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Abstract. Pulse diagnosis, the main diagnosis method in traditional Chinese medicine, is 

a non-invasive and convenient way to check the health status. Doctors usually use three 

fingers to feel three positions; Cun, Guan, and Chi of the wrist pulse, to diagnose the 

body’s healthy status. However, it takes many years to master the pulse diagnosis. This 

paper aims at finding the best position for acquiring wrist-pulse-signal for lung cancer 

diagnosis. In our paper, the wrist-pulse-signals of Cun, Guan, and Chi are acquired by 

three optic fiber pressure sensors of the same type. Twelve features are extracted from 

the signals of these three positions, respectively. Eight classifiers are applied to detect 

the effectiveness of the signal acquired from each position by classifying the pulse signals 

of healthy individuals and lung cancer patients. The results achieved by the proposed 

features show that the signal acquired at Cun is more effective for lung cancer diagnosis 

than the signals acquired at Guan and Chi. 
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1. INTRODUCTION  

Lung cancer is one of the major public health problems worldwide [1]. Pulse diagnosis 

is a safe and auxiliary way of detecting lung cancer in clinical medicine [2]. Since pulse 

diagnosis heavily depends on physicians‟ experience, it takes a very long time and a lot of 

energy to master the technique of pulse diagnosis [3]. With the development of sensor 

technology, signal processing, data analysis techniques, and artificial intelligence, the 

pulse based diagnosis can be implemented by processing the radial artery pulse signal [4, 

5]. To popularize the pulse diagnosis in clinical medicine, researchers have been trying to 

                                                           
Received May 04, 2017 / Accepted October 31, 2017 

Corresponding author: Anton Umek  

Faculty of Electrical Engineering, University of Ljubljana, Tržaška c. 25, 1000 Ljubljana, Slovenia  
E-mail: anton.umek@fe.uni-lj.si 



536 Z. ZHANG, A.UMEK, A. KOS 

acquire and process the radial artery pulse signal using sensor technology and machine 

learning [6-7].  

Yong Jun et al. [8] designed a sensor from the resonator to acquire the radial artery 

pulse signal based on the reflection coefficient; the sensor can be embedded in a wearable 

communication device. According to their experiment results, the acquired signal reflects 

the useful artery information and meets the requirements of the signal analysis for clinical 

purposes. Zuo et al. [9] analyzed three types of radial artery sensors: pressure, photoelectric, 

and ultrasonic sensors according to the physical meanings, correlations of the acquired signal 

from these three sensors, and sensitivity factors. Their conclusion shows: it is better to 

measure the transmural pressure to diagnose some special disease which can change the 

elastic property and thickness of the vessel wall. According to the pulse diagnosis theory 

[10], the lung cancer patients‟ vessel wall is different from that of healthy individuals; thus 

the signal of pulse pressure acquired from the optical sensor in our experiment has useful 

information for detecting lung cancer. 

Machine learning is a popular and effective way of analyzing the radial artery pulse 

signal. Khaire et al. [11] extracted the spectral features from the radial artery pulse signal 

and used the support vector machine to classify the individuals‟ pre-meal and post-meal 

signals. In Rangaprakash‟s experiment [12], the pulse signal was taken from the volunteers 

before and after exercise. Seven spatial features extracted from the pulse wave are used to 

classify the signals into these two groups using Recursive Cluster Elimination based Support 

Vector Machine.  Their work proved that the features obtained from the radial artery pulse 

signal can be used to detect the physiological state of the individuals.  

Zhang and Sun [13] utilize a convolutional neural network to classify twelve pulse 

waveforms; long pulse, feeble pulse, stringy pulse, thready pulse, deep pulse, rapid pulse, 

hesitant pulse, soft pulse, short pulse, slippery pulse, flood pulse, and faint pulse. Half of the 

dataset with 200 samples was selected to train the classifier without feature extraction and the 

classification accuracy was found to be 93.49%. However, this is the basic traditional wrist 

pulse waveform classification which could not be used to disease diagnosis. 

Chow et al. [14] defined the Doppler parameters to be the disease sensitive features and 

applied the Support Vector Machine to distinguish between Acute Appendicitis patients 

and healthy individuals. Gong et al. [15] designed a wrist pulse sensing and analyzing 

system for recognition of cirrhosis patients with an accuracy of 87.09%. Unlike the work 

they did, our research aims to identify lung cancer patients from healthy individuals.  

Currently, in the radial-artery-signal processing research, only few works are directly 

related to the detection of some specific disease. To the best of our knowledge, no related 

work uses a radial artery pulse signal to identify lung cancer patients. In this work, we 

extract the features from the radial artery pulse signal for identification of lung cancer 

patients‟ and compare the effectiveness of the wrist-pulse-signals acquired from the Cun, 

Guan and Chi positions as shown in Fig. 1c. 

The rest of our paper is organized as follows: Section II briefly explains the data 

acquisition and pre-processing. The proposed features for lung cancer detection are listed 

in Section III. Section IV presents and discusses the experiment result, and Section V 

concludes the paper. 
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2. DATA ACQUISITION AND PRE-PROCESSING 

The dataset is acquired from the Shandong Academy of Chinese Medicine. Fig. 1a 

shows the pulse signal acquisition device. The signal sampling rate is 800 Hz. The raw 

continuous signal was collected from the Cun, Guan, and Chi wrist locations of 16 healthy 

individuals and 15 lung cancer patients. Different levels of pressure are imposed on the 

radial artery by moving the robotic arm during the acquisition of the radial pulse signal. An 

example of a raw continuous signal with five pressure levels is shown in Fig. 1b. The 

locations of “Cun” and “Guan” and “Chi” of the wrist are shown in Fig.1c. Figure 2a shows 

the enlarged local signal at one pressure level.  

a) 

 b) 

c) 

Fig. 1 a) The pulse acquisition device; b) The acquired raw signal; 

c) The locations of Cun, Guan and Chi 

In our previous work, we utilized the Gaussian filter to de-noise the signal and designed 

an algorithm to remove the baseline wander and segment the continuous signal into single 

periods of the signal. Fig. 2b shows the de-noised signal with the fitted baseline. The 

corresponding segmentation result is shown in Fig. 2c. From Fig. 2, it is evident that the 

baseline is removed and the single periods of the signal are segmented successfully using 

the developed algorithm. In addition, the average value of baseline is recorded to be used as 

one of the features in our experiment. 

After segmentation, we extracted features from the single periods and used classifiers 

to recognize the valid single periods of the signal. The examples of invalid and valid single 

wrist-pulse-signal periods are shown in Fig. 3a to Fig. 3d, respectively. Finally, 8508 valid 

single periods of the radial-artery-signal are available for classification. 
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a) 

 
b) 

 

c) 

Fig. 2 a) An example of the enlarged raw signal; b) An example of  

the baseline fitting result; c) An example of the segmentation result 
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       a)                                 b)                             c)                                d) 

 Fig. 3  a) and b) Examples of invalid periods; c) and d) Examples of valid periods 

3. FEATURE EXTRACTION 

In our paper, we analyze single periods of the radial-artery-signal in the time domain. 

The features are extracted from the shapes of single periods. In Fig. 4, it can be seen that the 

single period has a cardiac rapid ejection part and a heart slow-firing blood part (SFBP). 

The rapid ejection period lasts from the start of the period to the maximum. And SFBP lasts 

from the maximum to the end of the period. For more convenient features extraction, the 

SFBP is divided into 5 parts (a1, a2, a3, b1, b2) in the time domain, as shown in Fig. 4. The 

parts of a1, a2, a3 account 1/8 respectively of SFBP, whereas b1 and b2 account 1/4 and 3/8 

of SFBP, respectively. 

 
a)                                                              b) 

Fig. 4 The single period radial-artery-signals: a) Signal of the healthy individual,  

b) Signal of the lung cancer patient 
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The features are extracted from different parts of the period. The twelve features shown 

in Table 1 are used to train the classifiers and identify the lung cancer patients‟ signals.  

Table 1 Definitions of features 

Name Definition  

pressure The depth of probe descent  

ave_single Average baseline value of the single period of wrist pulse signal 

len_period Length of the single period of wrist-pulse-signal 

pmax_index Index of the sample of the maximum  

num_09 Number of points that fit the condition (maximum-minimum >=  0.9) 

ave_a1 Average value of a signal in b1 clip 

ave_a2 Average value of a signal in b2 clip 

ave_a3 Average value of a signal in b3 clip 

ave_b1 Average value of a signal in c1 clip 

ave_b2 Average value of a signal in c2 clip 

min_psub The distance between the peaks of heart slow-firing blood period 

location Signal acquisition location (Cun, Guan, Chi) 

The feature pressure represents different pressure levels imposed on the volunteers‟ 

radial artery. When changing the imposed pressure, the baseline of the signal changes as 

well. Thus, we calculate the baseline‟s average value (ave_single) to be a feature as well. 

The length of the period (len_period) is given in seconds, and the average values of a1, a2, 

a3, b1, and b2 are extracted as features. A lung cancer patient‟s cardiac rapid ejection 

period is longer than that of a healthy individual as shown in Fig.4. Accordingly, we extract 

the index of the maximum amplitude (pmax_index). In addition, the lung cancer patients‟ 

heart slow-firing blood period is different in shape from that of healthy individuals. Feature 

min_psub is the distance between the peaks in heart slow-firing blood period. Since the 

radial-artery-signal is acquired from three probes on Cun, Guan, and Chi, the acquisition 

location is also taken as a feature. 

4. CLASSIFICATION 

In this experiment, we have three different training sets. Each training set consists of 

signals acquired from two healthy individuals and two lung cancer patients from one of the 

three positions, i.e. Cun, Guan, and Chi. The rest of the individuals‟ data forms the three 

corresponding testing sets. At the extraction of the aforementioned features, the following 

classifiers are used to classify the periods of healthy individuals and lung cancer patients: 

Linear SVM (support vector machine), Coarse Gaussian SVM, Fine KNN (K-nearest 

neighbors), Cosine KNN, Subspace discriminant, Subspace KNN, Simple Tree and Quadratic 

discriminant. Each individual‟s classification results are counted respectively to calculate the 

lung cancer case rate. In this experiment, the one whose lung cancer periods are accounted 

for 50% or more is diagnosed to be a lung cancer patient.  

Table 2 shows the diagnosis accuracy of lung cancer patients and healthy individuals 

using the abovementioned classifiers. Each individual‟s diagnosis results coupled with the 

best classification accuracy are shown in Table 3.  
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Table 2 Diagnosis accuracy of different classifiers 

Classifier Diagnosis Accuracy 

 Cun Guan Chi 

Linear SVM 88.46% 80.00% 88.00% 

Coarse Gaussian SVM 96.15% 88.00% 88.00% 

Fine KNN 96.15% 68.00% 88.00% 

Cosine KNN 96.15% 72.00% 88.00% 

Subspace discriminant 88.46% 84.00% 76.00% 

Subspace KNN 65.38% 64.00% 88.00% 

Simple tree 73.08% 64.00% 84.00% 

Quadratic discriminant 73.08% 76.00% 84.00% 

Table 3 Diagnosis accuracy for individual subjects 

Individual Cun Guan Chi Label 

1   32.26% 82.61% 50.00% Healthy 

2   47.14% 96.50% 37.63% Healthy 

3   81.98% 66.67% 34.78% Healthy 

4     0.00%  7.06% 50.00% Healthy 

5     0.00%  4.52% 10.15% Healthy 

6     0.00%  42.78%   6.83% Healthy 

7     0.00%  17.56%   7.97% Healthy 

8     0.00%  17.56%   7.97% Healthy 

9     0.00%  45.51%   4.23% Healthy 

10     0.00%   38.64% 20.00% Healthy 

11     0.00%   34.78%   0.00% Healthy 

12     0.00%     0.00%   0.00% Healthy 

13     0.63%     0.00%   3.23% Healthy 

14     0.00%     0.00%   0.63% Healthy 

15 100.00% 100.00% insufficient Lung cancer 

16 100.00% insufficient 100.00% Lung cancer 

17 100.00% 100.00% 100.00% Lung cancer 

18 80.00% 100.00% 100.00% Lung cancer 

19 insufficient 100.00%     0.00% Lung cancer 

20 100.00% insufficient insufficient Lung cancer 

21 100.00% 100.00% 100.00% Lung cancer 

22 100.00% 100.00% 100.00% Lung cancer 

23 100.00% 100.00%   83.33% Lung cancer 

24 100.00%   99.50%   53.96% Lung cancer 

25 100.00% 100.00% 100.00% Lung cancer 

26 100.00% 100.00%   87.50% Lung cancer 

27   90.48%   92.03%   71.62% Lung cancer 

Note: The result of „insufficient‟ means the samples of the corresponding individual  

are not enough for classification    
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5. DISCUSSION 

As shown in Table 2, the best result for the signal acquired from Guan is 88.00%, and the 

corresponding classifier is Coarse Gaussian SVM. While the best diagnosis accuracy of 

88.00% for the pulse signal acquired from Chi is achieved by the two SVM models and the 

three KNN models mentioned above. Compared with the signal acquired from Chi and Guan, 

the signal acquired from Cun shows the best result when using 5 classifiers (linear SVM, 

coarse Gaussian SVM, fine KNN, cosine KNN, subspace discriminant), especially when 

using coarse Gaussian SVM, fine KNN, and cosine KNN, the diagnosis accuracy is 96.15%.   

In addition, we notice that Coarse Gaussian SVM performs best for the signal acquired 

from all these three positions. Thus, to show the performance of the coarse Gaussian SVM 

classifier in detail, we show each individual‟s diagnosis result in Table 3 for Coarse Gaussian 

SVM classifier. Table 3 shows that two healthy individuals (individual 1 and 4) and a lung 

cancer patient (individual 19) are diagnosed incorrectly with the signal acquired from Chi, 

whereas three healthy individuals (individual 1, individual 2, individual 3) are misdiagnosed 

to be lung cancer patients with the signals of Guan. While, when using the signal acquired 

from Guan and Cun, all the lung cancer patients can be recognized correctly. There is only 

one healthy individual (individual 3) misdiagnosed with the signal acquired from Cun.  

In summary, our proposed twelve features are effective to distinguish between the 

radial-artery-signal of healthy individuals and lung cancer patients, and compared with the 

signal acquired from Chi and Guan, the signal acquired from the position of Cun gives the 

most accurate classification results, especially with the coarse Gaussian SVM classifier. 

In the current work, the radial-artery-signal related features are taken only from the 

time domain. In our future work, we plan to analyze the signal in the frequency domain by 

extracting its frequency domain features. Meanwhile, we will try to get more lung cancer 

patients‟ and healthy individuals‟ radial-artery-signals to test the effectiveness of the pulse 

signal acquired from Cun. Moreover, we plan to design a more effective signal preprocessing 

procedure and build a more effective model to get more accurate classification results. 

6. CONCLUSION 

This paper is a study of the possibilities of lung cancer patient recognition using machine 

learning algorithms. The wrist pulse signal is acquired from healthy individuals and from 

lung cancer patients. The acquisition is performed simultaneously at the radial artery locations 

of Cun, Guan, and Chi. In this work, we extract twelve features from the single period of 

signal and build eight classifiers to recognize the signal of lung cancer patients. The results 

show that the pulse signal acquired from Cun performs the best compared with that from Guan 

and Chi. The extracted features are verified to be 96.15% accurate for the lung cancer 

diagnosis with the signal acquired from Cun using the classifier of coarse Gaussian SVM.  

In our future work, we will improve the raw signal pre-processing algorithms, obtain 

more raw signals, and try to find even more effective features to increase the diagnosis 

accuracy of lung cancer detection with the emphasis on the pulse signal acquired from the 

position of Cun. 
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