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Abstract. The paper presents an overall simulation approach to control the noise 

emission of car engines at a very early stage of the design process where no real 

prototypes are available. The suggested approach combines different physical models and 

couples different software tools such as multi-body analysis, fluid dynamics, structural 

mechanics, magneto-electrodynamics, thermodynamics, acoustics and control as well. 

The general overall simulation methodology is presented first. Then, this methodology is 

applied to a combustion engine in order to improve its acoustical behavior by passive 

means, such as changing the stiffness and the use of damping materials to build acoustic 

and thermal encapsulations. The active control by applying piezoelectric patch actuators 

at the oil sump as the noisiest part of the engine is discussed as well. The sound emission 

is evaluated by hearing tests and a mathematical prediction model of the human 

perception. Finally, it is shown that the presented approach can be extended to electric 

engines, which is demonstrated at a newly developed electric wheel hub motor.  
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1. INTRODUCTION 

In recent years, increasing attention has been paid to vibration and acoustic noise 

control in many industrial applications, especially in automotive industries. The control of 

noise and vibration is essential since it contributes to comfort, efficiency and safety. 

There are two different approaches to achieve noise and vibration attenuation. On the one 

hand, there is a widely used passive approach. Passive control techniques mostly reduce 

vibration and sound emission of the structures by modifying the structural geometry and 

by applying additional damping materials. These methods are best suited for a higher 
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frequency range.  A drawback of the damping materials is the increase in weight. An 

overview of the developments in structural design optimization for the passive noise control 

can be found in Marburg [21]. On the other hand, there are active control techniques 

available, which provide an alternative way to minimize unwanted structural vibrations and 

noise. Active methods are of increasing interest to designers since they are powerful and do 

not increase structural weight considerably. A first comprehensive overview of the active 

control of sound is given by Nelson [25]. A very beneficial active vibration control 

technique was first introduced by Fuller et al. [7]. In his concept actuators are directly 

attached to a structure in order to reduce sound radiation by changing its vibration behavior. 

Piezoelectric ceramics are widely used as sensors and actuators because they can easily be 

mounted onto the vibrating structure [30]. Active control techniques are usually employed 

in a low frequency range. Over the past years, several researchers have studied different 

control strategies for active structural control [9, 10, 13, 18]. Li et al. [19] and Ringwelski 

et al. [30-32] applied a velocity feedback control algorithm to a rectangular fluid-loaded 

plate with piezoelectric layers, which has been proven to be a robust and effective control 

strategy. Ruckman and Fuller [33] applied a feedforward control approach to reduce 

actively the acoustic radiation of a fluid-loaded spherical shell structure. Orszulik et al. 

applied a feedforward/feedback control design for a piezoelectric nanopositioning platform 

[28]. A linear
 
quadratic optimal control (LQ) technique combined with additional dynamics 

was proposed by Nestorović et al. [23] and successfully applied to control the vibration of a 

car roof [24]. Orszulik and Gabbert [27] have proposed a data interface for coupling 

commercial finite element software and control design software. This allows hardware in 

the loop approaches to design active controlled structures. 

In comparison to the active approaches the passive damping of structures to reduce the 

noise radiation by design modifications and the application of additional damping 

materials is much more pronounced, due to its simpler and cheaper application and a 

more robust noise reduction effect even in changing environmental conditions.  

The development and industrial application of noise reduction techniques require 

efficient and reliable simulation tools to design an acoustically optimized system. Virtual 

models are of particular interest in the design process since they enable the designer to 

optimize a technical system by a so called virtual twin.  

The focus of the paper at hand is to improve the acoustic behavior of vehicle engines, 

where passive methods as well as active ones are taken into account. Besides the engine 

noise there are several other noise sources of vehicles such as the noise excited from the 

interaction between the tires and the road surfaces (rolling noise) and the excitation of the 

car body by the air stream around the vehicle. Such sources are not discussed in this paper.   

The paper is organized as follows. At first the overall acoustic simulation approach is 

briefly presented. Then, it is applied to combustion engines, where several simulation 

results are presented to underline the complexity but also to demonstrate the advantages 

of the developed simulation approach. It is briefly shown that the active control methods 

are also advantageous for noise radiation reduction, especially in a lower frequency range. 

The calculated sound pressure distribution in the air surrounding the engine does not 

represent the human perception of the sound, which can lead to very different results in 

the sound design. Therefore, an approach is presented, which enables the designer to 

develop a virtual sound design on simulation results only, without having a real prototype 

at hand. As an outlook to the ongoing research activities it is shown that acoustic problems 
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are not automatically solved by a change to electro drive systems. Measurements at 

prototypes of a newly developed wheel hub motor have shown a significant high frequency 

noise radiation, which was the motivation to extend and apply a developed overall 

simulation approach to electrical machines as well.              

2. CONCEPT OF AN OVERALL ACOUSTIC SIMULATION APPROACH 

In today’s design process of engines acoustics is taken into account in a very late 

development stage, where first acoustics measurements can be performed at the final 

prototype of an engine. At this development stage the possible changes of the engine 

design are very limited, and, consequently, it is impossible to receive an optimal acoustic 

solution. To overcome this problem acoustics should be evaluated very early in the design 

process, where no prototype exists. But this requires a holistic virtual engineering 

workflow of the design process, including models to simulate  

(i) the excitation of the engine, 

(ii) the vibration of all required engine parts, 

(iii) the acoustic pressure wave propagation in the surrounding air, and, 

(iv) the psychoacoustic evaluation of the sound. 

Such an overall simulation approach for a combustion engine is shown in Fig. 1. The 

only input is the gas pressure in the cylinders, which excites the movement of the pistons. By 

applying an elastic multi-body simulation the vibration excitation of the crankcase can be 

analyzed. The elastic multi-body simulation (MBS) results in bearing forces as well as in 

deformations of the cylinder walls. The deformations result from lateral and tilting motions 

of the piston due to the combustion process respective to the thereby generated gas forces. 

The resulting superposed load on the cylinder walls is not measureable. Consequently, the 

presented approach provides, on the one hand, an opportunity to substitute the experimental 

determination of the engine structure excitation and, on the other hand, it enables 

consideration of a more realistic vibration excitation. Based on a complex finite element 

model (FEM) the dynamic behavior of the crankcase can be analyzed, which results finally 

in the surface velocity, which excites the surrounding air volume. Based on the solution of 

the acoustic wave equation the pressure waves in the surrounding air volume can be 

calculated.  

From our experiences, the A-weighted acoustic pressure is not sufficient to evaluate 

the hearing sensation. Consequently, as a final step a model based psychoacoustic 

assessment is performed. Based on the briefly presented methodology the acoustic 

behavior of an engine can be evaluated and improved in a virtual development step 

without the existence of a real prototype, which is shown in the next chapters. 
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Fig. 1 Draft of the overall simulation workflow to evaluate the acoustic behavior  

of a combustion engine:  
(a) Excitation analysis of the engine by the gas forces with the help of an elastic 

MBS approach including elasto-hydrodynamic interactions [2]  

(b) Vibration analysis with the help of a complex finite element model (b1 – 

passive methods, b2- active methods) 

(c) Analysis of the pressure distribution in the surrounding air with the help of 

acoustic FEM approach (c1 – passive methods, c2- active methods) 

(d) Auralization of the acoustic simulation results 

(e) Mathematical analysis of the sounds to calculate psychoacoustic parameters 

(f) Psychoacoustic evaluation of the radiated noise with the help of hearing tests 

and hearing models 

(g) Generation of a robust regression model to predict the human auditory 

perception with the help of the best suited calculable parameters 
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3. EXPERIMENTAL BASIS 

There is a large selection of the devices available in our laboratories to measure 

vibration and noise of structures. The measurements are mainly applied to evaluation and 

improvement of developed numerical simulation approaches. The structure vibration is 

mainly measured contact free with the help of one, two or three laser-scanning vibrometers. 

In Fig. 4 three laser heads are used to measure the three-dimensional vibration of a car body. 

For the sound pressure measurements the acoustic holography and visualization through the 

acoustic camera is applied. Likewise, several microphones and microphone arrays are 

available for noise source localization purposes. For the acoustic measurements two 

anechoic chambers can be used (see Fig. 2). The testing of active controlled structures is 

performed with help of a dSpace system.  

   

          Fig. 2 Acoustic engine test bench              Fig. 3 Laser vibrometer, © IKAM  

4. PASSIVE CONCEPTS FOR REDUCTION OF THE VEHICLE ENGINE NOISE 

In the following section the acoustic behavior of combustion engines is analyzed and 

improved by applying the proposed holistic virtual engineering approach, which is shown 

in Fig. 4. The engine vibration is caused by the gas pressure forces of the combustion 

process, which excites the piston motion. The gas pressure curve does not have to be 

obtained by measuring the current engine prototype. It can be taken out from a representative 

data base of previous engines. Alternatively, the gas pressure curve can be taken from the 

combustion process design because this curve is available very early in the development 

process and furthermore virtually coincides with the real gas pressure curve of the final 

design. The piston motion causes the excitation of the cylinder crankcase by the internal 

cylinder pressure, the forces in the crankshaft main bearings and the piston contact with 

the cylinder walls. The calculation of the piston lateral motion and the piston tilting 

requires the consideration of the hydrodynamic fluid film reactions as well as the solid 

contact of piston and cylinder [2, 17]. The multi-body simulation (MBS) has to be carried 

out with at least five operating cycles of the engine, from which only the last one is taken 

into account as input for the subsequent vibration analysis to avoid initial disturbances in 

the calculated time signals of the excitation loads. The resulting signals are periodical. For 

this reason, it is possible to extend the time signals by repeating the representative 
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excitation from one operating cycle into the next. A longer time signal is advantageous for 

the Fast Fourier Transform (FFT), which is necessary for transforming various excitation 

sources into the frequency domain. Both contact parts (piston and cylinder) are modeled 

as elastic bodies in the MBS. Therefore, they are able to capture local deformations, 

which result from the elasto-hydrodynamic contact [2]. The main bearing forces are 

received by the solution of the Reynold’s differential equation. Finally, the gas forces, the 

contact forces and the main bearing forces are applied as loads of the cylinder crankcase 

model (see Fig. 1a and 1b). The feedback of the crankcase vibrations to the crankshaft 

and the piston motion can be neglected, as shown in [2]. 

Pcyl(Ω)

Fb(Ω)

pgas(t)

(a) elastic MBS (b) FE vibration analysis (c) FE acoustic analysis

p(Ω)

Fb(t)

Pcyl(t)

vs(Ω)

 

Fig. 4 Overall acoustic simulation approach of a combustion engine 

The finite element method (FEM) is used for the subsequent vibration analysis of the 

engine. It is executed exclusively in the frequency domain in order to reduce the 

computational costs in comparison to a time domain approach. The bearing reactions are 

considered as forces and the excitations of the cylinder walls are considered as pressures 

to facilitate the application of the loads to the FE-mesh. The discretisation of the cylinder 

walls in the MBS and the FE-analysis are not coincident. The nonlinear elastic MBS of 

the crank drive requires the minimization of the number of degrees of freedom as far as 

possible due to computational costs. Therefore, in the MBS a rough discretization of the 

cylinder walls is used. In contrast, in the vibration analysis a detailed model of the whole 

cylinder crankcase and oil pan is necessary. Thus, a much finer discretization is required. 

Consequently, a coincident discretization of the cylinders in the MBS and in the vibration 

analysis has to be omitted. The resulting forces of the MBS have to be transformed into 

the nodes of the discretization of the vibration model. To create a static equivalent load 

by nodal forces on a finer discretization is simple but an energetic equivalent load 

requires much more effort. In the current investigations the pressure values are used as 

surface loads to create an equivalent load for the vibration analysis of the engine. In the 

vibration analysis model this surface load is defined at the midpoints of the finite element 

surfaces, which form the inner contour of the cylinders. The amplitude of each surface 

load is obtained by the elastic MBS with the help of the shape functions used for 

describing the pressure distribution. Therefore, the midpoints of the element surfaces of 
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the vibration analysis model are provided for the elastic MBS, where the shape functions 

of the pressure as primary variables are used to calculate the pressure values at these 

points. Hence, the applied loads of the vibration analysis model match exactly with the 

calculated loads of the elastic MBS without an additional error by the transformation 

between different discretizations. The transformation of the excitation of the cylinder 

walls in the frequency domain is executed after the calculation of the pressure values at 

the midpoints of the element surfaces of the vibration analysis model. 

Subsequently, the vibration analysis is executed with help of these excitations to get 

the surface velocities of the whole engine (see Fig. 4b). These surface velocities are 

required as excitation of the surrounding air volume in the following acoustic analysis 

(see Fig. 4c). An uncoupled acoustic analysis is implemented, neglecting the feedback of 

the air volume to the vibrating structure, which is a common assumption because the 

engine is made of aluminum and consequently much stiffer than the air. The excitation of 

the air volume is applied as boundary condition in the calculation of the sound radiation 

[6]. The degrees of freedom of the structure (displacement) and the fluid (sound pressure) 

are coupled by special interface elements. These elements are shell type elements without 

stiffness or mass. They require a coincident discretization of the engine and the air 

volume at the fluid structure interface.  

As already mentioned, the previously calculated surface velocities of the engine are 

applied as boundary conditions at the nodes of the interface elements. The spherical air 

volume is modeled with a discretization, which becomes coarser to the periphery due to the 

computational costs (see Fig. 1c). Generally, tetrahedrons with quadratic shape functions are 

used to discretize the whole engine and the air volume. The splitting of the large multi-

physics system of equations into smaller problems causes a significant reduction in the 

computational effort. This is due to the fact that the computational effort required increases 

nonlinearly with the number of degrees of freedom considered. The Sommerfeld radiation 

condition is fulfilled by using absorbing boundary conditions [12], which is a simple and 

sufficient approach in comparison to the other methods, such as infinite finite elements or the 

Perfectly Match Layer method. To evaluate this approach a plate like structure was 

investigated by a comparing the numerical solution with an analytical reference solution 

based on the Rayleigh integral. It was shown that the three different modeling approaches to 

including the boundary conditions in the far field do not differ significantly. 

The proposed model has been evaluated experimentally as shown in Fig. 2 and a good 

agreement has been recognized. Consequently, it has been used to investigate the influence 

of different design studies on the engine’s acoustic behavior. As an example Fig. 5 

compares the influence of the piston contact with the cylinder walls to the noise radiation. 

But, many other design configurations have been studied as well, such as the gas curves, the 

shape of the piston, the different axial offsets and several geometrical changes of the crank 

shaft and the oil sump to figure out their influence on the engine’s acoustic behavior. From 

Fig. 5 it is seen that the oil sump at the bottom of the engine is an important noise radiator 

due to its large and thin surface. Therefore, several investigations to reduce the noise 

radiation from the oil sump have been performed. In Fig. 6 a new functionally integrated 

oils sump is shown and Fig. 7 presents the results of some design configurations to 

stiffening the bottom of the oil sump by applying an optimized configuration of rips. 
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Fig. 5 Sound pressure distribution without and with consideration of the cylinder forces: 

a) only bearing reactions, b) additionally the cylinder excitations are considered 

But by changing the stiffness and the mass distribution only, the broad band noise 

level of an engine cannot be reduced properly. Therefore, as an alternative approach the 

development of an optimized engine encapsulation has been tested in order not only to 

reduce the noise radiation but also to improve the engine’s heat storage capacity. From a 

tribological point of view the heat storage of the motor oil is of utmost importance since 

the oil temperature is directly related to the fuel efficiency and it contributes also to pollution 

reduction as well. The same overall simulation strategy can be employed by adding an 

additional model of the encapsulation (as seen in Fig. 1(c1)). The modeling of the encapsulation 

materials is not discussed here in detail, see [3]. Detailed numerical analyses have been 

conducted without and with different types of thermo-acoustic engine encapsulations; some 

results are presented in [3, 4]. The results have also been experimentally evaluated with 

acoustic measurements in an engine test bench as seen in Fig. 2. 

  

Fig. 6 Finite-element-model of the crankcase and the surrounding air-volume (left) with 

the new developed functionally integrated oil pan (middle, right) 
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Fig. 7 Surface velocities of the oil sump with different types of rips 

From studies with different encapsulations we have learned that it is very important to 

avoid acoustic leakages. Also additional seals made of silicone and vibration-decoupling 

modifications have improved the encapsulation. In Fig. 8 (right) the measured sound 

pressure level shows the performance of the encapsulation.  

    

Fig. 8 Encapsulation (left); Sound power level at the thrust side:  

red: without encapsulation, black: with encapsulation   

The acoustic effect of the encapsulation (see Fig. 8 right) mainly occurs at frequencies 

higher than 100 Hz. Additionally, the stored heat improves the cold starting behavior of 

the engine, meaning that the optimal operating points of the engine at which wear and tear 

and, therefore, exhaust emissions are reduced as well, are more quickly reached. Of 

course, the engine overheating and overloading of the cooling circuit have to be excluded. 
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For thermal consideration, an FE-simulation was conducted as well. The finite element 

mesh was directly taken from the acoustic simulations. Only the engine oil inside the oil 

pan was added. It was also modeled with quadratic tetrahedrons. Fig. 9 shows comparison 

of the acoustic pressure of the engine without (left) and with the developed encapsulation. 

During the investigations several other parts of a combustion engines have been also 

investigated and improved by applying the overall virtual engineering approach, e.g. the 

exhaust systems, the oil sumps, the air charge systems, etc.  

The investigations presented above are focused on the application of insulation materials 

like foams, microfibers and mass layers, which are used together as multilayer systems and 

mounted on the vibrating surfaces in order to create a damping effect that reduces the sound 

radiation. The influence of the material thickness on the damping behavior was investigated 

as well as the influence of a thin foil adhered to the surface. We have carried out 

experiments and simulations which have provided us with generalized guidelines for 

optimizing damping materials geometry and design according to the specifications of their 

applications.  
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Fig. 9 Sound pressure around the engine: left: without, right: with encapsulation 

5. ACTIVE PIEZOELECTRIC NOISE CONTROL  

Passive damping methods mostly reduce the vibration and the sound emission of 

structures by modifying the structural geometry and by applying additional damping 

materials. These methods are well suited in a higher frequency range (see e.g. Fig. 8 right).  

Unfortunately, damping materials are increasing the weight. On the other hand, there are 

active control techniques available, which provide an alternative way to minimize unwanted 

structural vibrations and noise [7, 9, 11, 20, 31]. Active methods are of increasing interest to 

designers since they are powerful and do not considerably increase the structural weight. For 

the development of active systems the overall simulation methodology (see Fig. 1) can also 

http://www.dict.cc/englisch-deutsch/consideration.html
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be applied. In the following the active noise reduction approach is demonstrated at the oil 

sump of a combustion engine. As we have seen the oil sump is the main noise radiator of an 

engine. To actively influence the vibration amplitudes of the structure piezoelectric materials 

are attached to the structure, and by a properly designed electric excitation the vibration 

amplitudes are reduced. This results additionally in a reduction of the excited amplitudes of 

the acoustic waves. As sensors microphones in the surrounding or structural integrated sensors 

(acceleration sensors or strain gauges) can be used. For modeling the structural behavior the 

electromechanical coupled field equations have to be taken into account in the finite element 

model [8, 11, 22]. But for design purposes it is also meaningful to include the control as well in 

the finite element simulation [30]. But also software in the loop approach, as it is proposed by 

Orszulik and Gabbert [27], can be applied. As an advantage of this approach the extensive 

control strategies can be designed in Matlab/Simulink and applied during the overall simulation 

process. Also the prior knowledge about the excitation, such as the gas forces, can be used to 

design an optimal control technique with additional dynamics [23].   

In Fig. 10 left the finite element model of the crankcase with the oil pan is shown. The 

pictures show that two collocated actuators and a sensor are applied to the bottom of the 

oil sump. The placement of the actuators and the sensor are numerically identified with 

the help of the most dominant mode shapes [31]. In Fig 10 (right) a photo of the outer 

surface of the oil sump is shown, which is used for experimental investigations. At the 

photo the two applied piezoelectric patch actuators are shown together with extra 

acceleration sensors for additional test reasons. In Fig. 11 the computed and the measured 

sound pressure distributions of the uncontrolled and the controlled engine are plotted at 

the most dominating resonance frequency of 975 Hz. The measurements have been 

carried out in a free-field room with the help of a uniformly distributed microphone-array. 

From Fig. 11 it can be seen that the simulation results correlate very well with the 

experimental ones. In the active damping case a velocity feedback control was used in the 

simulation as well as in the measurement, where the applied voltage was about 10 V [32]. 

   

Fig. 10 Finite element model of the crankcase with the oil sump with two collocated pairs of 

actuators and sensors (left); right: photo of the oil sump outer surface equipped with 

two piezoelectric actuators (A1, A2) and additional acceleration sensors (AS)  

The simulations and the measurements have been performed at a stripped engine. At 

the most dominating first eigenfrequency a noise reduction of about 16 dB and at the 

second eigenfrequency of about 10 dB was achieved in comparison to the uncontrolled 

case. In order to evaluate the quality of the developed actively controlled oil sump 
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additional experimental tests were performed on an acoustic engine test bench (Fig. 1) 

under real operating conditions [20]. The behavior of the controlled and the uncontrolled 

case was measured at engine run-ups from 900 to 3000 rpm. The measurements reveal 

that due to the controller influence the amplitudes of the sound pressure in the resonance 

frequency regions of the oil pan are reduced by approximately 4 dB, which indicates the 

noise reduction potential of the designed system.  

 

Fig. 11 Sound pressure distribution around the engine: 

simulation (left), measurement (right) 

6. PSYCHOACOUSTIC EVALUATION 

Instead of measuring the acoustic behavior of a real prototype [1, 26, 29], the 

presented overall numerical simulation methodology is used to receive audible sounds of 

the engine [5]. These audible sounds are used to carry out paired comparison listening 

tests, which finally lead to an interval scaled ranking of the stimuli. These data from 

listening tests are used to create a psychoacoustic mathematical model which shows the 

highest correlation with the subjective evaluation of engine sounds. This psychoacoustic 

model is a function, which consists of a weighted combination of well-chosen classical 

psychoacoustic parameters, such as loudness and sharpness. The resulting psychoacoustic 

model describes and predicts the auditory sensation of the noise quality on the basis of a 

signal processing of the sound signal only - without any further auralization or hearing 

test. The advantage of such a concept is that the perceived quality of an engine can be 

optimized before a real prototype is built because only simulation results are needed as 

input for the psychoacoustic model. For the details of the approach the reader is referred 

to [14], [15, 5]. The psychoacoustic approach has been developed and applied first to 
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impulsive vehicle sounds such as the door locking and closing noise and the flasher noise 

[14]. This approach has been recently extended to engine noises [5]. We have found out that 

for generating a proper psychoacoustic model three parameters are sufficient to generate a 

robust and quite precise mathematical model by linear regression. In this example these three 

parameters are (i) maximum gradient of percentile loudness N5, (ii) maximum sharpness Smax 

and (iii) duration of sharpness TS [5]. With such a model different types of combustion 

engines and different types of engine encapsulation have been evaluated in order to optimize 

their acoustic behavior. Fig. 12 shows the distribution of the sound pressure around a 

combustion engine enclosed with an encapsulation. The A-weighted sound pressure is 

compared with the results received by the developed psychoacoustic model for the perceived 

quality of the engine sounds. It has been carefully proved by additional hearing tests that the 

developed model is very well suited to describing the human sensation of the sound quality 

of different engines without further hearing tests. It is very important to consider more 

complex psychoacoustic models to evaluate the acoustics of engines properly; an evaluation 

with only single basic parameters is not sufficient enough to describe the sound quality.  

max

min

 

Fig. 12 The A-weighted sound pressure level (left) and the perceived sound quality (right)  

7. EXTENSION TO ELECTRIC DRIVES 

The presented overall simulation approach can also be extended and successfully applied 

to electric drives for electro-cars. Recently, an electric wheel hub motor for electrically 

driven cars has been developed [16], which shows an extraordinary power-to-weight-ratio, 

as it combines two different types of winding to boost torque sharing the same magnetic 

circuit; one is an air gap winding and the other one is a slot winding, see Fig. 13.  
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Fig. 13 Design of the electric wheel hub motor [16] 

In the development process of an electric engine acoustics is usually not in the focus of 

interest. But it has been proven that the acoustic characteristics of electric engines are a very 

important topic, which should be taken into account at an early stage of the development 

process. In contrast to combustion engines in electrical engines the first engine orders are 

related to much higher frequencies (up to 1250 Hz) and the resulting sound is not so noisy. 

In general it seems that the radiated sound is caused by a few different frequencies only, as 

the second and the third engine order are the most important engine orders beside the first 

order, but even their amplitudes are with about 5% and 2% of the first one still comparably 

small. Hence, the emitted sound of an electric engine is more like a single high frequency 

tone. Unfortunately, the human auditory perception is very sensitive with respect to such 

high frequency sounds. Consequently, the noise emission of electric engines is more 

annoying than the noise emission of combustion engines, even if the amplitudes of the 

electric sound are lower. For this reason, it is important to consider the acoustic behavior as 

early as possible in the product development process of an electric engine. With the aid of 

our overall simulation workflow the acoustics of electric engines can also be optimized 

before the first prototype is built.  

The first part of the workflow (see Fig. 1) is changed because the excitation is now 

caused by magnetic forces. Therefore, the electromagnetic behavior is modeled first, where 

it is common to neglect the differences in the direction of the rotation axis to increase 

efficiency. It is sufficient to use a two dimensional model only (see Fig. 14, right upper 

corner), as the attenuation of the tangential magnetic forces is less than 5% at the boarders. 

Further, the magnetic forces in radial direction are non-linear and cause stability problems if 

they are linearized. The electromagnetic forces resulting from the first step are used to 

calculate vibration behavior of the wheel hub motor. This results in the surface velocity, 

which is used to excite the surrounding air and to calculate the air pressure at any point of 

the surrounding air volume under free field conditions. 
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Numerical vibration analysis

Calculation of the electromagnetic excitation forcesDesign of the wheel hub motor

Numerical acoustic analysis
 

Fig. 14 Holistic simulation workflow for calculating the sound radiation of an electric 

wheel hub motor based on the electromagnetic excitation forces 

The vibration and acoustic analyses can be solved in an uncoupled manner, as the 

feedback of the vibrating air on the much stiffer engine housing can be neglected. For all 

three solution steps, the electrodynamics, the structural dynamics and the acoustics the 

finite element method are used. In the vibration and acoustic analyses tetrahedral elements 

with quadratic shape functions are used due to the complex geometry and the required 

accuracy which is tested by convergence studies. The acoustic simulations can be done 

with a much coarser mesh due to the larger wave length in the air. But, at the interface 

between the structure and the air volume it is appropriate to use a coincident mesh, which 

is coarsened with increasing distance from the structure to reduce the computational effort 

of the approach. The developed and numerically tested overall workflow is finally also 

validated by measurements. 

The presented overall virtual engineering methodology can be used to optimize the 

design of the wheel hub motor in further steps in order to fulfill it acoustic requirements. 

Furthermore, it would be a promising future development to extend the overall workflow 

by a psychoacoustic post-processing as shown in Section 6 in order to include the special 

properties of human hearing sufficiently, instead of determining the classical acoustic 

parameters such as the sound pressure level.  
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8. CONCLUSIONS 

In the process of engine development, the reduction of the sound emission is a major 

objective together with the optimization of both the power and the fuel efficiency. Hence, 

in the paper at hand the aim was to present a recently developed overall virtual prediction 

methodology that can evaluate the sound quality of engines based on auralized simulation 

results. This methodology consists of numerical and psychoacoustic analyses. It has been 

originally developed and tested for combustion engines but it is also capable to be applied 

to electric engines. The numerical analysis begins with the calculation of the excitation 

forces. Then, the determined excitation forces are used to calculate the vibrations of the 

engine with the help of the finite element method. Subsequently, the resulting acoustic 

behavior is calculated and rendered audible. At this point, the psychoacoustic part of the 

analysis begins, where the signal processing of the resulting time signals from the 

numerical simulations is performed in order to calculate appropriate psychoacoustic 

parameters. The numerically calculated engine sounds are also used to carry out hearing 

test with human participants, who evaluate different engine sounds with respect to their 

perceived sound quality. Finally, the results of the signal analysis and the hearing test are 

compared by regression and correlation analyses. The objective parameters with the best 

correlation between the results of the signal analysis and the hearing test are used to 

generate a psychoacoustic prediction model of the perceived sound quality. The generated 

psychoacoustic prediction model and the numerical results are validated by experimental 

investigations. The remarkable feature of the presented approach is that the auralized 

simulation results are used within the hearing tests instead of the sounds of real engines or 

prototypes. This makes it possible to execute the presented workflow early in the product 

development process. This means that no hardware or real prototypes are required in 

order to evaluate the result of engine modifications on the acoustic behavior and its 

corresponding human perception. Hence, the presented concept is suitable for computer 

based optimization of the engine with respect to the perceived sound quality. To demonstrate 

the developed workflow the results of the holistic approach applied to combustion engines 

are presented. It is shown that the application of engine encapsulations can reduce the sound 

emission of combustion engines significantly. With the help of the developed approach it is 

possible to make decisions regarding the geometry of the engine structure, a proper damping 

material for an encapsulation, its layup and thickness, as well as the optimal shape of the 

encapsulation. Besides passive means, which are preferable in the higher frequency range, 

additionally, active control methods are also briefly discussed. Finally, it is shown how the 

overall simulation approach is extended to electric machines and applied to simulate the 

acoustic behavior of a recently developed new wheel hub motor.  
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