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Abstract. The article presents the results of the research on the plastic flow in the 

finish turning of 316L (X2CrNiMo17-12-2) stainless steel under dry cutting conditions. 

The steel was turned at variable cutting speeds and a constant depth of cut. The 

investigations were based on the Parameter Space Investigation method (PSI) which 

allowed minimizing the number of test points. It was observed that the phenomenon of 

slide flow occurred in the range of cutting speeds and feed rates under examination and 

its intensity depended on the values of these parameters. The phenomenon was more 

intense in the range of medium and higher cutting speeds and lower feed rates. The side 

flow results in significant changes between the real and theoretical values of roughness 

parameter Rz, which range from 40% up to even 330%. 
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1. INTRODUCTION 

Due to its favorable mechanical and performance properties, 316L (X2CrNiMo17-12-2) 

stainless steel is one of the materials most frequently used in the manufacture of medical 

products as described by Fazel-Rezai [1] and Ramsden et al. [2]. Ristić et al. [3] as well as 

Singh et al. [4] informed that in many cases it is an alternative for titanium alloys, which are 

widely used in the production of medical devices. Supriya et al. [5] revealed that 316L 

stainless steel is characterized by a high cracking strength and fatigue strength index as well 

as by a high corrosion resistance. According Wegener et al. [6], this material is included 

among materials difficult to process on account of low quality of the surface obtained, 

quick wear of the tool, low efficiency and high costs of machining. This is caused by a high 

temperature in the cutting zone as described by Mia et al. [7]. In order to reduce the 

temperature, Maruda et al. [8] performed machining with the use of cutting fluids, which, 
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however, have a negative impact on the human health and the environment. It is for this 

reason, according to Bagaber et al. [9], that dry cutting should be considered an optimal 

solution. However, dry cutting entails threats in the form of disturbances which cause 

imperfections that unfavorably affect the surface integrity as described by Acayaba et al. 

[10]. Suresh et al. [11] found that the side flow is one of such tribological disturbances 

which occur in the cutting zone. It depends on numerous factors, of which the feed rate, 

nose radius and tool wear are of major importance [12, 13, 14].  

Pekelharing, and Gieszen [15] were among the first to identify the phenomenon of side 

flow and described its negative impact on the machined surface quality. According to 

Coelho et al. [16], side flow results in deformations of a part of the undeformed chip in a 

direction opposite to feed f and is caused by direct compression of the material by the minor 

flank and the work surface, when thickness h of the undeformed chip is smaller than so-

called minimum undeformed chip thickness hmin. On the other hand, the minimum thickness 

of the undeformed chip depends on the values of feed rate f and cutting speed Vc, the 

hardness and structure of the material being machined and the geometry of the cutting 

wedge. As stated in Grzesik [17], the phenomenon of side flow can also be caused by the 

outflow of the material plasticized under high temperatures and high pressure values 

generated in the cutting zone and caused by a worn out cutting wedge. 

Sivaiah and Chakradhar [18] investigated the influence of cryogenic cooling on 17-4PH 

stainless steel turning was compared with dry, wet and MQL conditions of machining. The 

following parameters were applied: Vc = 78.5 m/min, f = 0.147 mm/rev and ap = 0.20 – 1 

mm. Increased depth of cut resulted in an increment of surface roughness under all cooling 

conditions due to a rise in temperature in the cutting zone which brings about a higher tool 

wear. Side flow was observed both at lower and higher depths of cut. 

Fernández-Abia et al. [19] analyzed the issues related to high performance machining 

of austenitic stainless steels and the phenomenon of side flow. It was determined that 

machining a material at a higher cutting speed resulted in the formation of side flow. A 

complete plasticization of the material being machined was reported to be the cause of 

side flow. As a result of plasticization the material partly flows from the major cutting 

edge towards the minor one. 

Zou et al. [20] analyzed the mechanism of tool wear in the process of the finish turning 

of stainless steels, i.e., 17-4 PH martensitic and 321 austenitic steels. For both steels the 

following parameters of cutting were used: f = 0.10 mm/rev and ap = 0.30 – 0.35 mm, 

whereas for 17-4 PH stainless steel: Vc = 350 – 400 m/min, and for 321 stainless steel: Vc = 

300 – 350 m/min. For both stainless steels the phenomenon of slide flow was observed, in 

particular for 321 stainless steel. Similarly, Fernández-Abia et al. [19] determined that the 

occurrence of side flow was related to the action of high pressure and temperature in the 

contact zone of the chip with the cutting wedge, which as a result cause a complete 

plasticization of the material. Plasticization generates a partial flow of the material from the 

major to the minor cutting edge and its adhesive bonding to the freshly machined surface of 

a workpiece. According to the authors, a partial diffusion of 321 steel to the cutting wedge 

material takes place simultaneously with the side flow, but this opinion has not been 

verified by tests. 

Liew et al. [21] investigated wear of tools made of PCBN in the turning process of 

AISI 420 modified stainless steel at low cutting speeds. It was determined that the 

phenomenon of side flow occurred at cutting speeds of 44 m/min and 130 m/min. As 

reported by Kishawy and Elbestawi [22], the analysis of the impact of process parameters 
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on the phenomenon of side flow of a material being hard turned revealed a strong 

dependence of side flow on the material being machined on the cutting wedge features. 

An increase in the nose radius and its wear enhances side flow of the material, whereas 

the feed rate only slightly affects the intensity of the phenomenon. 

The aim of the investigations presented herein is to determine the impact of the 

cutting speed and feed rate on the intensity of side flow in the finish turning process of 

316L stainless steel under dry conditions. 

2. CONDITIONS 

316L (EN X2CrNiMo17-12-2) stainless steel of the chemical composition as 

illustrated in Table 1 was machined. 

Table 1 Chemical composition of EN X2CrNiMo17-12-2 (EN 10088-:2014 standard) 

Element C Cr Fe Mi Mo Ni P Si S 

% ≤ 0.030 16.0 − 18.0 61.9 − 72.0 ≤ 2.0 2.00 − 3.00 10.00 − 14.00 ≤ 0.045 ≤ 1.0 ≤ 0.030 

The tests were performed on the CNC lathe, type CTX 510, manufactured by DMG 

MORI. A cutting tool with CoroTurn SDJCR 2525M11 holder and CoroTurn DCMX 

11 T3 04-WM 1115 insert made of a cemented carbide type GC1115 with 

(Ti,Al)N+(Al,Cr)2O3 coating deposited by the PVD method. The geometry of the cutting 

edge was as follows: tool cutting edge angle r = 93°, tool rake angle  = 18°, tool 

clearance angle  = 7°, nose radius r = 0.4 mm, land width of the face bn = 0.1 mm.  

The cutting data were as follows: cutting speed in the range of 150 − 500 m/min, the 

feed rate in the range of 0.05 − 0.4 mm/rev, and constant depth of cut equal to 0.5 mm. 

These data correspond to the finish turning conditions.  

Feifei et al. [23] claim that the plastic side flow contributes to the increment of the Rz 

(maximum height of the roughness profile) roughness parameter when elasto-plastic 

materials are machined. It was determined that when a material is turned at a feed rate f 

with a tool which has nose radius r, the real value of parameter Rz can be significantly 

higher than the Rzt value calculated according to the well-known equation [24]: 

 Rzt = f 2/(8r) (1) 

where f is the feed and r is the nose radius.  

The tests were planned on the basis of the Parameter Space Investigation method 

(PSI). The method allows planning an experiment with minimizing the number of test 

points, which are located in determined places in a multi-dimensional space, as Statnikov 

and Matusov described in [25]. It means that the test points projections on the X1, X2 , etc. 
axes are located at the same distance from one another (Fig. 1). The method has been 

successfully used for the investigation of cutting processes by Maruda et al. [8, 26]. 

The texture of the machined surface was analyzed with the use of an Alicona Infinite 

SL optical measuring system and the results of measurements were obtained using the IF-

Laboratory Measurement Module software package. 
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Fig. 1 Location of test points in a multi-dimensional space in accordance with the PSI method 

Table 2 Coordinates of test points according to the PSI method 

Factors 
Test Points 

1 2 3 4 5 6 7 

X1 0.5000 0.2500 0.7500 0.8750 0.3750 0.6250 0.1250 

X2 0.5000 0.7500 0.2500 0.6250 0.1250 0.3750 0.8750 

3. RESULTS 

A scheme of the side flow formation is presented in Fig. 2. When very thin chips are 

formed, the conditions which ensure a high or complete plasticization of the chip material 

are created. 

 

Fig. 2 The scheme of the side flow formation (based on [17]) 

Fig. 3 presents images of machined surfaces obtained for 7 test points in accordance 

with the PSI method. Side flow of the material was observed at each of the points. The 

intensity of the phenomenon was higher within the range of medium and higher cutting 

speeds and at lower feed rates (red color), whereas side flow was less intense in the 
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whole range of cutting speeds, but at higher feed rates, which were within the range 

under examination (blue color).  

 

Fig. 3 2D images of 316L stainless steel machined surfaces 

Fig. 4 presents 3D images of machined surfaces obtained for 7 test points in accordance 

with the PSI method. In the zone of an intense plastic side flow (red color) for higher cutting 

speeds and lower feed rates an irregular distribution of single burrs and a few clear areas of the 
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flowing material were observed, whereas within the range of medium cutting speeds and 

lower feed rates side flow was regular on the whole length of the machined surface. In turn, in 

the zone of a slight intensity of plastic side flow (blue color) within the range of medium and 

higher cutting speeds and medium feed rates minimal and irregular side flow was observed, 

whereas within the range of lower cutting speeds and higher feed rates minimal side flow was 

observed on the whole length of the machined surface. 

 

Fig. 4 3D images of 316L stainless steel machined surfaces 

Fig. 5 illustrates surface roughness profiles and values of surface roughness parameter 

Rz obtained at individual test points in accordance with the PSI method. Lower values of 

surface roughness parameter Rz, from 3.58 m to 4.42 m were obtained at points 3,5,6 

(blue color), medium, from 6.38 m to 6.69 m, at points 1 and 4 (green color), and 

maximum values, from 9.20 m to 12.2 m, were obtained at points 2 and 7 (red color). 

Thus, it follows that higher and medium cutting speeds from the range under examination 

and lower feed rates ensure a decrease of surface roughness parameter Rz, whereas higher 

feed rates cause its increase.  
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Fig. 5 Surface roughness profiles of 316L stainless steel 

The real and theoretical values of surface roughness parameter Rz were also analyzed. 

Fig. 6 illustrates the percentage differences between them. 

Significant differences between the real and theoretical values of roughness parameter 

Rz were observed. Within the range of higher cutting speeds and lower feed rates a decrease 

of the order of 40% in the real value of roughness parameter Rz was obtained. In the other 

ranges of machining parameters an increase from 40% up to 330% was achieved. 
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Fig. 6 Percentage differences between real values of surface roughness parameter Rz 

obtained after finish turning of 316L stainless steel compared to theoretical (t) 

values Rzt 

4. CONCLUSIONS 

The paper presents the results of research on plastic side flow of 316L stainless steel 

(EN X2CrNiMo17-12-2) in the finish turning process under dry cutting conditions. The 

effect of the cutting speed and feed rate on the intensity of side flow was analyzed. The 

following conclusions are made: 

▪ Plastic side flow of the material occurs within the whole range of cutting speeds 

and feed rates under examination. 

▪ In the cutting speed ranges from 280-420 m/min and feed rates 0.1-0.2 mm/rev a 

higher intensity of plastic side flow was observed, whereas lower was obtained in 

the range of feed rates 0.1-0.2 mm/rev at cutting speeds 190-460 m/min. 

▪ Surface roughness parameter Rz depends on the values of cutting speed and feed 

rate. Surface roughness parameter Rz decreased within the range of cutting speeds 

280-420 m/min and feed rates 0.1-0.2 mm/rev, whereas it increased within the 

range of cutting speeds 190-460 m/min and feed rates 0.2-0.35 mm/rev. 

▪ A significant difference, ranging from 40% up to even 330%, was noted between 

the real and theoretical values of surface roughness parameter Rz. 
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