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Abstract. In the present paper a numerical implementation technique for the 

transformations of the Method of Dimensionality Reduction (MDR) is described. The 

MDR has become, in the past few years, a standard tool in contact mechanics for solving 

axially-symmetric contacts. The numerical implementation of the integral 

transformations of the MDR can be performed in several different ways. In this study, the 

focus is on a simple and robust algorithm on the uniform grid using integration by parts, 

a central difference scheme to obtain the derivatives, and a trapezoidal rule to perform 

the summation. The results are compared to the analytical solutions for the contact of a 

cone and the Hertzian contact. For the tested examples, the proposed method gives more 

accurate results with the same number of discretization points than other tested 

numerical techniques. The implementation method is further tested in a wear simulation 

of a heterogeneous cylinder composed of rings of different material having the same 

elastic properties but different wear coefficients. These discontinuous transitions in the 

material properties are handled well with the proposed method. 
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1. INTRODUCTION 

The Method of Dimensionality Reduction (MDR) is a simple and convenient tool for the 

calculation of contact forces between elastic and viscoelastic bodies. It is particularly easy to 

use for the simulation of axially-symmetric contacts. Since it was first proposed in 2007 [1] 

the MDR has been applied to a wide range of problems [2]. The method maps a given 

three-dimensional contact problem to an equivalent contact problem of a transformed 

indentation profile with a one-dimensional elastic or viscoelastic foundation of independent 

elements. From a numerical perspective, the solution of the contact problem in the 

transformed MDR domain is then trivial due to the decoupled degrees of freedom. A variety 
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of problems can be solved directly in this domain after the initial transformation to the 

equivalent problem was performed (see for example [3]). However, there are other problems 

which require multiple transformations to the MDR domain and back, for example due to a 

continuously changing indentation profile as it appears in wear simulations, see [4-6]. With 

such kinds of problems, the main difficulty in achieving an accurate and efficient numerical 

simulation is the implementation of the MDR transformations. These are given by Abel-like 

integral equations and it is well known that their numerical treatment is challenging [7, 8].  

This work is dedicated to providing a simple and fast numerical method for the 

implementation of the MDR transformations for axially-symmetric contact problems. The 

transformations have an integrable singularity which is handled well with the proposed method. 

The parts of this work are organized as follows: In Section 2, the MDR transformations 

are rewritten using integration by parts to a form which is well suited for numerical 

implementation. In Section 3, this numerical implementation technique is explained in detail. 

Section 4 gives some advice on optimizing the implementation for maximum speed. Section 

5 shows exemplary results of the newly proposed technique and highlights its advantages and 

weaknesses. In Section 6, a small addition to the method is presented to further improve it. In 

Section 7, the accuracy of the introduced numerical method is compared to other known 

implementation techniques which rely on the original form of the transformations. In Section 8, 

an exemplary wear simulation is conducted with the newly introduced technique and compared 

to the results of other numerical implementation methods. A conclusion is presented in 

Section 9. 

This work can be regarded as a small addition to the paper “Method of Dimensionality 

reduction in contact mechanics and friction: A users handbook” [9]. In the following, only 

homogeneous elastic material is considered. However, the MDR is applicable also to gradient 

media [10] and to viscoelastic media [11], which can be treated in a similar manner as 

described in the present paper.  

2. FORMULATION OF THE MDR TRANSFORMATIONS FOR SIMPLE NUMERICAL 

IMPLEMENTATION 

The general MDR procedure is fully described in [9]. Three main transformations occur 

in the method: The transformation of three-dimensional profile f(r) to a one-dimensional 

profile is  
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the transformation of one-dimensional foundation displacement w1D(x) to three-dimensional 

normal surface displacement w(r) is 
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and the transformation of one-dimensional force density q(x) to three-dimensional pressure 

distribution p(r) is 
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The singularity arising at x = r in the numerical summation can be avoided when 

rewriting Eqs. (1), (2) and (3) to 
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using integration by parts. 

The following example shall illustrate a possible numerical implementation of the three 

transformations (4), (5) and (6). 

3. EXEMPLARY NUMERICAL PROCEDURE 

Consider a uniform discretization of r∈ [0,L] and x∈ [0,L] with N points each and the 

same step size 
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so that 
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The first and second derivatives of a discretized indentation profile fn = f(rn) can be 

obtained via central differences: 
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Some care must be taken at the borders. To obtain f1
′
 and f1

′′
 recall that in the present 

framework of the MDR profile f is axially-symmetric and f(0) = 0. Thus, it is 

 1 0f  ,  (11) 

and 
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At the other border the values for fN
′
 and fN

′′
 can remain undetermined. One-dimensional 

profile gk can now be obtained with Eq. (4). It is 
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where tk is the result of the integral in (4). Using the trapezoidal rule, it is 
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Again, some care must be taken at the borders. To obtain g1, recall that in the framework of 

the MDR it is g(0) = 0. Thus, it is 

 
1 0g  .  (15) 

At the other border the value for gN can remain undetermined. 

In a quite similar fashion, normal surface displacement wn can be obtained: The first 

derivative in Eq. (5) can be obtained as in Eq. (9) using central differences, and the integral 

can be calculated as in Eq. (14) using the trapezoidal rule. Subsequent smoothing of wn 

with wn := (wn–1 + wn + wn+1) / 3 increases the accuracy of wn. 

The third transformation to obtain pn is again similar to the first and second transformation. 

The derivatives in Eq. (6) can once more be obtained as in Eqs. (9) and (10) using central 

differences. Then it is 
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where sn is the result of the integral in (6). Using the trapezoidal rule, it is 
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Note that at kinks of q the term qk
′′
h = (qk+1 – 2qk + qk–1) / h converges to finite values for 

decreasing step-sizes h. Note also that the summation in Eq. (17) stops at N – 2 because qN
′′
 

and qN–1
′′
 are undetermined. This is not problematic because in the framework of the MDR 

it is q
′′
 = 0 for sufficiently large x in any way (x > a, where a is the contact radius). Once 

again, some care must be taken at the borders. One way to approximate p1 is via Taylor 

series. A first order expansion yields simply 
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At the other border the values for pN and pN–1 remain undetermined. Again, this is not 

problematic as long as it is ensured that these last points lie outside the contact area. Then 

they can simply be set to 

 
1 0N Np p   .  (19) 

4. PERFORMANCE 

Often, the MDR transformations need to be performed repeatedly. One example is that 

of wear simulations where the transformations (1) and (3) need to be performed many 

times after each other for a changing indentation profile. In such cases, consider optimizing 

the implementation of the MDR transformations for maximum speed.  

For example, when using the transformation technique presented in the example above, 

note that the summation in Eqs. (13) and (16) can be regarded as a matrix vector product in 

which the matrix is a kernel which is independent of the indentation profile and can be 

predefined. This enables full vectorization of the transformations when they are used 

repeatedly for changing indentation profiles.  

Also consider the possibility of calculating the derivatives in the transformations such 

as (9) and (10) via matrix vector multiplication using predefined sparse matrices. 

5. EXEMPLARY RESULTS 

Fig. 1 shows the results of the previously described implementation technique for a 

conic and parabolic indenter at an exemplary indentation depth d. It becomes apparent that 

already for as few as N = 51 discretization points a fairly good approximation of the 

analytical solutions can be achieved.  

The maximum error of gk, wn, and pn with respect to the analytical solutions for g, w, 

and p decreases when the number of discretization points N is increased as can be seen in 

Fig. 2. 

For most N, the maximum error of pressure distribution pn (a thin grey oscillating line 

in Fig. 2) is given by the error at the very last discretization point lying within the contact 

area (highlighted with a star in Fig. 1). Index n of this particular point shall be denoted with 

n = s. At all other points a much better accuracy is achieved: If point s would be 

disregarded in the assessment of the maximum error, the upper limit of the grey oscillating 

line would move down from the dotted line to the dashed one. 

In the exemplary case of N = 51 which is displayed in Fig. 1 this relatively high error of 

pn at the point n = s does not immediately become apparent to the viewer due to the large 

slope of p at the end of the contact area which puts the numerical value close to the 

analytical curve even if there is a relatively high error. 
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 a) b) 

Fig. 1 Results of the MDR transformations carried out with the numerical procedure described 

above for N = 51 discretization points, exemplary input parameters of L = 1, E
*
 = 1, 

d = 0.3 and an exemplary conic indenter (left) given with f(r) = r tan(π/8) and an 

exemplary parabolic indenter (right) given with f(r) = r
2
/2. The pressure which is 

obtained at last discretization point within the contact area in this example is highlighted 

with a star 

 

  
 a) b) 

Fig. 2 Maximum error of gk, wn , and pn for a discretization of N = 51, 52, 53 … 5000, 

shown for the exemplary inputs L = 1, E
*
 = 1, d = 0.3 and the exemplary conic 

indenter (left) given with f(r) = r tan(π/8) and the exemplary parabolic indenter 

(right) given with f(r) = r
2
/2. The oscillating thin grey line shows the maximum 

error of pn. Its upper limit is marked with the dotted black line. Neglecting the error 

of  pn at the point n = s in the assessment of the maximum error would cause a much 

lower upper limit which is marked with the dashed black line. Note also that the 

maximum error of gk for the exemplary conic indenter lies at around 10
-15

 and is 

thus outside the chosen region displayed in the figure 
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6. ADJUSTMENTS 

If needed, one possible way of obtaining better results for ps is by inserting one or more 

discretization points on a finer grid after point s so that it is no longer the last point in the 

contact area. 

For example, one can use a technique such as the one illustrated in Fig. 3. Here, a new 

discretization point is added right at contact radius a, which is approximated from gk with a 

simple linear interpolation 
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another discretization point is added in between rs and a at rs + (a – rs) / 2, and at both ends 

two more points are added, one at rs – (a – rs) / 2 and one at a + (a – rs) / 2. The values for 

the one-dimensional profile are interpolated linearly from gk to these points. The resulting 

five equally spaced points are marked with crosses in Fig. 3.  

 

Fig. 3 Detailed view of the graph in Fig. 1b, here with additional discretization points at 

the end of the contact area which are marked with black crosses 

The desired value for the pressure at point s can now be calculated as in Eqs. (16) and 

(17) using a new refined grid. The three inner points are used for the summation while the 

two additional outer points are only there to obtain the derivatives with the central 

difference scheme. 

Note that the above method of obtaining a more accurate value for ps does not practically 

increase the computational time. It is a simple addition of three values, and the three linear 

interpolations which are needed are also given with small algebraic equations. Compared to 

the time for the main transformation steps, the time for these additional steps is negligible. 

However, the small correction reduces the maximum error norm (see Fig. 4).  

At the end of this section it shall be noted that higher order methods for the calculation 

of the derivatives and for the numerical integration do not necessarily lead to more accurate 

results. It is observed that the use of more neighboring points than in Eqs. (9) and (10) for 

calculating the derivatives tends to decrease the accuracy of the transformations for the 

contact of the cone and the Hertzian contact. It was also observed that using Simpson’s rule 

to perform the summation in Eqs. (13) and (16) instead of the trapezoidal rule decreases the 

accuracy of the transformations.  
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 a) b) 

Fig. 4 Maximum error of gk, wn , and pn as displayed in Fig. 2 here however ps is corrected with 

the technique explained above. The old upper limit of the maximum error of pn from 

Fig. 2 is shown with the grey dotted line. The new upper limit of the maximum error of 

pn after the correction of ps is shown with the black dotted line. In the case of the cone 

(a) this upper limit falls onto the dashed line marking the maximum error of pn when the 

point s is disregarded 

7. COMPARISON WITH OTHER NUMERICAL TECHNIQUES 

Recall that at the beginning of the numerical scheme presented above the MDR 

transformations were rewritten using integration by parts. However, the MDR transformations 

can also be implemented numerically using their original form of Eqs. (1), (2) and (3) without 

rewriting them to Eqs. (4), (5) and (6). Here, two such methods which will be called 

“Method I” and “Method II” shall briefly be discussed. Their accuracy will be compared to the 

partial integration methods introduced above, which are referred to as “Method III” and 

“Method IV” in the following. 

Method I – insertion of h at singularity:  

One technique for the implementation of the transformations using their original form of 

Eqs. (1), (2) and (3) is to insert a single increment h at the singularity where x = r, as in 
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where the first derivative is computed as in Eq. (9) using central differences. This method, 

however, delivers only very poor results. As can be seen in Fig. 5, the technique requires a 

number of discretization points which is several orders of magnitude higher in order to 

reach the accuracy which is achieved by the other implementation techniques. This method 

is not recommended. 
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Method II – implementation of the kernel with its antiderivative: 

A far better technique for the implementation of the transformations using their original 

form is to implement the kernel of the transformation using its antiderivative. For the 

transformation to gk, this translates to 
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and for the transformation to pn, one can use 
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The first derivatives can once more be obtained via central differences. As can be seen in Fig. 

5, the Method II provides a much better accuracy than Method I. 

Method III – partial integration method: 

This technique was described in great detail in the first sections of this work. Here the 

singularity at x = r is avoided through partial integration of the transformations. This leads to 

alternative formulations of the transformations in which the second derivative of the 

three-dimensional indentation profile and the deformed elastic foundation occur. Thus, 

singularities now occur at kinks of these profiles; however, they disappear in the numerical 

integration, similarly to Method II where small increment h cancels out in Eqs. (22) and (23).  

Recall, however, that the singularity which is overcome in Method II occurs in the kernel. 

Method III, however, overcomes singularities which may occur through the shape of the 

indentation profile or the deformed one-dimensional foundation.  

Also, the singularity in Method II always influences the transformation values at all 

discretization points whereas in Method III the singularities through kinks may leave 

transformation values at some discretization points uninfluenced. 

In Fig. 5 it can be seen that with Method III the number of discretization points can 

substantially be reduced to achieve the same accuracy as in Method II. However, it stands 

out that the maximum error in Method III is still fairly close to the maximum error in 

Method II. This relatively high maximum error of Method III is generally attained at the 

end of the contact area. 

Method IV – partial integration method with small adjustment: 

The previously described relatively high maximum error of Method III is reduced in 

Method IV. The simple adjustment through the insertion of an additional discretization point at 

the end of the contact area is described in Section 6 above. In Fig. 5 it can be seen that with the 

Method IV the number of discretization points can further be reduced to achieve a certain 

desired accuracy. 
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 a) b) 

Fig. 5 Upper limits of the maximum absolute error of pn (left graph a) and the mean absolute 

error of pn (right graph b) compared for the different numerical methods: Method I – 

insertion of h at singularity, Method II – implementation of the kernel with its 

antiderivative, Method III – partial integration method (technique from this paper), 

Method IV – partial integration method with small adjustment (refined technique from 

this paper). As before, the curves are displayed for the exemplary inputs of L = 1, E
*
 = 1, 

d = 0.3 and here only for the exemplary parabolic indenter given with f(r) = r
2
/2 

8. EXEMPLARY WEAR SIMULATION 

Apart from a high accuracy, Method III and Method IV may also show an advantage 

when they are used multiple times on a changing indentation profile, such as in wear 

simulations. As an example, consider a heterogeneous cylinder which is pressed onto an 

elastic half-space with normal force FN and moves tangentially with velocity v0. The 

cylinder shall be composed of rings of different material having the same elastic properties 

but different wear coefficients k1 and k2 (see Fig. 6a). This setup has recently been studied 

with the MDR by Li et al. [6] using Archard’s law [12] 

 N
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to model the change of the indentation profile due to wear. Therein, kwear(r) and σ0(r) are 

wear coefficient, that is, hardness, and with k(r) = kwear(r) / σ0(r) the linear wear is 

 0( ) ( ) ( )f r k r p r v t   .  (25) 

In the following, the same procedure is adopted. It shows that the numerical method 

which is used for the MDR transformations has a significant impact on the quality of the 

simulation results.  

The limiting profile and pressure reached after a long enough wear process are both 

displayed in Fig. 6b. Profile f is normalized with initial indentation depth d0 = FN / (2aE
*
) 

and the pressure distribution is normalized with p0 = FN / (2πa
2
). As can be seen in Fig. 6b, 

the use of Method II to perform the transformations leads to an oscillating error in the 

results for both the profile and the pressure (a thin grey jagged line). This error does not 

occur when Method III or Method IV are used (a smooth bold line). For an increasing 
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number of discretization points or smaller time steps in the wear simulation the oscillating 

error which occurs with Method II does not vanish although it can be smoothed out in the 

post-processing. Method III and IV, however, deliver the undistorted results straight away 

without the requirement for subsequent corrections.  

Note that these raw results of the exemplary simulation obtained using Method III and 

Method IV also reproduce results obtained for validation purposes in [6] with the 

Boundary Element Method (BEM) [13]. 

              
 a) b) 

Fig. 6 Left graph a): A heterogeneous cylinder composed of rings of different material having 

the same elastic properties but different wear coefficients k1 and k2 is pressed onto an 

elastic half-space with the normal force FN and moves tangentially with velocity v0. 

Right graph b): Simulation results for the limiting profile and pressure after a long 

enough running-in process as obtained with Method II (a thin grey jagged line), and the 

techniques from this paper – Method III and Method IV (a smooth bold line) with N = 

201 discretization points and k2/k1 = 10  

9. CONCLUSION 

A simple implementation technique for the MDR transformations is presented in this 

work. It relies on integration by parts of the transformations, a central difference scheme to 

obtain the derivatives, and the trapezoidal rule to perform the summation.  

It is shown that the results of the method for the contact of a cone and the Hertzian 

contact converge to the corresponding analytical solutions for an increasing number of 

discretization points. Therein, the highest error occurs at the border of the contact area. A 

small refinement to the numerical method has been presented to reduce this error. 

The introduced method and its refinement are then compared to other numerical 

techniques which rely on the original form of the transformations. For the tested examples, 

the newly introduced method and its refinement deliver more accurate results at the same 

number of discretization points (see Fig. 5). 

  Furthermore, it is shown that apart from a higher accuracy when used once, the 

presented method and its refinement may have another benefit when used multiple times in 
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wear simulations. In an exemplary simulation, the wear of a heterogeneous cylinder 

composed of rings of different material having the same elastic properties but different 

wear coefficients is modeled. These discontinuous transitions in the material properties are 

handled well by the newly introduced methods, whereas the tested numerical techniques 

which rely on the original form of the transformations deliver results with a high oscillating 

error (see Fig. 6). 
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