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Abstract. In this work, different numerical methods for simulating deformations and stresses 

in turbine blade fir-tree connections are examined. The main focus is on the Method of 

Dimensionality Reduction (MDR) and the Boundary Element Method (BEM). Generally, 

the fir-tree connections require a computationally expensive finite element setup. Their 

complex geometry exceeds the limitations of the faster numerical techniques which are 

used with great success within the framework of the half-space approximation. Ways of 

extending the application range of the MDR and the BEM to the particular problem of 

highly undulating surfaces of the fir-tree connection are shown and discussed. 
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1. INTRODUCTION 

The rotating components in a gas turbine are a challenge for both design and 

manufacturing. Especially turbine blades lead the way in terms of future technology [1]. 

Improvements of these components may result in lower weight, increased turbine performance, 

a longer life, and lower operating costs. For aero engines (see Fig. 1), such improvements have 

a positive impact on the entire aircraft [2, 3]. This may lead to lower emissions and a reduced 

environmental impact. Among the most critical parts of the turbine are the fir-tree connections 

of turbine blade and turbine disk (see Fig. 2 and 3). The loads in these connections strongly 

influence the living of the blade and the disk. Indeed, turbine disks are among the components 

which are most prone to cracking in the entire engine [1].  Such a failure may cause severe 

damage to the aircraft (see Fig. 4). The resulting high safety requirements along with the afore 

mentioned high potential for future development and optimization of turbine blades, disks and 

their fir-tree connections lead to a demand for highly accurate and rapid simulation tools. 
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2 J. BENAD 

In this work, different numerical methods for simulating deformations and stresses in the 

turbine blade fir-tree connections are examined. The main focus is on the Method of 

Dimensionality Reduction (MDR) [4] and the FFT-based Boundary Element Method (BEM) 

[5]. Both methods have become standard tools in contact mechanics where they are applied 

with great success within the framework of the half-space approximation [6]. These rapid 

techniques are well-suited for demanding wear simulations (see for example [7], [8], and [9]). 

 

Fig. 1 Nacelle installation of the Rolls-Royce Trent XWB turbofan engine on the 

Airbus A350-900 aircraft. Image: BENAD 

 

Fig. 2 Fir-tree connections of turbine blades (gold) and disk (silver) on a sectioned 

Rolls-Royce Turboméca Adour turbofan, an engine powering for example the 

McDonnell Douglas T-45 Goshawk aircraft. Image: CLEYNEN [10] 

Fir-tree connections generally require a computationally expensive finite element setup. 

Their highly undulating surfaces and other complex geometrical elements in close proximity to 

the contact region make the application of the half-space theory a challenge. In this study, we 

closely examine the application range of the MDR and the FFT-based BEM beyond the 
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half-space approximation. We also discuss ways of extending the methods so as to apply them 

to the particular problem of the complex geometry of the fir-tree connection. 

 

Fig. 3 A worn fir-tree connection on the disk of an aircraft turbine. Image used with the 

kind permission of Rolls-Royce 

The parts of this work are organized as follows: we first discuss the MDR and show results 

of its application on a simplified fir-tree model. Likewise, the results of a finite element 

simulation of the same setup are shown. The findings of both methods are compared on a 

qualitative level. We then turn to the FFT-based BEM in its well-known and established form 

for the half-space, propose slight additions to the method and apply it to a fir-tree model. Again, 

the results are compared on a rough qualitative level to finite element results. In the last main 

section of this paper, we build on two recent studies [11] and [12], where the FFT-based BEM 

is performed for completely arbitrary shapes. We present exemplary results of this technique 

for the two-dimensional NAVIER equation. At the end of this work, the main findings are 

summarized in a conclusion. 

  
 a) b) 

Fig. 4 Example for the damage caused by an uncontained engine rotor failure. a) General 

damage to the engine, b) Example of internal damage to the left wing.  

Images: Australian Transport Safety Bureau, Safety Report, Aviation Occurrence 

Investigation: In-flight uncontained engine failure overhead Batam Island, 

Indonesia, 4. November 2010, Airbus A380-842 [13] 
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2. METHOD OF DIMENSIONALITY REDUCTION (MDR) 

The MDR is an efficient tool for calculating surface deformations and stresses of elastic 

or viscoelastic bodies which are brought into contact. The method was first proposed in 

2007 [14] and has since developed to become a standard tool in contact mechanics [4], 

[15]. The technique is particularly easy to apply for axially-symmetric contacts and is 

generally used within the framework of the half-space approximation [6]. The MDR maps 

a three-dimensional contact to an equivalent contact of a transformed profile with a 

one-dimensional foundation of independent elastic or viscoelastic elements. From a 

numerical perspective, such a method is very appealing. First, this is due to a very low 

number of the degrees of freedom, and second, it is because the degrees of freedom are 

decoupled, which eliminates the need for iterations within the MDR domain. The 

transformations to the MDR domain and back can also be performed rapidly with an order 

of computational complexity which does not exceed the order of the number of 

discretization points of the one-dimensional profile. Therefore, the MDR is well suited for 

demanding wear simulations, which require an underlying highly efficient method to 

obtain the deformations and stresses. This procedure has been successfully implemented in 

the past, for example, for high-resolution simulations of gross slip wear [7], fretting-wear 

[16], and wear analysis of a heterogeneous material [8]. Fig. 5 shows a stage within a 

simple gross slip wear process of a parabolic rigid indenter with a given wear coefficient. 

This indenter is pressed into and moved across an elastic half-space. Also shown is the 

pressure distribution at the given stage. ARCHARD’s law [17] is used as a wear model. In 

order to obtain a stage in the wear process such as the one displayed in Fig. 5, the required 

computational time is only a fraction of a second on a small personal computer when the 

MDR is used to calculate the deformations and stresses within the wear iteration. 

 

 

Fig. 5 An exemplary stage of a simple gross slip wear process of a parabolic rigid 

indenter with a given wear coefficient (light red upper shape enclosed with black 

dotted line) which is pressed into and moved across an elastic half-space (grey area 

with green dotted line at the surface, the thin horizontal black line marks the 

undisturbed surface). At the bottom of the image the form of the pressure 

distribution at the given stage is shown which is zero outside the contact area and 

takes positive values within the contact area (blue line with dots). The MDR was 

used to obtain the deformations and stresses while the ARCHARD’s law was used to 

model the wear 
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Given the efficiency of the MDR and the success when it comes to wear simulations, it 

would be desirable to apply the method for calculating deformations and stresses in turbine 

blade fir-tree connections. Fig. 6a shows a schematic view of one tooth of a turbine blade in 

contact with its counterpart on the disc. A close-up view, which is also stretched in the 

z-direction, is displayed in Fig. 6b.  

                
 a) b) 

Fig. 6 a) Schematic view of one tooth of a turbine blade in contact with its counterpart on 

the disk, b) close up view of the contacting profiles stretched in z-direction. 

Images: DIERCKS (modified to fit the context). Images used with the kind 

permission of Rolls-Royce 

 
 a) b) 

Fig. 7  a) Finite element setup for the calculation of deformations and stresses on a 

simplified fir-tree model with only one tooth in contact, b) exemplary results of the  

finite element model (blue) and the MDR approximation (red) for the worst 

principal stress at the disk surface (marked with a thin red line in the left graph a). 

Images: DIERCKS (modified to fit the context). Images used with the kind 

permission of Rolls-Royce 

In a rough first approximation, the problem can be regarded as a simple two-dimensional 

contact of cylindrical lying indenter with a half-space. The transformed profile to be used in the 

MDR for such a line contact can be obtained directly [6] (see also [18]), or one can make use of 

FABRIKANT’s approximation (see [19]) to scale a corresponding rotationally symmetric 

solution to the real contact area as a rough first estimate. The latter approach was adopted here. 

With the resulting normal and tangential loads in the contact area, one can then obtain all 
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components of the stress tensor at the surface using the fundamental solutions of BOUSSINESQ 

and CERRUTI (see [20]), which makes it possible to display the worst principle stress at the 

surface. Exemplary results for the worst principle stress at the surface obtained in such a 

fashion are displayed in Fig. 7b along with finite element results for comparison. The finite 

element setup which was used is displayed in Fig. 7a. Note that for simplicity a blade root with 

only one tooth was considered in this first model. 

It transpires that, at least in the contact area, this very crude MDR approach already delivers 

the results which agree to a certain extent with those obtained with the more appropriate finite 

element model. The most striking difference is, of course, attained as the bottom of the first 

lobe is approached (region left of the contact area in Fig. 7b). The influence of this notch is not 

modeled with the half-space approach. In the following section, we will remain within the 

framework of the half-space theory as we are interested primarily in the properties in the 

contact area. However, we shall still turn to a less confined model, the Boundary Element 

Method. The setup will remain the same, with the exception that all four teeth of the fir-tree will 

be considered.  

3. FFT-BASED BOUNDARY ELEMENT METHOD (BEM) FOR THE HALF-SPACE  

The Boundary Element Method (BEM) is used in many engineering applications. For 

some special cases, such as the simulation of tribological contacts where the technique is 

applied with the half-space approximation, the tool has set new standards in recent years, 

becoming the method of choice both in academic and industrial research and development 

[15]. The integral equations of the BEM simplify to convolutions when the boundary can 

be approximated as a half-space surface. As such, the integrals can easily be obtained with 

the Fast-Fourier Transformation (FFT). The computational complexity to obtain the 

deformations and stresses at the half-space surface is O(n
2 

log n) for a surface with nn 

discretization points. Therein lies the great advantage of using the FFT-based half-space 

BEM for when the FFT is not used and the entire matrix of the linear system is built, the 

complexity of the BEM is O(n
4
). Therefore, we will for now retain the assumption of a 

half-space, in order to apply this well-known, established and efficient FFT-based 

half-space BEM to the contact problem of the fir-tree connection.  

The two-dimensional convolution one obtains for the half-space is 

 0 0 0 0( , ) ( , )a ab b

S

u x y K x x y y dx dy     (1) 

where u is the deformation,  is the load, a is the direction of the deformation and b is the 

direction of the load, (a,b)  {x,y,z} [21]. Typically, the half-space approximation is used 

only when the gradients of the surfaces in the contact region are very small. This is not the 

case for the fir-tree. However, the error which is made can be kept at bay by careful 

consideration of the surface constraints such as geometry and friction of the actual curved 

surfaces. 

Consider a fir-tree connection and coordinate system as displayed in Fig. 8. Unlike in 

the previous section where the half-space was aligned with the contacting surfaces of the 

single lobe, the half-space is now placed along the X-Y plane in Fig. 8 to run through the 

entire fir-tree connection. The half-space surface can then be imagined to be perturbed 

from its original flat state to the highly undulating shape in the Z-direction. As a first step, it 
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shall also be assumed that one of the contact partners is elastic and the other is rigid. This is 

a common approach in many problems in contact mechanics. Once the solution is obtained 

it can generally be transformed back to the original problem with the knowledge of the 

elastic properties of the contacting bodies [6], [22]. The disk shall be modeled as an elastic 

half-space, and the blade shall be modeled as a rigid body in the following. 

     
 a) b) 

Fig. 8 a) Geometry of a fir-tree connection of a blade model (light brown) and a disk 

model (light blue). A rectangular block is cut out of the disk model (sections are 

displayed yellow) to reveal the global coordinate system and the 2D curves (blue 

and red). b) Extrusion along the Y-axis of the 2D curves and contact area (green 

markers) for an exemplary indentation in X-direction. The disk is modeled as an 

elastic half-space and the turbine blade as a rigid indenter. The black discretization 

points of the turbine blade surface are given by a linear interpolation of the disk 

surface discretization points onto the turbine blade surface along the X-axis. For 

visualization purposes the extrusion width shown here is small and only a rough 

discretization is displayed. The beginning and end of the extrusion of the turbine 

blade profile are slightly rounded of in the direction of lower X to ensure a smooth 

indentation at these edges. Image used with the kind permission of Rolls-Royce 

 

Fig. 9 Left: Components of a shear stress τzx relative to the curved surface. τ
*
 cannot be 

maintained because (3) is not fulfilled. Right: The grid point of the disk (blue) has 

now slid down along the rigid profile to its equilibrium position where τ
*
=μp

*
. This 

results in a lower τzx and a new component p relative to the even half-space surface. 

Image used with the kind permission of Rolls-Royce. 
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Consider now a single grid point on the disk profile. For some indentation, that is the 

displacement of the blade in the X-direction from its position of first contact, the point on 

the disk is also deflected in the direction of the X-axis by a small distance ux. As the disk 

profile is modeled as an elastic half-space it can be regarded as even for the determination 

of the dependencies of surface deformations and forces. Under the assumption that the 

normal and tangential problem are decoupled at the even half-space surface [21] the 

deflection in the direction of the X-axis is caused by a shear stress τzx at the grid point. 

However, in order to model the friction conditions, the components of the stress at the grid 

point relative to the actual curved surface 

 

*

*

cos sin ,

sin cos .

zx

zx

p

p p

   

  

 

 
  (2) 

need to be considered. This is illustrated in Fig. 9. Assuming there exists friction according 

to the COULOMB’s law of friction in its simplest form [23], it has to be 

 * *p    (3) 

so that the equilibrium can be maintained. Otherwise, the point will slide. Whether the 

condition (3) is fulfilled depends only on the geometry and the friction coefficient. In the 

left graph in Fig. 9 the condition is not fulfilled. Thus, the grid point of the disk profile 

slides until the relation (3) is fulfilled again (right graph in Fig. 9). The corresponding new 

values for τ
*
 and p

*
 cause a change of the stresses in the reference system of the even 

half-space which can be determined with the reverse transformation 

 
 

* *

* *
 

sin cos ,

 cos sin .

zx p

p p

   

  

 

 
  (4) 

Fig. 8b displays results which are obtained in such a fashion. The contact area (green dots) 

is shown for an exemplary indentation. The inner values for the displacements and stresses 

can be obtained from the conditions at the surface with the fundamental solutions of 

BOUSSINESQ and CERRUTI (see [20]) as in Section 2. Fig. 10 displays a qualitative view of the 

worst principal stress in the disk (upper image). For comparison, the finite element results 

are displayed below.  

As in the previous section, it transpires that although there is some rough agreement of 

the results, there are also quite substantial differences, even on the qualitative level. The 

most striking difference is once more the notch stress in the lower regions of the lobes. The 

maximum is clearly shifted towards the contact area for the half-space approach, while it is 

at a much lower position of the lobes for the finite element results which consider the actual 

shape more appropriately. While the half-space approach may deliver sufficient results in 

the contact regions for the analysis of particular problems, the overall results still remain 

unsatisfactory. Therefore, other methods to utilize the efficiency of the convolution for the 

calculation of deformations and stresses in complex shapes such as the fir-tree must be 

found. One such approach is described in detail in the next section. 



 Numerical Methods for Simulation of Deformations and Stresses in Turbine Blade Fir-Tree Connections 9 

 

Fig. 10 A rough qualitative comparison of the results for the worst principal stress as 

obtained with the FFT-based BEM for the half-space (upper image) and a finite 

element simulation (lower image). The maximum of the worst principle stress is 

attained in the lower notch regions in the FE approach, while for the half-space 

approach it is shifted upwards to the lower ends of the contact regions. Image used 

with the kind permission of Rolls-Royce 

4. FFT-BASED BEM BEYOND THE HALF-SPACE APPROXIMATION 

It is shown in the last two sections that the rapid half-space approach may provide a 

rough approximation of the results in the contact regions of a fir-tree; yet, the overall 

results were unsatisfactory. Therefore, other methods must be found in order to utilize the 

efficiency of the convolution for calculating deformations and stresses in complex shapes. 

Various techniques which have been developed in the past may be applied to accomplish 

this task. In 1991, GAO introduced a first-order perturbation method for the half-space 

approximation to take into account stress concentration effects of slightly undulating 

surfaces [24]. In later years, various methods were developed to accelerate the classical 

BEM for completely arbitrary shapes which, in part, make use of the low computational 

complexity of the FFT (see for example [25], [26] and [27]), or utilize other techniques 

such as hierarchical matrices (see for example [28]) to accelerate the calculation. Recently, 

it was illustrated in [11] and [12] that the integral equations of the BEM for completely 

arbitrary shapes (no half-space) can be obtained in a manner very similar to the FFT-based 

half-space approach: For the case of the half-space, the boundary integral (1) is evaluated 

in the plane of the two coordinates x and y which perfectly aligns with the even half-space 

surface. This makes it possible to align a regular two-dimensional grid on which the FFT is 

performed with the domain (see Fig. 11a).  
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 a) b) 

Fig. 11 a) A uniform grid aligned with the even surface of a half-space, b) an arbitrary 

shape fully enclosed with a uniform three-dimensional grid 

For arbitrary shapes, the boundary integral equations represent convolutions over the entire 

three-dimensional space which encloses the arbitrary shape (see Fig. 11b). It is shown in 

[11] and [12] how one has to appropriately set zeros at grid points which are not in close 

proximity to the actual surface so as not to distort the results one obtains with this 

technique. Using the FFT in such a fashion as to obtain the boundary integrals on arbitrary 

shapes lowers the computational complexity from O(n
4
) to O(n

3 
log n

1.5
). While this is still 

for one dimension higher than the O(n
2 
log n) complexity of the half space, the technique 

opens up opportunities for further reduction in computational complexity through a 

variable grid (see [12]), and offers the advantage of utilizing highly efficient implementation 

of the FFT, which can be accelerated even further on parallel systems such as the Graphics 

Processing Unit (GPU). 

We now build upon the results found in [11] and [12] where the FFT is used to 

accelerate the calculation of the boundary integrals on arbitrary shapes for the LAPLACE 

equation. The same technique is applied here, but for the two-dimensional NAVIER equation. 

Boundary integrals 

NAVIER’s equation is  

 
, ,

1 1
0

1 2
j ji i jj iu u b

 
  


, (5) 

where i,j{1,2,3} and bi is the force density field [20]. For the case of plane displacements, 

the NAVIER equation remains as in (5), but with i,j {1,2}, [29]. This case can then easily 

be transformed into the case of plane stress, by replacing   with / (1 )   and leaving 

the value for μ unchanged [29], see also [30] and [31].    

A single unit point force shall act in a point 0x , and in the direction of a unit vector e , 

so that in Eq. (5), it is 0( )i ib x x e  , which yields the equation 

 * *

0, ,

1 1
( )

1 2
j ji i jj iu u x x e

 
   


. (6) 

The solution ui
*
 of Eq. (6) is called the fundamental solution of Eq. (5). It can be expressed 

in terms of a matrix vector product with 

 * *

i k kiu e u . (7) 
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With the BETTI’s theorem [32], the divergence theorem, and the definition of the 

fundamental solution given in Eq. (6), one obtains (see [33]) SOMIGLIANA’s identity  

 
* *

0 0 0( ) ( , ) ( ) ( , ) ( ) ,i ij j ij j

S S

u x u x x t x dS t x x u x dS     (8) 

which relates the deformations ( )ju x  and stress vector ( ) ( ) ( )
j jk k

t x x n x  on the boundary 

S (outward normal vector nk) to the deformation 0( )
j

u x  at a particular inner point 0x . The 

term 
*

0( , )ijt x x  which occurs in (8) is briefly explained in the following:  note that a certain 

stress field σij
*
 belongs to the fundamental solution for the deformation field ui

*
. Depending on 

the position 0x , this sets a corresponding stress vector 
* *

0 0( , ) ( , ) ( )j jk kt x x x x n x  on the given 

boundary. A matrix tij
*
 is then constructed so as to express this stress vector with  

 * *

j i ijt e t .  (9) 

Accordingly, and with the material law for a linearly elastic isotropic solid [34], one 

obtains 

 * * * *

, , ,

2
( )

1 2
ij ik k j ij k k ik j kt u n u n u n





  


. (10) 

The fundamental solution for the arbitrary three-dimensional case or for the cases of 

plane displacements or plane stress can be found in the literature. For simplicity, we will 

from now on only consider the case of plane displacements. Through Eq. (7), the 

two-dimensional fundamental solution of Eq. (5) is for this case given with [33] 

 

2

0 0*
(3 4 )ln( ) ( )( ) /

8 (1 )

ij i i j j

ij

r x x x x r
u

 

 

    



,  (11) 

where 2 2

0 0( ) ( )r x x y y    . Note that we choose to denote xi=1 as x and xi=2 as y. 

Inserting Eq. (11) into Eq. (10) yields  

 

0 0* 0

2

0 0

( )( )1
(1 2 ) 2

4 (1 )

                             (1 2 )

i i j j k k
ij ij k

j j i i
i j

x x x x x x
t n

r r r

x x x x
n n

r r

 
 



    
      

  
    

 

  (12) 

providing through Eq. (9) the stress vector tj
*
 of the fundamental solution on the boundary 

for a certain 0x . 

Let us now insert the fundamental solution, that is Eqs. (11) and (12), into 

SOMIGLIANA’s identity, Eq. (8). When we write out the result in detail and choose to denote 

ui=1 = u and ui=2 = v, we obtain for the first component of the deformations at a particular 

inner point 0 0 0( , )x x y  due to the deformations and stresses at the surface 
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2

1 0 2 0 0
0 0 1 2 2

2

0 0 0

1 22 2 2

0 0
14

( ) ( )( )1
( , ) (3 4 ) ln( )

8 (1 )

( ) ( ) ( )1
             1 2 2

4 (1 )

2( )( )
                                + (

S

S

t x x t x x y y
u x y r t dS

r r

x x u x x u y y
n n dS

r r r

x x y y
v n

r


 


 

  
     



     
       

    

 





 

 

0 2 0

1 0 2 02

) ( )

1 2
                                                  ( ) ( ) .

S

x x n y y

v n y y n x x dS
r



  

 
    





  (13) 

For the second component, we obtain 

 

2

2 0 1 0 0
0 0 2 2 2

2

0 0 0

1 22 2 2

0 0
14

( ) ( )( )1
( , ) (3 4 ) ln( )

8 (1 )

( ) ( ) ( )1
             1 2 2

4 (1 )

2( )( )
                                (

S

S

t y y t x x y y
v x y r t dS

r r

y y v x x v y y
n n dS

r r r

x x y y
u n x

r


 


 

  
     



     
       

    

 






 

 

0 2 0

2 0 1 02

) ( )

1 2
                                                    + ( ) ( ) .

S

x n y y

u n x x n y y dS
r



  

 
   





  (14) 

Exemplary results 

We now seek to perform an exemplary calculation of the boundary integrals (13) and 

(14) for an arbitrary shape with the FFT making use of the use of technique [12]. In order to 

test the method, we use a simple analytical solution for the NAVIER equation 

 
0 1 0 2

1
 ,   

2 2
u x C v y C

 
 

 


       (15) 

with the stress distribution 

 
0  ,   0 ,   0.x y xy        (16) 

The chosen geometry of the shape and Eqs. (15) and (16) then set the analytical solutions 

for the boundary values for the deformations and the stress vector. Both the chosen shape 

and the stress vector on its boundary are displayed in Fig. 12a. The raw FFT results for the 

deformations u and v, as obtained for the chosen numerical values of μ=1, 0.3   and 

σ0=2, are displayed with colored surfaces in Fig. 12b. The corresponding analytical solution 

for the deformation on the boundary is displayed with the red line in Fig. 12b. The 

numerical results clearly show the linear dependence we expect (see Eq. (15)). Very close 

to the boundary there are slight oscillations in the raw results. Such small distortions were 

observed on other problems in previous studies and can generally be eliminated easily 

without an increase in computational complexity (see [12]). We can conclude from the 

small example that the FFT approach commonly used in contact mechanics to solve a BEM 
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problem for a half-space may be adopted in a similar way to solve problems on completely 

arbitrary shapes. However, we have presented only a first rough example and extensive 

research is required to develop the method further.  

   
      a) b) 

Fig. 12 a) An arbitrary two-dimensional shape discretized with boundary elements and 

fully enclosed with a two-dimensional grid for the application of the FFT. The 

chosen stress vector for the test calculation is displayed with red arrows. The 

resolution of both the boundary and the FFT gird is lower than in the adjacent 

images merely for purposes of a better visualization. b) Raw results of the 

convolution for the deformations u and v on the boundary of the chosen shape as 

obtained for numerical values of μ=1, =0.3 and σ0=2. The corresponding analytical 

solution for the deformation on the boundary is displayed with a red line 

5. CONCLUSION 

In this paper, different numerical methods for simulating deformations and stresses in 

the turbine blade fir-tree connections were discussed and in part extended for the 

application on the complex geometry of the fir-tree. It was highlighted that both the 

Method of Dimensionality Reduction (MDR) and the Boundary Element Method (BEM) 

are rapid simulation techniques for the half-space and are well suited for wear simulations. 

It was shown that both techniques can provide first insights to better understand the fir-tree. 

In the region of the contact area of the fir-tree lobes, the results for deformations and 

stresses obtained with the half-space models are similar to those obtained with finite 
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element models. Generally, however, the complex fir-tree geometry exceeds the 

limitations of the half-space models. Also mentioned are ways of extending the half-space 

model to the geometry of the fir-tree connection, such as a first-order perturbation method for 

the half-space approximation to take into account stress concentration effects at slightly 

undulating surfaces introduced by GAO in 1991 [24]. In addition, a recent approach for 

completely arbitrary shapes (see [11] and [12]) inspired by the rapid FFT based half-space 

BEM, was discussed and applied on the NAVIER equation. A small example was presented 

to indicate that the use of this technique which utilizes the FFT to obtain the boundary 

integrals on completely arbitrary shapes may be a viable method and worthy of further 

investigation. This is due to the lower computational complexity of the method 

O(n
3 
log n

1.5
) than the inversion of the standard BEM matrix O(n

4
). Other aspects which 

make the technique appealing are the potential of decreasing this complexity even further 

through adaptive grids, efficient parallel implementations of the FFT, and the similarity of 

the method to the established and very successful FFT-base BEM for the half-space.  
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