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ENERGY LOSS AND WEAR  

IN SPHERICAL OBLIQUE ELASTIC IMPACTS  
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Abstract. Percussive and erosive wear by repetitive impacting of solid particles 

damages surfaces even at low impact velocities. As the impact wear is often directly 

related to the energy loss during the collision and therefore to the coefficients of 

normal and tangential restitution, in the present study the oblique low-velocity impact 

of a rigid sphere onto an elastic half-space is analyzed based on the known respective 

contact-impact solution and with regard to the energy loss during the impact. Simple 

analytic expressions are derived for the total impact wear volume. It is found that the 

portion of kinetic energy lost in frictional dissipation has a well-located maximum for 

configurations with weak forward pre-spin. The distribution of frictional dissipation 

over the contact area has a complex dependence on the impact parameters. For 

pronounced local slip (e.g. due to a small coefficient of friction) the dissipation 

accumulated over the collision is localized in the center of impact whereas for 

dominance of sticking, most energy is lost away from the center. 
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1. INTRODUCTION 

Impact wear, i.e. material degradation due to the repetitive impacting of solid particles 

onto a surface is a serious source of damage and failure in several technical systems like 

steam generator tubes [1], mining machinery [2] and others. Several studies, starting more 

than fifty years ago, have been dealing with the erosion of a surface by a stream of solid 

particles [3-6]. However, due to the complexity of the occurring wear mechanisms and the 

mathematical difficulty of the contact mechanical description for the impact itself, the 

problem remains far from being fully understood. 
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The first rigorously analyzed contact-impact problem is the low-velocity normal 

impact of perfectly elastic, perfectly smooth spheres, solved by Hertz [7]. The Hertzian 

normal impact solution has later been generalized to incorporate adhesion [8], plasticity 

[9], wave propagation [10] and surface roughness [11]. The frictional oblique impact 

problem of elastic spheres was solved by Maw, Barber & Fawcett (MBF, [12]), based on 

the contact solution for the frictional tangential contact of elastic spheres under varying 

oblique loading histories by Mindlin and Deresiewicz [13]. The outcomes of the MBF 

theory were demonstrated to be in very good agreement with experimental results if the 

impact behavior is close to being perfectly elastic [14, 15]. An equivalent but 

computationally simpler formulation of the MBF solution within the framework of the 

method of dimensionality reduction [16] was published recently [17]. Moreover, there are 

several rigid-body models of oblique impacts [18, 19]. However, as there are only two 

regimes of contact in rigid-body dynamics – stick and gross sliding – these models are 

necessarily wrong in the partial slip regime. 

A common approach to characterizing the impact wear behavior is to study the loss of 

kinetic energy during the impact [1]. Thereby good agreement has been reported between 

energy-based models and erosive wear results from the literature [20, 1]. This is in 

correlation with the classical wear law by Archard and Hirst [21] for adhesive and 

Khrushchov and Babichev [22] for abrasive wear, according to which the wear intensity is 

proportional to the normal load and the relative tangential velocity of the contacting 

surfaces. If we additionally apply the Amontons-Coulomb law of friction, the wear 

intensity is proportional to the power of frictional energy dissipation, as reported by 

Honda and Yamada [23]. The energy-based approach to studying erosive wear was also 

used by Argatov et al. [24], who, nevertheless, only considered sliding contact during the 

impact and neglected the contribution of spin. 

Thus, in the present study, the loss of kinetic energy due to frictional dissipation will 

be analyzed for the oblique impact of elastic spheres, based on the MBF model for the 

contact-impact problem. First, in a general analysis, the rebound velocities and the loss of 

kinetic energy are calculated in terms of the tangential coefficient of restitution. After 

that, this restitution coefficient is determined within the framework of the MBF approach. 

After a visualization of the main results for the total loss of kinetic energy, the distribution 

of frictional dissipation over the contact area is analyzed. A short discussion closes the 

manuscript. 

2. GENERAL ANALYSIS 

Let us look into the problem depicted in Fig. 1: A rigid sphere of mass m, radius R and 

moment of inertia J impacts onto an elastic half-space with initial velocities vx0 and vz0 

and initial angular velocity ω0. Without loss of generality we can assume that vx0 > 0; for 

brevity let us introduce spin s = Rω. The impact shall be short and the macroscopic 

dynamics shall be determined by point contact forces in normal and tangential direction at 

the point of first contact K. 

Note that the more general case of colliding elastic spheres in 3D exhibits no 

additional features if wave propagation can be neglected [25] (i.e. the velocities are small 

compared to the speed of sound in the elastic bodies) and the surfaces of the contacting 



 Energy Loss and Wear in Spherical Oblique Elastic Impacts 77 

 

bodies obey the restrictions of the half-space approximation. Moreover, it should be 

pointed out that in the present work the dissipation due to plastic or viscoelastic 

deformations, which also can be of utmost importance in erosive wear, are disregarded to 

simplify the analysis. 

 

Fig. 1 2D oblique impact of a rigid sphere onto an elastic half-space. Schematic representation 

and notations 

Under the assumptions stated above, the tangential velocity and spin after the collision 

can be calculated in terms of the coefficient of tangential restitution ex, 
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Hence, the loss of kinetic energy during the collision is given by 
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According to the energy-based approach, the total worn volume after one impact will be 
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with material hardness σ0 and non-dimensional wear coefficient k.  
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Obviously, all the macroscopic impact characteristics are known if the tangential 

restitution coefficient can be determined. This is done in the following section. 

3. THE COEFFICIENT OF TANGENTIAL RESTITUTION 

Maw, Barber & Fawcett [12] have shown that, if the friction force is calculated based 

on the contact solutions by Mindlin & Deresiewicz, the coefficient of tangential 

restitution will be a function of only two dimensionless parameters 
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with Poisson ratio ν of the elastic half-space and the coefficient of friction μ. M is the 

ratio of tangential to normal stiffness of the cylindrical flat punch contact, often attributed 

to Mindlin, and α the generalized impact angle accounting for pre-spin of the sphere. To 

spare the less important parameter, we will assume a homogeneous sphere (i.e. κ = 2/7) 

and a constant Poisson ratio of ν = 1/3. Hence, χ = constant = 1.4. 

 

Fig. 2 Coefficient of tangential restitution ex as a function of ψ for the oblique impact of 

elastic spheres with κ = 2/7 and ν = 1/3, together with the analytic expressions 

from Eqs. (7) and (8); also shown is the relevant term for the loss of kinetic energy 

The solution for ex = ex(ψ) resulting from MBF theory needs to be calculated 

numerically and is shown in Fig. 2. There are three different regimes: For ψ < 1 the 

impact starts with a configuration of local stick; for 1 < ψ < 4χ – 1 the impact starts with a 

phase of gross slip, which ends during the collision; for ψ > 4χ – 1 the contact is fully 

sliding during the whole impact and the coefficient of tangential restitution is therefore 

elementarily given by 
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In the other two regimes, for χ = 1.4 the solution can be approximated very well by the 

analytic expressions 
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4. SELECTED RESULTS FOR THE LOST PORTION OF KINETIC ENERGY 

In many applications the most relevant quantity will not be the absolute value of 

dissipated energy but rather the portion of initial kinetic energy, which is lost during one 

impact. Normalizing Eq. (4) for initial kinetic energy E0 we obtain 
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To characterize the mode of the contact point’s tangential motion and thus the effect 

of pre-spin one can introduce the ratio 
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Pre-spin plays an important role for the dissipated energy – which is self-evident for 

everybody who has seen a tennis ball bouncing off a court with what in sports is called 

“back spin” (i.e. s0 > 0; as the tangential velocity of the contact point due to the rotation in 

this case is positive, the notion “forward spin” seems more appropriate) – because it 

enters both Eqs. (4) and (6). ξ = 1 corresponds to no pre-spin at all whereas for ξ = 0 the 

tangential motion of the contact point results from pure rotation. Values ξ > 1 correspond 

to weak backward spin (contact point K is still moving in positive x-direction) and values 

ξ < 0 to strong backward spin (the direction of motion of K changes). 

Eq. (9) can be rewritten in the form 
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With all other parameters fixed (especially generalized impact angle α), this expression 

takes its maximum value at 

 .c    (12) 

which corresponds to weak forward spin (note, that 0 < κ < 0.5). 

In Fig. 3 the portion of lost kinetic energy is shown for ν = 1/3, κ = 2/7 and ξ = κ as a 

function of the two remaining parameters, the coefficient of friction and the generalized 
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impact angle. As one would expect, the portion is increasing if both the impact angle and 

the coefficient of friction increase. However, for any fixed value of the coefficient of 

friction the portion of lost energy has a maximum at some certain impact angle and vice 

versa.  

 

Fig. 3 Contour isoline diagram of the loss of kinetic energy normalized for the initial 

kinetic energy before the impact as a function of the coefficient of friction and the 

generalized impact angle for ν = 1/3 and κ = 2/7 at the extremal configuration of 

tangential motion ξ = κ 

 

Fig. 4 Contour isoline diagram of the loss of kinetic energy normalized for the initial 

kinetic energy before the impact as a function of the configuration of tangential 

motion and the generalized impact angle for ν = 1/3, κ = 2/7 and μ = 0.1 



 Energy Loss and Wear in Spherical Oblique Elastic Impacts 81 

 

Fig. 4 and 5 visualize the normalized dissipated energy as a function of ξ and the 

generalized impact angle for ν = 1/3, κ = 2/7 and two values of the friction coefficient. 

One can clearly see how the higher losses are localized in the regions of weak forward 

pre-spin, around the critical value given by Eq. (12). 

 

Fig. 5 Results as in Fig. 4 for μ = 0.5 

5. DISTRIBUTION OF FRICTIONAL DISSIPATION OVER THE CONTACT AREA 

Not only can the total lost energy be of interest, but also its distribution over the 

contact area. If the energy-based wear law is valid in local form, then the distribution of 

frictional dissipation will give the distribution of wear and therefore the form of the 

impact pit after the collision (note again that plastic deformation, which will also result in 

a residual impact pit, is disregarded here). 

During the impact the contact area (with radius a) will in general consist of an inner 

stick area (radius c) surrounded by an annulus of local slip. Frictional energy dissipation 

requires relative motion between the contacting surfaces. Hence, energy is dissipated only 

in the slip area. The area density of power of the frictional dissipation is given by 
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with the Hertzian pressure distribution 
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), with Young’s modulus E, is the effective Young’s modulus of the elastic 

half-space. The relative velocity between two slipping points on the surfaces of the 

contacting bodies, vrel, can be calculated from the solution of the impact problem within 
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the framework of the method of dimensionality reduction (MDR; see [17] for a detailed 

description of the impact solution algorithm) according to  
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The superscript “1D” denotes the respective quantity in the MDR model. When 

evaluating the Abel transform (15) numerically, it is useful to follow an idea by Benad 

[26] and rewrite the transform via integrating by parts, 
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to avoid the singularity in the integrand at x = r. 

 

Fig. 6 Area density of frictional energy dissipation normalized for the average value as a 

function of the radial coordinate for full-slip collisions 

Fig. 6 shows area density w of the total frictional energy dissipation during the 

collision normalized for the average value 
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with the maximum contact radius during the impact, amax, as a function of the normalized 

radial coordinate r / amax, if the contact is fully sliding during the whole impact. In these 

dimensionless variables the distribution of frictional loss of energy is completely 

independent of the impact parameters (provided the collision indeed takes place in the 

full-slip regime) and can be approximated well by the expression 
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Fig. 7 Area density of frictional energy dissipation normalized for the average value as a 

function of the radial coordinate for several values of parameter ψ and χ = 1.4.  

The thin black line denotes the full-slip case 

 

Fig. 8 Area density of frictional energy dissipation normalized for the average value as a 

function of the radial coordinate for several values of the parameter χ. Red lines 

correspond to ψ = (4χ – 1)/3. Black lines correspond to ψ = (4χ – 1)/5 

Generally, the normalized distribution of frictional distribution will depend on the impact 

parameters χ and ψ. In Fig. 7 the distribution is shown for the case χ = 1.4 (which, as said 
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before, corresponds to a homogeneous sphere and ν = 1/3) and several values of ψ. For small 

values of ψ (i.e. dominance of stick) the dissipation is localized away from the impact center 

whereas for large values (i.e. dominance of slip) the localization tends more to the center. 

The closer the impact configuration is to the full-slip case, the more the dissipation 

density is only depending on the parameter ψ / (4χ – 1). This is demonstrated in Fig. 8. The 

red lines corresponding to ψ = (4χ – 1)/3 and different values of χ are very close together. 

On the other hand, the black lines, denoting configurations with ψ = (4χ – 1)/5 and various 

values of χ, differ significantly from each other, especially because for χ = 1.2 the respective 

value of ψ is smaller than one, i.e. the impact does not start with a phase of complete sliding. 

6. DISCUSSION 

The wear loss in impact wear has been reported in the literature to be proportional to 

the amount of energy dissipated during the impact [1]. Thus, in the present study the 

contact-impact solution for the spherical oblique elastic impact has been applied to calculate 

the amount of kinetic energy lost during one collision to provide an easy-to-evaluate impact 

wear measure. According to the analysis the main quantities that determine the impact wear 

volume are the coefficient of friction, the impact angle and the mode of tangential motion of 

the contact point (due to rotation or translation of the spheres). Thereby the portion of 

kinetic energy, which is lost during the collision due to frictional dissipation, has a well-

localized maximum for weak forward pre-spin. 

The distribution of frictional dissipation over the contact area shows a complicated 

dependence on the impact parameters. For pronounced local slip (e.g. due to a small 

coefficient of friction) the dissipation is localized in the center of impact whereas for 

dominance of sticking, most energy is lost away from the center. 

It should be noted that the coefficient of tangential restitution and hence the dissipated 

energy can be significantly influenced by elastic parameter χ. The case χ = 0.5 is especially 

interesting because it can be completely energy-conserving (i.e. practically wear-less), 

provided that ψ < 1. Whereas χ = 0.5 is impossible to realize with elastically homogeneous 

media due to thermodynamic stability restrictions for Poisson’s ratio, dissipation-less 

configurations are within reach for materials with a functional elastic grading [27]. 

Last but definitely not least, plastic deformations during the impact will gain 

importance for intermediate or high impact velocities. This aspect has been neglected 

here. Although some approaches to tackle the elasto-plastic oblique impact problem have 

been published in the past years [28, 29], contact mechanically rigorous models for this 

problem are still scarce and thus require further investigation. 
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