
FACTA UNIVERSITATIS  
Series: Mechanical Engineering Vol. 18, No 1, 2020, pp. 135 - 151 

https://doi.org/10.22190/FUME190210004P 

© 2020 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND 

Original scientific paper
 

FAST USER ACTIVITY PHASE RECOGNITION FOR 

THE SAFETY OF TRANSFEMORAL PROSTHESIS CONTROL  

Aleksandr Poliakov, Vladimir Pakhaliuk 

Sevastopol State University, Sevastopol, Russian Federation 

Abstract. In the process of creating powered transfemoral prostheses, one of the most 

important tasks is the provision of the user safety while walking. Experience shows that 

security depends not only on the mechanical strength of such devices, but also on the 

quality of their control systems, which, among other things, must ensure that latency and 

error rates of recognition are acceptable for each of the possible changes in gait. 

Incorrect or late recognition of the activity mode at best can lead to suboptimal assistance 

from the auxiliary device, and at worst - to loss of stability of the user with a subsequent 

fall. Loss of stability can also occur due to exceeding the critical time or critical errors of 

the activity phase recognition and the associated incorrect commands generated by the 

control system. In this paper, a method for quickly recognizing the phase of the user's 

activity based on the properties of Hu’s moment invariants is substantiated. Its use in the 

intelligent control systems will minimize the critical errors that contribute to the loss of 

the user's equilibrium with the powered transfemoral prosthesis.     

Key Words: Powered Transfemoral Prosthesis, Safety, Activity Mode, Activity Phase, 

Recognition, Moment Invariant  

1.  INTRODUCTION 

Modern transfemoral prostheses (TFP) are sophisticated high-tech devices that enable 
people with disabilities to overcome the severe psychological consequences associated with 
amputation of the lower limb above the knee, to lead an active life and to be involved in a 
community of healthy people. Thanks to TFP, people with disabilities can carry out the 
usual motor actions typical for a healthy person, including: walking on flat and rough 
terrain, ascending / descending the stairs, sitting down / getting up from the chair, standing 
still, riding a bicycle, etc. This was made possible after the appearance on the market of 
available powered TFP, operating under the influence of commands generated by the 
intelligent control system (ICS). One of the key problems of ICS is in recognition of the 
user's intentions to carry out a specific activity mode and generate commands to TFP 
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actuators, facilitate the implementation of this regime. Currently, many algorithms are 
known to solve this problem, but none of them allows obtaining an absolutely exact 
solution. In this regard, work to improve the ICSs for powered TFPs and to improve the 
reliability and performance of algorithms used in them is still relevant.   

Reference [1] presents general considerations for the synthesis of ICS for powered TFP in 

the framework of the Intellectual-Synergetic Concept (ISC). As in most modern ICSs, the 

ISC-based control system provides three-tier architecture, including the high level controllers 

(HLC), middle level controllers (MLC) and low level controllers (LLC) [2]. The basic idea of 

ISC is that the ICS created on its basis consists of two subsystems: intellectual (IS = HLC + 

MLC) and synergetic (SS = MLC + LLC). At the same time, IS is responsible for recognizing 

the locomotor and non-locomotor intentions of the user in the short and medium term, and SS 

is for their bio-like implementation [1, 3]. In principle, as noted in the review [4], controllers 

of such ICS can perform their functions using different algorithms, each of which can be 

optimal from the point of view of different criteria and conditions. But an unconditional 

requirement for such algorithms is the provision of the user safety in the process of 

locomotion with TFP.  

Despite the fact that IS is not directly involved in the control of TFP actuators, it indirectly 

plays an important role in the controlling as well as developing a strategy and control tactics 

that are justified as a result of recognizing the intentions of the user to implement a certain 

movement in the near or medium term. Objective errors in the recognition of intentions and 

their classification depend on many factors and, in general, are random, and therefore 

inevitable when using any recognition algorithms. Moreover, the TFP user can change his 

initial intentions within a relatively short period of time, which leads to subjective errors. 

Therefore, the exact solution of the problem of recognizing intentions is impossible. 

To describe the time during which a classification decision must be made that provides 

an opportunity for the ICS of TFP to make the appropriate transition between the activity 

modes, the term "critical time" [5] was introduced, while to describe any errors that lead to 

subjective perception by the user state of unstable equilibrium, the term "critical error" was 

introduced [6]. These terms allowed the division of all possible errors with respect to the 

recognition and classification of intentions, into non-critical ones, i.e. such that the worst 

case scenario is the lack of assistance to the user on the part of the auxiliary device, and 

critical ones - in which the user can not only lose balance with a subsequent fall, but can 

even feel unsure when using an auxiliary device.       

Further studies in this direction have enabled Zhang et al. to conclude that not all errors 

lead to instability of equilibrium [7]. In addition, the authors found that such characteristics 

as the accuracy of activity mode recognition and error rate may not be sufficient for a real 

estimation of the recognition algorithm potential. In this regard, they proposed to evaluate 

the quality of recognition algorithms on the time duration and quality of identifying critical 

errors, which seems more reasonable from a functional point of view [7]. After comparing 

the identified critical errors with their effect on the functioning of the auxiliary devices, it 

was found that they depended more on the phases in which the error occurred and on the 

changes in the mechanical work value in the artificial joints associated with these errors. 

In this paper, a reliable method for fast and qualitative recognition of the phase of TFP 

user activity is grounded based on the features of Hu’s moment invariants [8]. Its use in the 

ICS of powered TFP, equipped with wearable IMUs and pressure sensors, will minimize 

the time of recognition of intentions and critical errors contributing to the loss of user 

balance during walking, thus increasing its safety.     
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In addition to providing security, the qualitative recognition of the activity phase in IS 

is important for the reliable determination of the boundary conditions of the problem of 

planning the bio-like movements of TFP elements in SS [1]. It is known that most ICS to 

achieve these goals use information about the detected activity in HLC mode and the 

current state of the device determined using sensors installed in the device or directly in the 

user [4]. But such an approach does not allow direct solving of the problem of planning 

synergetically optimal (bio-like) motions, even under condition of qualitative recognition of 

the activity mode because it does not provide information about the time remaining before 

the end of this activity mode [1]. Consequently, the use of the fast phase activity recognition 

algorithm in IS will allow increasing the quality of planning the movements of TFP 

elements not only for realization of typical periodic modes of activity but also in the 

process of volitional control of powered TFP.   

2.  MATERIALS AND METHODS 

The "ideal" powered TFP should help the user make many possible moves in different 

modes of activity. Such movements as normal walking can be typical for a person, and 

walking on railway sleepers, overcoming an unknown obstacle, etc. can be atypical. The 

ability to perform the full range of possible movements is not available to every healthy 

person and, especially, not to every disabled person. But, as is known, through systematic 

training, a healthy person can always acquire certain skills to perform the necessary 

movements [9]. Theoretically, this is available to every disabled person using TFP with 

advanced ICS. In ICS, the powered TFP should be perceived as one of the subsystems of 

an integral biomechanical system controlled by the central nervous system (CNS). Because 

CNS commands are not directly available for TFP actuators, the ICS must perform a 

number of CNS functions. One such function is to generate and send commands to the TFP 

actuators needed to implement the required motion. But the ICS must first recognize the 

intent of the disabled person, which in fact corresponds to the recognition of CNS signals 

transmitted to the musculoskeletal system. Namely, we can assume that the task of 

recognizing intentions is the key for IS as a part of ICS. 

There are many methods and algorithms for recognizing intentions, modes and 

activity phases that are used in control systems of various auxiliary devices and are 

described in detail in the review [4]. But the work on their improvement continues at the 

present time. We offer a fairly simple and very fast method for recognizing the phase of 

activity, based on the use of reference patterns of activity regimes presented in IS as 

matrices of Hu’s moment invariants. 

2.1. Images of activity modes 

Each of the activity modes of the TFP user can be investigated experimentally and 

presented in the IS database as a set of informative parameters, which can be classified 

as: φH – hip joint angle; φK – knee joint angle; φA – ankle joint angle; yH – position of the 

hip joint relatively ground support; TH, TK, TA – torques in the hip, knee and ankle joints, 

respectively; VGRF – vertical ground reaction force; HGRF – horizontal ground reaction 

force etc. But at the moment the question of which of these parameters are independent 

remains open. At the same time, it can be argued that the relationships between the above 

and other parameters of the state are in most cases nonlinear. Therefore, the experimental 
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set of all possible parameters, measured at some phase in an arbitrary mode of activity, 

can be considered unique. In other words, informative parameters, which can be dependent 

on a certain mode of activity, can be considered independent of the set of possible modes of 

activity. Consequently, a certain point ω in the n-dimensional parametric activity space Ω 

can be represented by a set of coordinates pijk, k=1,…,n:  ωij ={pij1, pij2, …,pijn}, where n is 

the number of received informative state parameters; i is the phase number corresponding to 

the activity mode with the number of j; p is a parameter identifier. 

In order to uniquely represent the point ω in n-dimensional space, in addition to the 

independence of n parameters, it is necessary that the space itself satisfies the completeness 

condition [10]. But in practice such a representation is impossible because up to the 

present time, a complete set of independent parameters that uniquely determine human 

activity is unknown. This indicates that a certain point ω can theoretically represent an 

infinite set of states (phases) corresponding to an infinite set of activity modes in space Ω. 
One approach that makes it possible to reduce the degree of uncertainty in the activity 

phase is to localize the space of interest Ω. In other words, if only one, for example, level 
normal walking is tested, instead of all possible modes of activity, then the probability that 
two or more phases will be represented by the same set of parameters will be extremely 
low. But an increase in the area under study, by including other modes of activity, will 
inevitably lead to an increase in the probability of the emergence of additional states 
corresponding to the same set of informative parameters if their number does not correspond 
to the condition of completeness of the activity space. 

Given the conditions noted above, suppose that the activity phase of the user's TFP is 

uniquely determined by a set of four informative parameters: φH, φK, φA, VGRF, which 

are assumed to be conditionally independent. Then an arbitrary point ω in a 4-dimensional 

parametric space is represented as follows: ωij={φijH, φijK, φijA, VGRFij}. The set of all 

admissible points ωij defines a bounded activity space, which is the union of subspaces of 

activity modes , which is a union of subspaces activity modes j, j=1,…,s, i.е.: 

 = 1  2  ...s.  

Having located informative parameters in the lexicographic sequence: φH  φK   φA 

 VGRF, and normalizing them so that 
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VGRF , are the modules of their maximum possible values, we can obtain the image of 

point ωij. Then the set of such images arranged in a given order so that 0 1 2 ... N, 

will represent the image of activity mode j. Finally, the combining the s images obtained in 

this way gives a complete image of the limited activity space  of a specific TFP user. 

The images of the activity phases, activity modes and space of potentially possible 
human activity can be obtained experimentally and are presented graphically for clarity. 
As an example, Fig. 1 shows charts of the change in the normalized informative parameters 

for the three typical activity modes: level normal walking (1), ascending the stairs (2) 

and descending the stairs (3), which we obtained as a result of processing information 
from IMU-sensors installed on the thigh, shin and foot and pressure sensors installed in 
the sole of the shoe of three adult healthy men aged 22, 23 and 24 years. Elementary 
analysis shows that these charts are in general similar to those that are currently available 
in many literary sources. 
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         Level normal walking       Ascending the stairs         Descending the stairs 

         
       a)  

         
       b)  

          
       c)  

         
     d) 

Fig. 1 Parameters changing at different activity modes: a) Hip joint angle; b) Knee joint 

angle; c) Ankle joint angle; d) VGRF 

Figs. 2, 3 and 4 show graphical images of the activity modes formed for 20 phases in 

each of the above modes of activity: Ω1, Ω2 and Ω3, respectively. It is easy to see that the 

graphical image of each phase (ωij) is practically different from all others, which confirms 

its uniqueness in studied activity space  = 1  2  3. Therefore, the problem of 

recognizing the phase of the activity of the TFP user can be reduced to the problem of 

pattern recognition, choosing the proper method, which provides high recognition quality 
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in combination with high speed. From this point of view, the methods of pattern recognition, 

based on the use of Hu’s moment invariants [8, 10-13], are of interest. 

 
 0) 1) 2) 3) 

 
 4) 5) 6) 7) 

 
 8) 9) 10) 11) 

 
 12) 13) 14) 15) 

 
 16) 17) 18) 19) 

Fig. 2 Image of the level normal walking  
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 0) 1) 2) 3) 

 
 4) 5) 6) 7) 

 
 8) 9) 10) 11) 

 
 12) 13) 14) 15) 

 
 16) 17) 18) 19) 

Fig. 3 Image of ascending the stairs  
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 8) 9) 10) 11) 

 
 12) 13) 14) 15) 

 
 16) 17) 18) 19) 

Fig. 4 Image of descending the stairs  



 Fast User Activity Phase Recognition for the Safety of Transfemoral Prosthesis Control  143 

2.2. Hu’s moment invariants 

Suppose that there is a reference activity space   and available for research, which 

represents all the potentially possible activity modes of the TFP user. But even in this 

case, it is possible to estimate the belonging of the real activity phase to a certain region 

of space   only approximately. This is due to the variability of the user's and environmental 

conditions, as well as the systematic and random errors of the real sensory systems. Namely, 

in real conditions, the image of the activity phase the TFP user, determined in accordance with 

the information coming from the sensors, each time will differ from the reference image. 

In the general case, the relationship between reference f(Ω) and observed g(Ω) image 

can be described, the so-called function of degradation, widely used in the field of image 

recognition [10]: 

                                                                 ( )g D f ,                                                         

where D is some degradation operator. 

Because operator D is unknown or described by a parametric model with unknown 

parameters, the main problem solved in the recognition process is the comparison of  

unknown image f(Ω), observed by measuring image g(Ω), based on a priori information 

on degradation. Its solution can be obtained on the basis of the Hu's moment invariants 

[8], which are very effectively used to recognize images of objects specified as contours 

in the plane by K points Bi={𝑥Bi, 𝑦Bi} [11].  

In the problem of recognizing the activity phase of the TFP user, invariant I can be 

considered as a functional defined in activity space Ω on the set of admissible images of 

phases Ωij that does not change its value under the action of degradation operator D, that 

is, it satisfies the condition 

 ( ) [ ( )]I f I D f . (1) 

Taking into account the above discrepancies and limitations, in practice the condition 

(1) can be considered fulfilled if I(f) does not differ significantly from I[D(f)] and each of 

these invariants belongs to the same class. In order to successfully solve the recognition 

problem, it is necessary that the values of I for the phase images belonging to different 

classes differ significantly from each other. As a rule, such discrimination of classes with 

the help of a single invariant cannot be performed. To fulfill this condition, we must use 

the set of invariants Il, l=1,2,…, which can be obtained at the conditions of the problem 

under consideration. 

Thus, for example, for each image of phase ωij, the seven Hu's moments that are 

invariant to the full group of affine transformations can be calculated [8]: 
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    are the central moments of order 𝑝 + 𝑞 ≤ 3; 

0220  r ; MS, s = 1,…,7 are the moments invariant to the operations of rotation, 

transfer, and mirror mapping, determined by expressions:   
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As an example, Table 1 gives the matrix of Hu's moment invariants (2) calculated for 

level normal walking. Matrices characterizing other modes of activity can also be 

represented in a similar way. The combination of such matrices provides another way of 

representing the image of the limited space of the potential activity of the TFP user. This 

space can be obtained as a result of experimental studies of the motor activity of healthy 

people, therefore, in a certain sense it can be considered a reference one. But in the 

process of training the user to walk with TFP, the activity space can be modified to suit 

its individual characteristics.     

3. RESULTS 

To ensure safety and obtain initial data for planning the optimal motions of the 

elements of the powered TFP, it is sufficient to relate with a high degree of reliability the 

current state of the user to a certain discrete image of phase ωij in the activity mode space 

Ωj, so that ωi-1j  ωij  ωi+1j, given the errors of the state evaluation with the help of a 

sensory system. 

Suppose that each of the sensors used to identify the informative parameters of the user 

state gives an approximate value of the parameter for the current state: 
maxmin

cskcskcsk ppp  . In 

addition, taking into account the fact that the typical activity modes Ωj of different users are 

similar, we will assume that the rationing of informative parameters allows us to evaluate 

their values regardless of anthropometric data and the user's physical states. This allows 

us to calculate the vectors of the Hu's moment invariants for possible mean and boundary 

values of the parameters, i.e. for 
mid

ijkp , 
min

ijkp ,  
max

ijkp , which are determined as a result of the 

experiments. The components of such vectors are generalized coordinates of the space of 

invariants J7 defining in it some point  Hij = {Iijs, s = 1,...,7}. 

Points 
mid

ijH , 
min

ijH , 
max

ijH  generated by parameters 
mid

ijkp , 
min

ijkp and 
max

ijkp   respectively, 

characterize the same image of activity phase ωij and can be considered as homogeneous 

elements of space J7 forming cluster Clij  J7. The volume and location of Clij in J7 are 

implicitly determined by the boundary values of the informative parameters of phase image 

ωij. Therefore, we assume that all the points Hij generated by the values of informative 

parameters 
maxmin

ijkijkijk ppp   belong to cluster Clij whose center is point mid

ijH . 
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The space of invariants J7 is metrical, therefore in it the metric can be given 

 2( , ) ( )a b

S

S

d H H d I  , (3) 

where d(IS) is the difference of the coordinates with number s of points Hb and Ha. 

Table 1 Hu's moment invariants for 20 phases of level normal walking  

Phase No.  I1 I2 I3 I4 I5 I6 I7 

0 4.519 0.929                   0.782e-2 0.101e-2 -1.396e-6 -0.739e-3  2.609e-6 

1 4.543 0.882                   0.373e-2 0.495e-3 -6.637e-7 -0.457e-3  1.105e-7 

2 4.611 0.776 0.169e-2 0.340e-3  8.553e-8 -0.207e-3 -2.914e-7 

3 4.598 0.794                   0.954e-3 0.182e-3  7.231e-8 -0.128e-4 -2.409e-8 

4 4.548 0.871                   0.944e-2             0.566e-4 -9.382e-9 0.529e-4 -4.076e-9 

5 4.526 0.906 0.167e-2 0.152e-3  4.394e-9 -0.600e-4  8.116e-8 

6 4.529 0.902                   0.465e-2 0.463e-3 -2.843e-7 -0.372e-3  6.473e-7 

7 4.548                    0.871                   0.944e-2 0.951e-3 -2.090e-6 -0.845e-3  1.974e-6 

8 4.585 0.817 0.158e-1 0.157e-2 -6.600e-6 -0.140e-2  4.298e-7 

9 4.627 0.758                   0.224e-1 0.216e-2 -1.328e-5 -0.189e-2  7.082e-6 

10 4.599 0.797                 0.218e-1 0.226e-2 -1.532e-5 -0.203e-2  4.157e-6 

11 4.508                   0.937 0.102e-1 0.116e-2 -3.964e-6 -0.111e-2 -5.757e-7 

12 4.506 0.941                 0.105e-2 0.959e-4 -1.202e-8 -0.801e-4 -2.931e-8 

13 4.594                   0.806                 0.125e-2 0.173e-3  4.013e-8 -0.622e-4  8.811e-8 

14 4.682 0.691 0.510e-2 0.640e-3  2.039e-7 -0.239e-3  1.300e-6 

15 4.645                   0.748                 0.383e-2 0.676e-3  2.501e-7 -0.239e-3  1.230e-6 

16 4.586 0.841                 0.146e-2 0.293e-3  4.517e-8 -0.107e-3  2.173e-7 

17 4.559                   0.884 0.135e-2 0.206e-3 -1.891e-8 -0.105e-3  1.161e-7 

18 4.541 0.908                   0.282e-2   0.376e-3 -1.564e-7 -0.233e-3  3.723e-7 

19 4.526                   0.925                  0.508e-2 0.668e-3 -5.598e-7 -0.452e-3  1.146e-6 

The metric (3) makes it possible to measure distance 
7

: ( , )b a b

a
R H H J   including 

distance ij

CSR  between an arbitrary point HCS, characterizing the current state of the user, 

and cluster center ij

mid

ij ClH  . Thus, this distance can serve as a measure that allows us to 

judge whether point HCS belongs to cluster Clij. In fact, this means that the current state of 

the user described by point HCS corresponds to activity phase ωij determined by cluster 

Clij if 
ij

CSR  has a minimum value among all distances from this point to the cluster centers 

included in J7. If it is not possible to determine the minimum distance 
ij

CSR , it can be 

assumed that the user makes a move that is not represented in IS as the typical mode of 

activity Ωj. In this case, the HLC takes the MLC to volitional control. 

Thus, to recognize the activity phase of the TFP user, you must perform the following 

steps, i. e. you must: 

 generate a database of reference images of i phases for each of j possible modes of 

activity in the form of a set of vectors Hij = {IijS, s = 1,...,7} representing cluster 

centers Clij  J7; 

 determine the vector of informative parameters of the current state of the user 

PCS = {csH, csK, csA, VGRFcs} and calculate the corresponding values of the 

generalized coordinates of invariant space J7 : Hcs = {IcsS, s = 1,...,7}; 
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 calculate distances 
ij

csR  between points Hcs and Hij : Clij  J7  and determine the 

smallest among them; and, 

 decide on whether the current state belongs to cluster Clij and compare this state to 

activity phase ωij. 

However, one should take into account the fact that space J7 is extremely inhomogeneous 

and the generalized coordinates of the clusters centers characterizing the phases of 

activity differ significantly from one another (see the data in Table 1). 

Therefore, the generalized coordinates of vectors Hij and Hcs, which have significantly 

smaller values compared to the others, will practically have no effect on  distance 
ij

csR  

between the points in J7. At the same time, such generalized coordinates are very sensitive 

to possible errors of the sensor system [11] and, therefore, are effective for clarifying the 

belonging of  point Hcs to a certain cluster Clij. 

Given the above features, for the preliminary estimation of the belonging point Hcs to 

cluster Clij mapping space J4 described by generalized coordinates {I1,I2,I3,I4} can be 

chosen. In the case of obtaining obvious minimum distance 
ij

csR   in J4, at this stage it is 

possible to decide on the belonging point Hcs to cluster  Clij and, consequently, about the 

correspondence of the current user state to activity phase ωij. If in the study of this space 

several small distances close to each other are obtained:,
ji

csR )1( 
, …, 

)1( ji

csR ,…, estimating 

the belonging of point Hcs to cluster Clij should be clarified by performing an analysis of 

mapping space J3  described using generalized coordinates {I5,I6,I7}. In cases where it is 

impossible to determine explicit minimum distance 
ij

csR , a decision is made to switch the 

MLC to volitional control. 

As an example, Fig. 5a shows clusters in hyperplane 3  of the space of invariants 4J , 

which is described by generalized coordinates {I2,I3,I4}. 

Each cluster in P3 is represented by three points the coordinates of which are 

calculated using parameters
mid

ijkp , 
min

ijkp  and 
max

ijkp   at the activity phases of 0, 4, 9, 14, 19 

corresponding to activity level Ω1 (level normal walking). 

The visual analysis in Fig. 5a shows that clusters Cl01 and Cl191 arranged in P3 

hyperplane are relatively close to each other. Therefore, distances 01

csR and 191

csR  calculated 

from the centers of these clusters to some point Hcs may differ slightly. In such cases, it is 

expedient to refine the decision on the classification of point Hcs and its correspondence 

to a certain phase of activity from the analysis of mapping space J3, described by 

generalized coordinates {I5,I6,I7}. A fragment of this space, including clusters Cl01 and 

Cl191, is shown in Fig. 5b. 

We will illustrate the process of recognizing the activity phase using a simple 

example. Suppose that as a result of the experiments a database of reference patterns of 

activity modes Ω1, Ω2 and Ω3 is formed and the current state of the TFP user is measured, 

characterized by the following normalized informative parameters: H = 0.0739557, 

K = 0.106382, A = 0.414937, VGRF = 0.623085. Consequently, the image of the current 

phase of activity cs  is a vector: 

 {0.0739557,0.106382,0.414937,0.623085},
cs

   

to which point Hcs corresponds in space J7: 
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                                   a)                                                                           b) 

Fig. 5 Clusters in the activity mode 1 (level normal walking): a) in hyperplane P3 with 

generalized coordinates  {I2,I3,I4} at the activity phases 0, 4, 9, 14, 19; b) in space 

J3 with generalized coordinates {I5,I6,I7} at the activity phases 0, 19  

Fig. 6 shows distances diagrams ij

csR  from point Hcs to cluster centers Clij, (i = 0,2,...20; 

j = 1,2,3) in hyperplane P3. 

 

 
                         a)                                              b)                                              c) 

Fig. 6 Distances ij

csR  from point Hcs to centers of clusters Clij in hyperplane P3 for 

i = 0,2,…,20: a) 1i

csR ; b) 2i

csR ; c) 3i

csR  

Elementary analysis of the charts in Fig. 6 suggests that in the example considered, it 

is impossible to uniquely determine the smallest distance 
minij

csR  in hyperplane P3, if we 

consider that: the base of reference patterns of activity regimes is formed on the basis of 

the average data obtained for discrete phases of activity; the current phase of the activity 



148 A. POLIAKOV, V. PAKHALIUK  

of the TFP user may differ from the discrete phase represented in the base of the 

reference images of the activity modes; the sensor system approximately evaluates the 

current state of the TFP user. 

Therefore, to make a final decision on whether the current phase of activity belongs to 

a cluster, it is advisable to perform an analysis of  space J3, choosing for this a number of 

clusters, the distances from the centers of which to point Hcs in hyperplane P3 are 

relatively small. 

In this example, 5 clusters were selected for each activity mode Clij : j = 1: i = 1, 5, 6, 

7, 18; j = 2: i = 5, 6, 8, 9, 13; j = 3: i = 5, 6, 7, 8, 15. The charts of the distances from 

point Hcs to centers Clij in space  J3 are shown in Fig. 7. Their analysis allows us to 

conclude that the vector of informative parameters used in this example does not allow 

one to uniquely match point Hcs to a single cluster since the distances from this point to 

the centers of the nearest clusters in space J3 are practically equal to each other: 
6371

cscs RR  . 

Such a result can be obtained only in the cases when the image of the current activity 

phase and the images of the activity phases closest to it differ slightly from each other. 

Comparing the images of activity phases 6371,, cs , it is easy to see that this is the case 

under the conditions of the example in question (see Fig. 8).    

 
                             a)                                             b)                                             c) 

Fig. 7 Distances from point Hcs to centers of clusters in space J3: a) ;18,7,6,5,1,1 iRi

cs  

b) ;13,9,8,6,5,2 iRi

cs c) 15,8,7,6,5,3 iRi

cs   

      
                          a)                                               b)                                           c) 

Fig. 8 Images of user activity phases: a) 71; b) cs; c) 63 
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4.  DISCUSSION 

The method of recognition, grounded in this work, is based on the representation of 

the activity phase of the TFP user in the form of an artificially created image. Nevertheless, 

such an artificial image roughly describes some user state in the space of all possible 

states and can be used to compare it to a certain phase of activity. It is assumed that the 

image of each phase is unique and can be represented in space J7 in the form of a vector, 

the components of which are Hu's moment invariants. 

If we take into account that the artificial images of the activity phases are not subject 

to displacements, reflections and rotations in space and that they change their shape only 

by changing the vertical component of the image, then the set of all Hu's moment invariants 

turns out to be redundant for solving the problem of their recognition. But this makes it 

possible to perform the stratification of space J7 into two subspaces J4 and J3, in each of 

which the recognition of the phase images can be performed independently. In this case, the 

recognition results in space J4 and, in particular, in its hyperplane P3, are more significant, 

because invariants I2,I3,I4 are less sensitive to measurement errors of informative parameters 

than invariants I5,I6,I7 [11]. In this connection, subspace J3 in this method is used only if it is 

necessary to make an accurate decision about the correspondence of the current state of the 

TFP user to a certain activity phase. 

The most important advantage of the recognition algorithm proposed in this paper in 

comparison with others is the time of its realization, which, due to the use of the minimum 

number of arithmetic and logical operations, is significantly smaller compared to the 

"critical time" of recognition. This makes it possible to increase the time necessary for 

making a reasonable decision in IS for a further mode of traffic, which in turn increases 

the safety of the TFP user. 

It should also be noted that, in comparison with neuronet methods successfully used 

both in the practice of pattern recognition and in the practice of recognizing the activity 

modes, the proposed recognition algorithm does not require a learning procedure. For its 

practical implementation, only a lot of coordinates of artificially created images are 

required, which turn out to be similar for the majority of healthy people belonging to a 

certain group of physical activity. Moreover, even if the current user state is determined 

by the TFP sensor system with some errors, the image of this state is close in shape to the 

reference image. In fact, this makes it possible to determine with a high degree of 

reliability the belonging of the current state to a certain area of the user-implemented 

activity mode and reduces the probability of generating in SS driving moments in TFP 

hinges that can lead to "critical errors".   

The method was tested on a set of vectors { , 1,...,4} { , , , }
k H K A

k VGRF       , 

whose coordinates were chosen randomly within intervals 
maxmin

k

mid

kk   at a given 

phase of a certain reference activity mode. In this case, the given phase could differ from 

the discrete phase list in the activity mode, i.e.: 

  *

*

( 1)
: , 0,2,...,20; 0 1.0

ij i jI j
i i i i    


        .  

In most cases, the classification of the "current state" given in this way when using 

this method was correctly executed. In some test cases, one of which was described 

earlier, ambiguous solutions of the recognition problem were obtained, which did not 

allow attributing the "current state" to a certain phase of activity. It can be assumed that 

for some values of the coordinates of user state vectors ω, even if the conditions 
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maxmin

k

mid

kk   are satisfied, an incorrect classification of the "current state" is possible, 

but in our test studies such solutions were not obtained. It should be noted that in many 

cases, in which the boundary values of the informative parameters were chosen as the 

coordinates of the state vectors, it was impossible to make an unambiguous decision about 

the classification of the "current state". 

The results of the tests showed that the proposed method is not inferior to neural 

network and neural fuzzy methods in efficiency, but it requires significantly less computer 

time to solve the problems of phase activity recognition. Its effectiveness increases 

significantly when recognizing the phases of specific activity modes implemented by the 

TFP user at a given time since the difference in phase images within a particular mode is 

more noticeable than in the entire activity space available to the user.  

5.  CONCLUSION AND OUTLOOK 

In this paper, the method for fast recognition of the activity phase of the TFP user is 

based on the properties of the Hu's moment invariants. Its use in ISC will significantly 

reduce the time of phase recognition and minimize critical errors that contribute to the 

loss of equilibrium the user with TFP in different modes of activity. The evaluation of the 

probability of successful phase recognition based on this method is the subject of a separate 

study, so this issue in the study was not considered. At the same time, it should be noted 

that we performed a series of numerical experiments in which it was assumed that the data 

registered using sensors characterizing the value of a particular parameter keep normal 

distribution laws with mathematical expectations corresponding to the reference values of 

the parameters accepted as informative for different dispersion values. As it turned out, in 

most cases, the activity mode corresponding to the experimental data was recognized 

correctly. However, there were also incorrectly recognized regimes, especially in the cases 

where the variances of the distribution laws were chosen as large enough. This suggests that 

the probability of correct recognition of the activity mode using the proposed method 

increases with increasing accuracy of the recorded parameters.      

The method can be used to recognize the phase in the entire activity space that is 

accessible to a specific user. At the same time, the activity mode realized by the user at a 

given time is also recognized. However, in such an option, the possibility of an incorrect 

classification of the current state turns out the greatest. This method is more effective when 

determining the phase at a given mode of activity, because the images of the phases in this 

case are more different from each other. In this connection, in ICS algorithms, it is advisable 

to use activity mode recognition subsystems based, for example, on long short-term memory 

(LSTM) networks, which allow using time dependences of data streams of sensors [14]. 

However, it can be assumed that the modification of our approach to the construction of 

artificial images of phases can lead to the appearance of more noticeable differences in them, 

which in turn will significantly increase the reliability of their recognition, including in the 

entire activity space. 

In conclusion, it should be noted that this paper presents only the mathematical side of 

the method of recognizing the modes and phases of patients' physical activity when walking 

with the TFP. At the same time, we assumed that the sensors, controllers, and software in the 

ICS of a real prosthesis will be similar to those commonly used in prosthetic control systems 

and described in detail in the scientific literature [4]. That is, the time required to register, 
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filter and classify the values of informative parameters will correspond to that observed in 

existing control systems. This suggests that the proposed method is characterized by high 

speed in relation to generally accepted ones at present, because the number of mathematical 

operations necessary for its implementation is much smaller than in known methods.       
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