are severely 

complicated by the fact that the restitution coefficients are actually velocity-dependent. On 

the other hand, the rigorous solution of the single contact-impact problem even in the 

simplest case of spherical colliding particles is a rather non-trivial task. 

Lun and Savage [1] and Walton and Braun [2] were the first to study the effects of the 

described velocity-dependence on the granular dynamics using the granular-flow kinetic 

theory of Lun, Savage, Jeffrey and Chepurnity. However, lacking rigorous solutions, they 

only used an ad-hoc model of a restitution coefficient in normal direction exponentially 

decreasing with the impact velocity, which can be realistic only in few cases. Besides, 

they did not account for inter-particle friction during the collisions and could hence 

achieve only rough agreement with their experimental data. Only ten years later a research 

group around Brilliantov and Pöschel started a series of publications to tackle this 

problem again. Brilliantov et al. [3] gave models for the collisions of spheres accounting 

for viscoelasticity and friction. However, their material model is equivalent to a Kelvin-

Voigt body, which is only realistic if the time scale of interest is large compared to the 

relaxation time of the elastomer. As the impact times are short, this might be problematic. 

Moreover, their tribological friction model of broken welds and asperities leads to a 

stepwise linear dependence of the tangential force on the tangential displacement between 

the contacting bodies. For spherical profiles this cannot be true due to the profile shape. 

These collision models have been implemented in granular gas simulations by Schwager 

and Pöschel [4], Brilliantov and Pöschel [5] and Dubey et al. [6].  

The history of rigorous impact solutions started with Hertz [7], who solved the frictionless 

and non-adhesive normal contact problem of two parabolic surfaces and the associated quasi-

static impact problem. Hunter [8] studied the influence of the quasi-stationarity and found that 

the proportion of kinetic energy lost during the impact due to elastic wave propagation is 

negligible, if the impact velocities are small compared to the speed of sound in the elastic 

medium. Cattaneo [9] and Mindlin [10] solved the tangential contact problem of two elastically 

similar spheres in the case of a constant normal force and an increasing tangential force. The 

circular contact area will consist of an inner circular stick area and an annular region of local 

slip. The tangential traction distribution in the contact is a superposition of two Hertzian 

distributions. Their work has been extended by Mindlin and Deresiewicz [11] for various 

different and by Jäger [12] for arbitrary loading protocols. Based on the results of Mindlin and 

Deresiewicz, Maw et al. [13] and Barber [14] studied the oblique impact of elastic spheres 

without adhesion; they found out that the problem written in proper dimensionless variables 

only depends on two parameters, one describing the elastic and the other (containing a 

generalized angle of incidence and hence the impact velocities) the frictional properties. 

Moreover, the authors carried out experiments to validate their calculations. The oblique impact 

problem of elastic spheres with and without adhesion was also studied by Thornton and Yin 

[15]. A nice overview of elastic impact problems and several analytical solutions including 

torsional loading can be found in the paper by Jäger [16]. 
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In a series of publications – see for example [17, 18] and the summarizing book [19] – 

Popov and his co-workers have shown that the generalized Hertz-Mindlin problem for 

any convex axisymmetric indenter and arbitrary loading histories can be exactly mapped 

onto a contact between a properly chosen plain profile and a one-dimensional foundation 

of independent linear springs in such a way that the solution of the obtained one-dimensional 

model will exactly coincide with the one of the original three-dimensional problem. Due to 

the enormous simplification and effort reduction of analytical or numerical calculations 

achieved by this so-called Method of Dimensionality Reduction (MDR) Lyashenko and 

Popov [20] were able to give a comprehensive solution for the problem studied earlier by 

Maw and his co-workers in the no-slip regime, i.e. an infinite coefficient of friction. Those 

results have later been generalized by Willert and Popov [21] for the partial slip regime, 

i.e. a finite friction coefficient. 

The viscoelastic contact problem was first addressed by Lee and Radok [22-24]. From 

the close relationship between the fundamental equations of elasticity and viscosity the 

authors deduced a method of functional equations to obtain the solution of a viscoelastic 

problem if the solution of the associated elastic problem is known and the contact radius 

is a monotonically increasing function in time. This has been generalized to the case of 

any number of maxima and minima of the contact radius by Graham [25], [26] and Ting 

[27, 28]. An equivalent but somewhat easier formulation of Ting’s solution was given by 

Greenwood [29]. However, with every maximum or minimum of the contact radius the 

analytic calculations get more and more cumbersome. The Hertz impact problem for 

viscoelastic media was treated by Pao [30] and Hunter [31]. They used arbitrary viscoelastic 

rheologies to formulate the problem but gave only few concrete solutions. Argatov [32] 

found analytical solutions for the respective flat punch problem in the case of Kelvin-Voigt-, 

Maxwell- or standard solid model. 

The viscoelastic contact problem in the case of convex axisymmetric indenters and 

arbitrary loading protocols can also be exactly mapped within the framework of the MDR, 

which was proven by Kürschner and Filippov [33] and Argatov and Popov [34].  

Hence, the aim of the present paper is to give a comprehensive solution of the viscoelastic 

oblique impact of spheres with and without slip based on the MDR. Very recently Kusche [35, 

36] presented the no-slip solution of this impact problem using the Boundary Element Method 

(BEM). However, the BEM-calculations are numerically much more costly compared with the 

MDR. As the parameter space for the more general case with slip is larger by one dimension, 

the comprehensive solution based on BEM will be numerically very expensive. Nevertheless, 

the BEM-algorithm to solve the impact problem with slip has been implemented and can 

serve as a validation for the faster MDR-based model. 

We will use a standard solid for modelling viscoelastic properties because it exhibits 

all characteristics of general elastomers. As a limiting case the Kelvin-Voigt solid is also 

studied at some point. Finally, we will focus on the velocity-dependence of the coefficients of 

restitution as this is the main point of interest for the implementation of the obtained solutions 

into simulation algorithms for granular media. 

The paper is organized as follows: In Section 2 we will give a formulation of the studied 

problem. Section 3 is devoted to the description of the numerical model based on the MDR, 

the results of which are given in Section 5. Section 4 will present a BEM-based algorithm to 

solve the impact problem, which was used to validate the MDR model described before. 

Section 6 will give conclusions. 
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2. PROBLEM FORMULATION 

The present paper is concerned with the oblique impact of two linear-viscoelastic 

spheres of similar materials. This problem is equivalent to the one of a rigid sphere impacting 

on a viscoelastic half-space, which is why we will restrict ourselves to the latter one. 

During contact the frictional interaction between the two surfaces shall be assumed to 

obey the Amontons-Coulomb’s law with the static and the kinetic coefficients of friction 

being constant and equal to each other: μS = μF ≡ μ. The sphere shall have initial velocities 

vx0 and vz0, z pointing into the half-space, and initial angular velocity ω0. The mass, radius 

and moment of inertia of the sphere are m, R and J
S
, respectively. The point on the sphere 

which first comes into contact shall be denoted as K. 

The half-space shall possess a constant Poisson number ν and a creep function giving 

the response in shear. Actually a viscoelastic material may possess a second creep 

function for the response to hydrostatic stress, but this shall be neglected. As most 

elastomers can be considered incompressible (this will also fulfil the condition of elastic 

similarity) our assumption does not pose a considerable loss of generality. In this case we 

can introduce time-dependent shear modulus G(t). For the standard solid model G reads: 

 2
1 2( ) exp .

G t
G t G G



 
   

 
 (1) 

The Kelvin-Voigt model can be recovered from this expression via the limit 
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with the Dirac δ-distribution. A scheme of the impact with notations is shown in Fig. 1. 

We will make further following assumptions: 

Quasi-stationarity: The impact velocities shall be much smaller than the speed of sound 

in the viscoelastic material. We therefore neglect all inertia effects like wave propagation. 

Half-space hypothesis: The surface gradients shall be small. For an axisymmetric contact 

with parabolic indenter shapes in the vicinity of the contact point, this can be written as  

 
max max ,d a R  (3) 

with the maximum values of indentation depth d and contact radius a. 

Very short impact: The displacement of the contact point due to the change of position 

and the rotation of the sphere shall be small compared to the contact radius. This ensures 

that the contact configuration stays axisymmetric and the contact problem can be treated 

like a tangential one. Rolling will then be accounted for only kinematically. The displacement 

in vertical direction is of the order of magnitude of the maximum indentation depth. The 

displacement in tangential direction is of the order of magnitude 

 0 0
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0
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u d
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 
  (4) 

Hence, this assumption will be covered by the half space hypothesis if the ratio of 

tangential and vertical initial velocity of the contact point is of the order of 1 or smaller. 
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Fig. 1 Scheme of the analysed impact problem – a rigid sphere  

is impacting on a viscoelastic half-space 

3. NUMERICAL MODEL BASED ON THE MDR 

Under the assumptions made, the motion of point K fully determines the motion of the 

sphere. The normal and tangential displacements of this point shall be uK,z and  uK,x. The 

equations of motion for those displacements are elementary given by 
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where Fx and Fz are the contact forces while the dots denote the time derivative. To 

determine these forces and thereby solve the axisymmetric problem described above 

within the framework of the MDR, two preliminary steps are necessary. First an equivalent 

plain profile g(x) has to be obtained from axisymmetric indenter profile f(r) via the Abel-like 

integral transform 
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A spherical indenter in the vicinity of the contact can be described by the parabolic profile 
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and the equivalent profile accordingly is given by the expression 
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Fig. 2 Single element to model 

a standard solid 

 

Fig. 3 Single element to model  

a Kelvin-Voigt solid 

As the second step the viscoelastic properties of the half-space must be replaced by a 

one-dimensional foundation of independent, linear-viscoelastic elements. In case of a linear 

standard solid with the time-dependent shear modulus given in Eq. (1) those elements 

consist of a spring in series with a dashpot, the pair in parallel with a second spring (see Fig. 

2). In case of a Kelvin-Voigt model (see Fig. 3) the spring in series with the dashpot is rigid. 

The elements are at a distance Δx of each other. This value is arbitrary if small enough. Let 

us first consider the standard solid and write down the necessary relations of the model and 

the numerical algorithm. All equations for the Kelvin-Voigt model can be derived afterwards 

by the limiting process. 

The reaction force for a single element at position xi = i Δx, with outer and inner 

displacement vectors 
iu  and 

iu  has the components 
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The inner point must fulfil the equilibrium conditions 
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For the time integration we will use the least order explicit Euler integration scheme 

with constant time step Δt. The current time step number shall be denoted by an upper 

index j. In the beginning all displacements are set to zero. Then, in each time step, first 

the normal contact problem must be solved. For the elements in contact the normal 

displacement is enforced by the motion of K, 

 
1

, , K, , for contact.j j j

i z i z zu u u t     (11) 

The elements not in contact are free of forces, i.e. the left side of Eqs. (9) is zero, and one 

obtains 
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where we introduce relaxation time 
2/ G  . An element gets into contact if ,

j

i zu   

K, ( )j

z iu g x  and leaves contact if , 0j

i zf  . To solve the tangential contact problem the 

tangential displacements must be calculated. The elements outside the contact area progress 

according to 
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For the elements in contact one has to distinguish between sticking and slipping elements. 

For all the sticking elements, the displacement is enforced by the movement of K,  

 1

, , K, , forstickingcontact.j j j

i x i x xu u u t     (14) 

An element in contact is able to stick if the resulting tangential force does not exceed the 

maximum value given by the Amontons-Coulomb law, i.e. if 

 , ,z , for stickingcontact.j j

i x if f    (15) 

Any element violating this condition will slip. In this case the tangential force is known to be 
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After the total contact forces are calculated by summation over all elements, 
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the equations of motion (5) can be solved in each time step. Note that it is impossible that 

contact is re-established by the viscoelastic creep. For the Kelvin-Voigt model only τ and 

hence the inner displacements must be set to zero in the equations above.  

The algorithm was implemented in MATLAB™. Only time steps j and j-1 have to be 

stored. That is why this algorithm requires only little memory space. Also all operations 

are elementary, which makes the algorithm very fast (this is also why we are able to use a 

least order explicit integration scheme without stability problems) and enables us to do 

comprehensive parameter studies on an ordinary desktop PC (the calculation of a single 

impact took around one or two seconds on a machine with an Intel i5 processor). 

4. NUMERICAL INVESTIGATION USING BEM 

The results acquired with the MDR have been validated using the Boundary Element 

Method (BEM). The BEM-solution of the described problem is numerically exact under 

the assumptions stated before: the half-space approximation, quasi-static conditions and 

elastic similarity between the contacting surfaces. Since the BEM does not rely on axis-

symmetry, this assumption is only made to have results comparable with the MDR. 
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The application of the BEM consists of two steps. Firstly the problem of calculating 

the deflection field from a given pressure distribution and vice versa must be solved. This 

can be done by utilizing the fundamental solution for a point load acting on a viscoelastic 

half-space [37-39]. The material is assumed to be incompressible and components Fx, Fy, 

Fz of the point load are applied at time zero and are kept constant. The deflection of the 

surface can then be written as 
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In difference to the MDR, the time-dependent creep function for shear J(t) has been used. 

It is clear and known that J(t) and G(t) are not independent of each other. The creep function 

can be written by using the constants introduced in equation (1) in the following form: 
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Since the geometric dependences in the viscoelastic and elastic cases are the same, the 

developed algorithm can be used with only small modifications. In elastic contact mechanics 

it is a standard procedure to integrate the fundamental solution over a rectangle, assuming 

constant pressure [40]. This analytic solution is used to find the deflection field for an 

arbitrary but piecewise constant pressure distribution [41]. This task can be performed very 

fast and efficiently by using convolution techniques on a parallel computing architecture [42-

44]. The corresponding inverse problem, namely finding the pressure distribution to a given 

deflection field can be tackled by using the biconjugate gradient stabilized method [45].  

The above described methods have been applied to the viscoelastic problem. Since the 

pressure distribution will change in time, a discretisation is necessary. If, for each time step, 

the pressure distribution is assumed to be constant, the overall solution in the deflection field 

can be obtained by adding two solutions in each time step: one to remove the prior load and 

one to add the current load. Based on the fact that the arising sum grows linearly in time, 

it is crucial to reduce the numerical effort. This can be achieved by applying the special 

form of the creep function (19) and by observing the following time step. Then an iterative 

algorithm can be developed: 

 

1 1

1

, 1 1

0 00 0 0

, 1 1 1

0 0 0

1 1

1
( ) ( )exp

exp ( )

z z
j j

z z
j j

j j
j i

z j n i i i i i

i i

a b

z z

z j j j j j j j

a b

j j

t

z

t tJ J
f t t f f f

J J J

J J
f a f b f f

J J J

f a

u

t t
u

 

 

 





 

 



  

 




     

      

 

 
 
 

 






 

 

0

exp

z

zt

j j

D

h J
b f

J

 
 







  (20) 

Herein uz,n is the normal deflection of the surface, J∞ = J(t = ∞), J0 = J(t = 0), and  fj  is the 

deflection due to a pressure distribution pj  – each at the time tj. In the last line of Eq. (20) 
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it can be seen that an additional deformation D
z
 has to been taken into account to include 

viscoelastic behaviour (in the elastic case D
z
 is equal to zero). The unknown term in the 

last line of Eq. (20) is fj+1, which means that the pressure distribution pj+1 is unknown. 

This can be calculated with the elastic algorithms mentioned before. It should be noted 

that this algorithm can handle only materials with a finite modulus of instant deformation, 

which excludes the Kelvin-Voigt solid.  

The tangential contact can be solved very similarly to the normal contact so that the same 

scheme can be used [46]. Only the calculation of the deflection in tangential direction ux, 

caused by shear stress has to be adopted. If a partial slip is involved, the calculation is 

modified in the following way: starting with a complete stick area, the deflection is given by 

the increment of displacement in one time step. If this leads to shear stress that is larger than 

the value allowed by the Coulomb’s law, this part of the contact area will slip. In the slip 

areas the tangential stress is set to |τ| = μp. Then the stress in the remaining stick area is 

calculated again, under the consideration of the deflection caused by the shear stress in the 

slip area. This is done until the stick area does not change anymore. In all performed 

simulations, the deformation perpendicular to the plane of the motion, uy , is neglected. It 

turns out that this assumption, in the case of parabolic bodies, causes a negligible error [47]. 

At this point, the contact problem itself is solved. For the integration in time both an explicit 

Euler scheme and the velocity Verlet algorithm have been used. In comparison, they show 

no difference in the global error of the velocities at the end of the simulation and in the 

contact time itself. For an estimation of the step size Δt the MDR solution has been used. For 

the geometric discretization a matrix of 256256 points has been chosen. The comparison 

with a finer discretization shows only a slight error reduction. 

For implementation it has to be considered that the total deflection in normal direction 

within the contact area is known at every time step since the indentation depth of the 

sphere is known. Contrariwise in tangential direction: the points coming into contact have 

a pre-deformation through coupling to the points within the contact area from a previous 

time step. This can be handled by adding only the current increment of tangential 

movement at the boundary of the sphere in each time step. 

The systematic investigation of the problem has been done with the MDR. The 

processing time for the BEM is much higher compared to the MDR. Therefore, only a few 

hundred parameter sets spreading over the full range covered by the investigation done with 

the MDR have been calculated with the BEM. It turns out that the relative differences in the 

coefficients of restitution have always been smaller than 0.5%. Therefore, it is reasonable 

that the MDR can be applied. 

5. RESULTS OF THE NUMERICAL MODEL: THE RESTITUTION COEFFICIENTS 

As a solution we are interested in the coefficients of restitution in normal and tangential 

direction 
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Maw et al. [13] have shown that in an ideally elastic case (the coefficient in normal 

direction being obviously unity) the coefficient in tangential direction only depends on the 

two dimensionless parameters 

 
2

0 0

0

1 2 2
1 , .

2 2

x

S

z

v RmR

vJ

 
 

  

  
   

  
  (22) 

In the case of a sphere impacting on a viscoelastic half space modelled as a linear standard 

solid, two more dimensionless parameters are of interest, describing the viscoelastic material 

properties, namely 
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with the maximum contact radius for the impact with an elastic half space, 
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Of course, any combinations of those two additional parameters would also be possible to 

choose as governing variables. For example, in the previous publication on the no-slip 

impact Kusche [35] used the parameters 
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to capture the influence of the material behaviour. However, as we are interested mainly 

in the velocity-dependence of the coefficients of restitution, it seems convenient to select 

δ1 and γ, because the latter one is velocity-independent and therefore the velocity-

dependence due to viscoelasticity can be fully covered by parameter δ1. Moreover, the 

Kelvin-Voigt model can be recovered as the limiting case γ = 0. Also limit γ → ∞ corresponds 

to the elastic result. To reduce the number of governing parameters, we restrict ourselves 

mostly to χ = 7/6, which, amongst other cases, corresponds to the case of incompressible, 

homogenous spheres. To prove that actually  

 1 1( , ) and ( , , , )z z x xe e e e         (26) 

we made comprehensive numerical studies, the results of which are shown in the upcoming 

figures. Thereby we first focus on the limiting case of a Kelvin-Voigt solid and afterwards 

look at the more general standard solid. 

In Fig. 4 the coefficient of restitution in normal direction is shown for a Kelvin-Voigt 

solid as a function of δ1. All free input parameters for the simulations, i.e. velocities, 

measures of inertia and so on, have been generated randomly. Nevertheless, the points 

create continuous curves and hence our hypothesis is proven for the normal direction. It is 

easy to interpret the results, as the coefficient of normal restitution shows the often-used 

quasi-exponentially decreasing behaviour. This, however, only remains true for this material 

model of a Kelvin-Voigt solid, which corresponds to an infinitely fast relaxation within 
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the elastomer. It was already pointed out that this is problematic as the impact times are 

considered to be small and the relaxation time has to be accounted for in some way. We 

will see the effects later in the results for the standard solid.  

 
 

Fig. 4 Coefficient of restitution in normal 

direction for the impact on a Kelvin-

Voigt solid as a function of δ1  

 

Fig. 5 Coefficient of restitution in tangential 

direction as a function of δ1 and ψ 

with χ = 7/6. Online version in colour 

Fig. 5 gives the tangential coefficient of restitution ex as a function of δ1 and ψ for the 

impact on a Kelvin-Voigt half-space. The value of χ was fixed at 7/6, all other input parameters 

for the impact problem have been generated randomly and yet the solutions create continuous, 

smooth curves. The tangential restitution has a global maximum for an impact without viscosity 

around ψ = 2. On the right side of the contour plot the behaviour gets quite simple and can be 

explained the following way: for any material model configurations are possible for which the 

contact will completely slip during the whole impact. In this case the total tangential force is 

known due to the Coulomb’s law and hence the tangential restitution coefficient for full slip 

(and any material model) is given by the relation 
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Let us now look into the results for the standard solid. We restrict ourselves again to 

the case χ = 7/6 to spare the generally least important parameter. 

Fig. 6 gives the results for the normal restitution coefficient as a function of δ1. 

Several logarithmically-equally-distributed values for γ have been chosen and all other 

input parameters for the impact problem, as always, have been generated randomly. 

Nevertheless, the solutions create continuous curves and it is easy to observe the influence 

of γ on the velocity-dependent restitution: as said before γ → ∞ corresponds to the trivial 

elastic case and γ = 0 to the monotonically decreasing Kelvin-Voigt solution. For 

intermediate values of γ the coefficient of restitution has a global minimum. After that it 

increases again with increasing δ1, i.e. increasing normal inbound velocities. This 

distinguishes the general standard solid from its limiting case with infinitely fast 

relaxation and has, for example, a very interesting consequence for a (driven) granular gas 

of viscoelastic particles: as on the increasing part of the restitution curve, the coefficient 
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of restitution is larger for larger inbound velocities, a region of locally higher internal energy 

of the granular gas, i.e. higher velocities of the particles, might dissipate less energy than 

regions of lower energy, which might result in unstable states of the granular gas.  

 

Fig. 6 Coefficient of restitution in normal 

direction as a function of δ1 

(logarithmic) and different values of γ 

for the impact with a standard solid 

 

Fig. 7 Coefficient of restitution in tangential 

direction without slip (ψ = 0) as a 

function of δ1 (logarithmic) and 

different values of γ for the impact 

with a standard solid; χ = 7/6 

 

Fig. 8 Coefficient of restitution in tangential 

direction as a function of δ1 

(logarithmic) and ψ for the impact 

with a standard solid; χ = 7/6 and  

γ = 0.0825 

 

Fig. 9 Coefficient of restitution in tangential 

direction as a function of δ1 

(logarithmic) and ψ for the impact 

with a standard solid;  χ = 7/6 and  

γ = 1 

Fig. 7 presents the results for the tangential restitution in the case of no slip, which 

have been reported by Kusche [35] with a slightly different set of governing dimensionless 

parameters. In Fig. 8 and 9 the results are shown for the behaviour with slip. For increasing 

values of γ a bulb with ex ≈ 0.5 around ψ ≈ 2 is stretching to the left, i.e. the area with less 

viscosity. The other areas are less affected by the material properties. 

Finally, we come back to the full slip solution and the different regimes for parameter ψ.  
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In the elastic case Maw et al. [13] distinguish three different regimes: for ψ < 1 the impact 

will start in a completely sticking contact and remain like this during the whole compression 

phase; for ψ > 4χ – 1 the contact will fully slip during the whole impact; the intermediate values 

correspond to a mixed regime. Now, in the viscoelastic case, the time derivatives of the contact 

forces in the MDR-model in the very first moment of contact are given by 
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Hence, for a finite instantaneous stiffness (this excludes the Kelvin-Voigt body), the impact 

will begin with sticking contact, if 

 ( 0) ( 0) 1.x zF t F t        (29) 

In case of the Kelvin-Voigt body the contact forces in the first moment of contact are 

nonzero and the no-slip condition will be 

 ( 0) ( 0) 1.x zF t F t        (30) 

Hence, this lower transition value for ψ is unaffected by viscoelasticity.  

For any standard solid characterised by the two parameters δ1 and γ – and probably any 

material behaviour – there also exists a value ψc, for which the contact will completely slip 

during the whole impact if ψ > ψc. For complete slip the tangential coefficient of restitution 

is given by Eq. (27).  

 

Fig. 10 Critical value ψc, for which the 

contact will completely slip during 

the whole impact if ψ > ψc for the 

impact with a standard solid 

 

Fig. 11 Relative error between the 

numerical result for ψc and the 

analytic approximation (31)  

In Fig. 10 the value of 
c  is shown for different materials. Obviously this transition value 

strongly correlates with the normal restitution coefficient. The global maximum is elastic case 
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ψc = 11/3, and a very good approximation (with a relative error always smaller than 0.2%, see 

Fig. 11) is given by the expression 

 2 (1 ).c z ze e       (31) 

6. CONCLUSIONS 

Based on the numerical models we investigated the oblique impact of linear-viscoelastic 

spheres under the assumptions of quasi-stationarity, the validity of the half-space hypothesis, 

Amontons-Coulomb friction and short impact times. Numerical models based on both the 

Method of Dimensionality Reduction (MDR) and the Boundary Element Method (BEM) have 

been implemented. As expected both methods in their results only differ within the margin of a 

numerical error. Due to the enormous reduction of mathematical and computational effort 

achieved by the MDR we were able to perform comprehensive parameter studies for the 

examined impact problem. It is found that the problem solution, i.e. the coefficients of normal 

and tangential restitution, written in proper dimensionless variables will depend on exactly four 

different values, at least two of which contain explicit dependencies on the inbound velocities. 

By accounting for the finite relaxation time within the elastomer it is possible to increase the 

normal restitution coefficient with increasing inbound velocities. This is in contrast with most 

viscoelastic collision models used in the literature about granular media and may have 

interesting applications in granular chains or gases. 

As in the elastic case, three different regimes are possible depending on the inbound 

velocities: the contact may fully slip during the whole impact, completely stick during the 

compression phase or be in a mixed regime. Viscoelasticity reduces the angle of incidence 

necessary to ensure complete slip but does not affect the transition between the two other 

regimes. The transition to full slip strongly correlates with the coefficient of normal restitution. 

Of course, in practice the here-given assumptions pose severe restrictions, especially the 

half-space hypothesis, the assumed short impact time and the assumption of perfectly linear 

material behaviour. Nevertheless, the proposed model and its solution to the best our 

knowledge are the first – from a contact-mechanical point of view – rigorous and self-

consistent approach to the topic despite the extensive existing literature dealing with it. 

The proposed methods can without problems be applied to more general forms of the 

time-dependent shear modulus, for example represented in a Prony series. 
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