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Abstract Vibrations of the Timoshenko beams resting on the Winkler and Pasternak 

elastic foundation with discontinuity are investigated in this paper. A p-version finite 

element method that accounts for shear deformation is used. This p-element has special 

displacement shape functions that make it particularly appropriate for dealing with 

problems with discontinuities such as those introduced in the foundation. A set of 

ordinary differential equations is derived; geometrical non-linearity is considered in 

these equations for the sake of generality and for future use. Natural frequencies and 

mode shapes of vibration (composed by transverse displacements and rotations of cross 

sections) of the shear deformable beam are presented for diverse sizes and location of 

the discontinuity in the foundation. Results of the present approach are compared with 

the ones computed via established finite element software for various stiffness of the 

elastic support of the Winkler and Pasternak type. 
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1. INTRODUCTION

Vibrations of the beams on elastic foundations are of a wide practical interest involving 

applications such as analyses of roads, rail tracks and foundations of diverse structures. 

There have been a large number of publications related to this problem considering 

different types of foundation such as Winkler, Pasternak, elastic or viscoelastic, linear or 

non-linear (Refs. [1-10]). For example, Mamandi et al. [4] have studied nonlinear effects 

of the elastic foundation in frequency domain. Investigations in the nonlinear regime, 

with the beam actuated by moving loads are carried out in [5]. Kim and Cho [6] explore 

the vibration of a shear beam-column, resting on an elastic foundation when the system is 

subjected to moving loads of either constant amplitude or harmonic amplitude variation. 
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In either case, the load moves with a constant advance velocity; a good insight of the 

linear dynamical behavior of the beam on elastic foundations is given. A more complex 

linear model [7] is also of great interest for understanding the problems of response of the 

beams resting on visco-elastically damped foundation under moving SDoF oscillators 

with a number of internal variables introduced and with the aim of representing the 

frequency-dependent behavior of the viscoelastic foundation. 

With larger beam deflections, geometric nonlinearities lead to motions which are not 

predictable by linear formulations. Chang and Liu [8] have investigated deterministic and 

random vibrations of a nonlinear beam on an elastic foundation, subjected to a moving 

load. The nonlinear system of differential equations is solved by an implicit direct 

integration method. Rotary inertia and shear deformation are neglected, while the effects 

of longitudinal deflections and inertia are considered, based on the Bernoulli–Euler 

hypothesis. Sapountzakis and Kampitsis [3] have developed a boundary element method 

(BEM) for the geometrically nonlinear response of shear deformable beams traversed by 

moving loads, resting on tensionless nonlinear three-parameter viscoelastic foundation; 

they have shown that the BEM may be advantageous for exploring nonlinear effects on 

this kind of problems. Nonlinear foundation effects are also investigated in a different 

type of structures. Malekzadeh and Vosoughi [9] have investigated problems of composite 

thin beams using an efficient and accurate differential quadrature (DQ) method for a large 

amplitude free vibration analysis. Demeio and Lenci [10] have used the Multiple Time 

Scales (MTS) method to study nonlinear resonances of a semi-infinite cable resting on a 

nonlinear elastic foundation.  

The finite-element method (FEM) is based on approximating the solution of a 

problem by means of admissible functions. In the p-version of the FEM, accuracy is 

improved by increasing the number of shape functions over the elements, without 

introducing more elements in the mesh; it has been often found that the p-version FEM is 

an efficient approach to the study of mechanical systems vibrations [11-21]. Recently, new 

shape functions have been proposed to be used when the p-version finite element method is 

applied to problems with steep changes in the domain [22]. In the later work, shear 

deformable beams with discontinuity in the cross section, due to a notch, are analyzed. The 

two shape functions for p-version beam elements lead to a significant improvement of the 

efficiency of the p-version FEM in the presence of notches. 

This work explores the influence of discontinuity of foundations on the natural 

frequencies and mode shapes of beams, for various sizes and locations of the discontinuity. 

In the real world, one example of occurrence of large discontinuity in a foundation is 

provided by a railway crossing a bridge; in a simple model, the beam with discontinuity 

in the foundation would represent the bridge. A second type of real world example, this 

time with a discontinuity of small length, is an anomaly in the subsoil, which occurs very 

often. Two types of foundation (Winkler and Pasternak) are considered. Thefirst order shear 

deformation theory is used because it provides more accurate results than Bernoulli-Euler 

formulations, particularly in the case of thick beams. The equations of motion are obtained 

by the principle of virtual work [23]. Although only linear analyses are performed in the 

numerical tests, the presented model includes geometrical non-linear effects for future 

use. The model is validated by comparison with finite element software ANSYS [25] in 

the computation of natural frequencies.  
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2. MATHEMATICAL MODEL AND EQUATIONS OF MOTION 

The physical model is defined by beam's length L, width b and thickness h. The 

discontinuity in the foundation is defined by l1 and l2 visualized in Fig. 1. The beam 

material is assumed to be elastic, homogeneous and isotropic. The foundation is represented 

by an elastic layer of the Winkler's and Pasternak type (neglecting the shear layer reduces 

the foundation to Winkler type). More details on the two types of foundation are given in 

Ref. [3]. Co-ordinate axis x and z are also shown in Fig. 1. 

 

Fig. 1 Timoshenko beam supported by elastic foundation with discontinuity 

Non-dimensional co-ordinate, ξ, represented in Fig. 1 is the local coordinate typical of 

the finite element method. Adopting the first order shear deformation theory [29], the 

displacement field of the model is given by: 

 
0 0

( ), , , ,( ) ( )u u zx z t x t x t  , (1) 

 0( , , ) ( , )w x z t w x t , (2) 

where superscript “
0
” indicates axis x, which crosses the cross section centroids and t 

represents time. Letters u and w represent, respectively, the displacement components along 

axes x and z. The independent rotation of cross-sections about the axis parallel to y is given by 

θ
0
(x,t). For the sake of generality, geometrical non-linearity will be considered in the 

formulation. The longitudinal and shear strains are, therefore, written as: 

 
0 0 2 0
, , ,( ) ( ) ( ) ( )

1
, , ( , ) z ,

2
x x x xx t u x t w x t x t    , (3) 

 
0 0
,( ) (, ,) ( ),xz xx t w x t x t   . (4) 

A comma in subscript, followed by a variable, represents partial derivation with 

respect to the latter. 

Vector d0(ξ,t), which is formed by the components of displacement, is written as the 

product of shape functions by the generalized coordinates: 
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In the equation above, N
u
(ξ), N

w
(ξ) and N

θ
(ξ) are, respectively, the in-plane, the out-of-

plane and rotation shape functions, which together form the matrix of shape functions N(ξ). 

Time dependent generalized displacements are represented by: qu(t) (generalized 

longitudinal displacements); qw(t) (generalized transverse displacements); qθ(t) (generalized 

rotations about y axis). The shape functions associated to the discontinuity are represented 

by superscript “d”. Consequently, the row vectors of longitudinal, transverse and rotation 

shape functions, are respectively, the following: 

 T 1 2 1 2
1 2 1 2 3, ,   , ,( ) ( ) ( ) ( ) (  |          )   

2 2

u d d
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N , (7) 
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d d
p

l l l l
f L f L f f f f
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N , (9) 

The total numbers of longitudinal, transverse and rotational shape functions employed 

are, respectively, pu, pw, and pθ plus two (due to functions f1
d
 and f2

d
). The last two 

functions are here associated to the discontinuity of the foundation and are explained in 

detail in Ref. [22]. In the p-version finite element method, the number of elements is 

essentially defined by the geometry of the structure to analyze. For example, in Ref. [14] a 

portal plane frame constituted by three straight beams is analyzed using three p-version beam 

elements. But localized steep variations, as the ones introduced by discontinuity, are thought 

to advocate the use of several elements, diminishing the interest of p-elements. Shape 

functions f1
d
 and f2

d
 provide an answer to this disadvantage of the p-version approach. 

Polynomial of types f1(ξ) - f4(ξ) represent Hermit cubics [18]. 

The constitutive equation of an isotropic beam is: 

 
0

0

x x

xz xz

E

G
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 

    
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    
σ Dε , (10) 

where E is the Young modulus and G= E/[2(1+ν)] is the shear modulus of elasticity, with ν 

representing Poisson ratio. In Eq. (10) D represents matrix of elastic constants, σ and ε, 

respectively, the non-zero stresses and the strains in form of vectors. Shear correction factor 

λ employed is λ=(5+5ν)/(6+5ν), as given in Ref. [26], because of the good agreement with 

the experimentally obtained results [27]. The longitudinal strain is:   

 0
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, (11) 
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where ε0
p
 and zε0

b
 represent longitudinal and bending strains, and εL

p
 geometrically non-linear 

longitudinal strain. These strains are: 

 T T T T T T
, 0 , , , ,0 2

2 2 2 2
, , ,

p pu b w w w
xzL
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 
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θ
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q
. (12) 

Integrating the normal stress, the shear stress and the moment of the normal stress we 

obtain: 

 0

0
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, (13) 

where: 

 
3

2, , (1,  ,  )  dz , 0,
12

z

Eh
A B D z z E A Eh B D     . (14) 

The equations of motion are achieved by the principle of virtual work, according to which:  

 0in V exW W W     , (15) 

where δWin, δWV and δWex are, in this order, virtual works done by inertia, internal and 

external forces due to a virtual displacement with components δu, δw and δ. These 

components form vector δd, as follows: 
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The virtual work of internal forces is: 
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and the virtual work of the inertia forces is: 
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where ρ is the mass per unit volume, M the mass matrix and  d =d
2
d/dt

2
. The virtual work 

of external forces is given by: 
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where {Fu
E
(t), FW

E
(t), M

E
(t)} represents the vector of generalized external forces and δ(x-

xj) represents Dirac delta function. P
j
(t) and M

j
(t) are concentrated forces or moments 

acting at point x=xj, P
d
(t) and M

d
(t) are distributed forces or moments. In the Eq. (19) kw 

and kp represent, respectively, the Winkler and Pasternak stiffness and shear foundation 

moduli. Using the virtual work principle, including the foundation effect, the following 

equations of motion are obtained: 
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Matrices of type M and K are constant matrices that originate linear terms in the 

equations of motion, of the latter type, matrices K
W

 and K
P
 represent linear influences of 

the foundation with discontinuity and are not introduced in [22]. The matrices that 

depend on wq (t) - Kn
2
, Kn

3
 and matrix Kn

4
 – lead to non-linear terms. The superscripts 

l,b,r and γ represent, respectively, longitudinal, bending, cross section rotation and shear 

effects. Adding Rayleigh-type damping, with damping coefficients αr and βr, one obtains 

the equations of motion (in a more condensed notation) :  

 
n( ) ( ) ( ) ( ) ( ( ) )( ) ( ) ( ) ( )r rt t t t t t     Mq K q M q K K q q F . (21) 

The mass and stiffness matrices have the following forms:  
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where lc=(l1+l2)/2. 

3. NATURAL FREQUENCIES AND MODE SHAPES 

The p-FEM will be applied to derive a model for a clamped-clamped beam with 

geometric and material properties based on an example from Ref. [3]. Used data about the 
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beam are: L=10m, E=210GPa, G=77GPa, I=30.55*10
-6

m
4
, A=30.55*10

-6
m

2, ρ=7850kg/m
3
, 

kw1=20MPa, kp1=69kN, kw2=35MPa, kp2=200kN.  

 

Fig. 2 Timoshenko beam supported by the elastic foundation without discontinuity (Case 1) 

 

Fig. 3 Timoshenko beam supported by the elastic foundation with discontinuity  

l1=1.67m, l2=1.85m (Case 2) 

Four cases of the shear deformable beam on elastic foundation are shown on Figs. 2, 

3, 4 and 5. For the presented cases and two types of foundation, natural frequencies are 

given in Tables 1-8. For the case without discontinuity in foundation, natural frequencies 

for simply supported beam can be easily obtained from the frequency equation (27) of 

Ref. [24], for the Timoshenko theory, by setting m=1. 

 

Fig. 4 Timoshenko beam supported by the elastic foundation with discontinuity  

l1=1.67m, l2=2.6m (Case 3) 
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Fig. 5 Timoshenko beam supported by the elastic foundation with discontinuity              

l1=L/6  (Case 4) 

The Ansys h-version element used is element BEAM 189, which has 3 nodes with six 

degrees of freedom at each node (but to analyze vibrations in a plane only 3 degrees of 

freedom per node are required). BEAM189 is an element based on the Timoshenko beam 

theory and suitable for analyzing slender to moderately thick beam structures. The current 

results from Ansys are obtained with 100 elements. 

Table 1 Natural frequencies [Hz] of a clamped-clamped beam Case 1 for kw1 and kp1        

Mode 

Winkler Pasternak 

ANSYS 

BEAM189 

100 elements 

p-FEM 

(30sf) 

ANSYS 

BEAM189 

100 elements 

p-FEM 

(30sf) 

1 92.5 92.33 92.4 92.35 

2 97.2 96.90 97.1 96.97 

3 111.3 110.45 111.2 110.58 

4 137.4 136.66 137.3 136.84 

Table 2 Natural frequencies [Hz] of a clamped-clamped beam Case 2 for kw1 and kp1 

Mode 

Winkler Pasternak 

ANSYS 

BEAM189 

100 elements 

p-FEM 

(30sf) 

ANSYS 

BEAM189 

100 elements 

p-FEM 

(30sf) 

1 90.7 90.55 90.7 90.57 

2 95.8 95.59 95.9 95.65 

3 110.5 110.27 110.6 110.40 

4 136.5 136.27 136.6 136.45 



298 V. STOJANOVIĆ, P. RIBEIRO 

Table 3 Natural frequencies [Hz] of a clamped-clamped beam Case 3 for kw1 and kp1 

Mode 

Winkler Pasternak 

ANSYS 

BEAM189 

100 elements 

p-FEM 

(30sf) 

ANSYS 

BEAM189 

100 elements 

p-FEM 

(30sf) 

1 77.2 77.07 77.3 77.08 

2 94.3 94.06 94.4 94.11 

3 108.5 108.26 108.6 108.38 

4 136.1 135.85 136.2 136.02 

Table 4 Natural frequencies [Hz] of a clamped-clamped beam Case 4 for kw1 and kp1 

Mode 

Winkler Pasternak 

ANSYS 

BEAM189 

100 elements 

p-FEM 

(30sf) 

ANSYS 

BEAM189 

100 elements 

p-FEM 

(30sf) 

1 35.3 35.08 35.3 35.06 

2 59.6 59.30 59.6 59.30 

3 77.5 77.31 77.5 77.33 

4 104.5 104.33 104.5 104.42 

Changes in the natural frequencies have a tendency of decreasing as the discontinuity in 

the foundation increases. This model is important for analysis because of the easy 

generalization of the discontinuity in the foundation. Non-linear matrices are just obtained and 

presented in the work and can be used for a further nonlinear analysis in the time domain.  

Table 5 Natural frequencies [Hz] of a clamped-clamped beam Case 1 for kw2 and kp2        

Mode 

Winkler Pasternak 

ANSYS 

BEAM189 

100 elements 

p-FEM 

(30sf) 

ANSYS 

BEAM189 

100 elements 

p-FEM 

(30sf) 

1 122.1 121.74 122.2 121.78 

2 126.5 125.20 126.6 125.36 

3 136.1 135.91 136.2 136.22 

4 158.1 157.90 158.2 158.35 

Table 6 Natural frequencies [Hz] of a clamped-clamped beam Case 2 for kw2 and kp2        

Mode 

Winkler Pasternak 

ANSYS 

BEAM189 

100 elements 

p-FEM 

(30sf) 

ANSYS 

BEAM189 

100 elements 

p-FEM 

(30sf) 

1 119.2 118.84 119.3 118.90 

2 124.1 123.81 124.2 123.94 

3 135.9 135.68 136.1 135.98 

4 157.6 157.33 157.7 157.77 
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Table 7 Natural frequencies [Hz] of a clamped-clamped beam Case 3 for kw2 and kp2        

Mode 

Winkler Pasternak 

ANSYS 

BEAM189 

100 elements 

p-FEM 

(30sf) 

ANSYS 

BEAM189 

100 elements 

p-FEM 

(30sf) 

1 97.2 97.09 97.2 97.10 

2 123.1 122.88 123.1 122.96 

3 133.7 133.54 133.7 133.83 

4 156.9 156.66 156.9 157.10 

To understand the effect of the foundation on the vibration modes, natural frequencies 

are not enough. It is important to present the changes in the natural mode shapes. In Figs. 

6-11 natural mode shapes are presented for all the cases of discontinuity in the 

foundation. It is evident that the effect of the discontinuity results in the change in natural 

transverse and rotation mode shape. It is important to underline that the asymmetrical 

mode shapes appear when the discontinuity exists on one side of the beam.  

Table 8 Natural frequencies [Hz] of a clamped-clamped beam Case 4 for kw2 and kp2        

Mode 

Winkler Pasternak 

ANSYS 

BEAM189 

100 elements 

p-FEM 

(30sf) 

ANSYS 

BEAM189 

100 elements 

p-FEM 

(30sf) 

1 39.9 39.71 39.9 39.65 

2 59.5 59.30 59.5 59.30 

3 92.5 92.37 92.5 92.38 

4 117.9 117.75 117.9 117.75 

 

Fig. 6 Transverse components of mode shapes - mode 1 
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Fig. 7 Transverse components of mode shapes - mode 2 

 

Fig. 8 Transverse components of mode shapes - mode 3 

 

Fig. 9 Cross section rotation components of mode shapes - mode 1 
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Fig. 10 Cross section rotation components of mode shapes - mode 2 

 

Fig. 11 Cross section rotation components of mode shapes - mode 3 

For the cases 2 and 3 the obtained results have a significant importance in understanding 

the vibrations of the geometrically asymmetrical model. The advantages of the p-FEM 

model are better approximations of the solutions in comparison with commercial software 

ANSYS (convergence occurs from above in the p-version FEM, and our values are lower 

than the ones of ANSYS), with a lower number degrees of freedom. In a number of cases, 

the values computed via ANSYS for the natural frequencies of vibration considering the 

Pasternak and Winkler type foundation were the same. This rarely occurrs with the p-

version model, which generally allows to detect the effect of the shear layer. 

5. CONCLUSIONS 

Vibrations of shear deformable beams, elastically connected to a foundation with 

discontinuity, are investigated in this paper. A p-version finite element based on the 

Timoshenko theory for bending is applied. The frequencies obtained agree with the ones 

computed via well know finite element software. The developed matrices are easily 

applicable to any size of discontinuity in the foundation, simply taking into account changes 



302 V. STOJANOVIĆ, P. RIBEIRO 

in the boundaries of the discontinuity. Various discontinuity cases (when the centre of the 

discontinuity is not under the middle of the beam) lead to asymmetrical vibrations. This is 

made evident by the mode shapes presented. The p-version finite element method 

developed gives the possibility for a further non-linear analysis of the vibrations of the 

beams resting on a foundation with discontinuity.  
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MODOVI OSCILACIJA NOSAČA POD UTICAJEM 

PROMENLJIVOG DISKONTINUITETA U PODLOZI  

Oscilacije nosača Timoshenko-vog tipa na Winkler-ovoj i Pasternak-ovoj podlozi sa promenljivim 

diskontinuitetom razmatrane su u ovom radu. Razvijena je p-verzija metode konačnih elemenata za 

oscilacije deformabilnih nosača na elastičnoj podlozi. U studiji je korišćen p- element koji je 

proizašao upotrebom posebno razvijenih oblika funkcija primenjenih na nosačima sa oštećenjem i 

upotrebljen na modelu sa osnovom koja sadrži diskontinuitet. Novina ove studije predstavlja laku 

generalizaciju pristupa pri određivanju prirodnih frekvencija, opštih oblika oscilovanja (transverzalnih i 

rotacija poprečnih preseka) nosača za proizvoljno izabrane veličine i lokacije diskontinuiteta. Izveden je 

sistem parcijalnih diferencijalnih jednačina koji omogućava dalje istraživanje u nelinearnom 

vremenskom domenu oscilovanja. U radu su prikazana poređenja rezultata sa različitim vrednostima 

krutosti nelinearne elastične osnove Winkler-ovog i Pasternak-ovog tipa. 

Ključne reči: p-verzija MKE, osnovni oblik oscilovanja, prirodna frekvencija, diskontinuitet, oscilacije. 

                                                                    


