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Abstract. For the steady wear state of two contact problems involving power-law graded 

materials, closed-form solutions are derived in terms of pressure distribution and limiting 

shapes of profile. Both gross slip of an initially flat-ended cylindrical punch on a power-

law graded half-space and the load-controlled fretting wear under partial slip of an 

initially parabolic indenter are studied. In the case of gross slip at fixed penetration depth 

there exists a certain exponent of elastic inhomogeneity, for which the effective volume 

change takes its maximum value. To minimize wear due to fretting under partial slip, an 

amplitude dependent design of the material gradient is necessary. For large amplitudes of 

the tangential force a gradient ranged from a soft surface to a hard ground is beneficial, 

small amplitudes require a reverse gradient characterized by a hard surface and a soft 

ground. However, the choice of the material gradient also has a decisive influence on the 

strength of stress singularities at the contact edge and thus the initiation of fretting fatigue 

cracks, which is why it is discussed in more detail. 

Key Words: Contact Mechanics, Gross Slip, Partial Slip, Fretting, Wear, Functionally 

Graded Material 

1. INTRODUCTION 

If the normal contact of two bodies is superimposed by small tangential oscillations, 

partial slip occurs within the contact interface which causes wear. This phenomenon is 

called fretting and arises in numerous engineering applications like power steam generator 
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tubes [1], roots of compressor and turbine blades [2], artificial hip joints [3], electrical 

contacts [4], railway axles [5], etc. Extensive investigations have been made in order to 

tackle the fretting problem, which can be responsible for a shortened life cycle and the 

failure of machine components. Most analytical considerations apply to elastically similar 

materials and are mainly restricted to the solution of the steady contact state, at which all 

partial slip is ceased and thus no further wear takes place [6, 7]. Particular attention was 

paid to the calculation of the limiting shape of the profiles, which does not depend on the 

type of wear criterion [8, 9]. It merely requires knowledge of the solutions of normal 

contact problems between the rigid cylindrical indenters with appropriately shaped tips 

and the elastic half space. Due to the fact that the (minimum) stick area does not change 

during the transition from the initial to the steady state, the diameter of the indenter is a 

priori known [10]. However, the calculation of the stress evolution and profile change 

during the transient wear process, require an explicit wear law. Most numerical wear 

simulations are based on Archard’s well-known wear law [11]. It has been implemented 

in finite element methods as well as other efficient numerical methods based on an 

integral equation approach or quadratic programming [12-14]. An extremely efficient and 

therefore very fast method for simulating fretting wear is the method of dimensionality 

reduction [15]. For simulations of gross slip wear it was shown that the calculation time 

using this method is for several orders lower than that of models based on the finite element 

method [16]. The method was not only used for the numerical study of classic fretting 

problems [17, 18], but also for the calculation of the limiting shape of the worn profile under 

multi-mode fretting and the results are in good agreement with experimental ones [19]. 

All the above mentioned contributions to the study of fretting wear have in common 

that they only consider elastically homogeneous materials. Corresponding studies of 

elastically inhomogeneous materials are scarce although it is well-known that a controlled 

gradient of the elastic modulus can lead to a greater resistance to contact and friction 

damage [20]. For instance, Hertzian cone cracks are suppressed due to the reduction of 

the maximum tensile stresses in the surface [21]. One reason for the lack of research into 

fretting of so-called functionally graded materials lies in the difficulty of solving such 

problems. The few works are mostly related to special material gradients and plane 

contact problems, which are solved numerically [22, 23]. A powerful numerical method 

for solving three-dimensional fretting contact problems involving arbitrary material 

gradients goes back to Wang et al. [24], however, studies on wear are not included. 

In this paper we derive analytical solutions for the steady wear state of two frictional 

contact problems involving power-law graded materials, whose gradient perpendicular to 

the half-space surface is prescribed by 
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Although this gradient is physically unrealistic due to a vanishing or infinitely large 

elastic modulus at the surface, it reflects qualitative behavior of the real gradient materials 

quite well. The great advantage of a material gradient according to Eq. (1) is that it is 

probably the only one for which contact problems can be solved in a closed analytic form. 

Whereas complete solutions of frictionless normal contact problems with and without 

adhesion have been known for some time [25, 26], solutions of tangential contacts were 
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only recently developed [27, 28]. Taking into account the latter results, in Chapt. 2 we 

study the gross slip of an initially flat-ended cylindrical punch on a power-law graded 

half-space. Chapt. 3 deals with fretting wear under load-controlled conditions in the 

partial slip regime for the contact between a rigid initially parabolic indenter and a power-

law graded half-space. For both problems, complete solutions are given in terms of 

stresses and limiting shapes of the profile. In addition, the influence of the exponent of 

elastic inhomogeneity as well as the tangential force amplitude on the wear volume is 

discussed. 

2. GROSS SLIP WEAR ANALYSIS OF A RIGID PUNCH ON A POWER-LAW GRADED  

HALF-SPACE 

We first consider the contact between a rigid flat-ended cylindrical punch with a 

circular base and a power-law graded elastic half-space as shown in Fig. 1. The rigid 

indenter is pressed into the half-space by an initial normal force FN,0, giving rise to a 

prescribed indentation depth d. Subsequently, the power-law graded half-space is moved 

horizontally with constant speed causing wear on the punch. In contrast, wear of the half-

space is assumed to be negligibly small. The indentation depth is kept constant during 

sliding. From the practical point of view, this is a hardly controllable condition. However, 

we later explain this choice and discuss the gross slip under a fixed normal force. 

 

Fig. 1 Initial state of a sliding contact between a rigid flat punch and a power-law graded 

elastic half-space 

It is supposed that normal and tangential contacts are uncoupled. Since the indenter is 

rigid, uncoupling is, strictly speaking, only valid for a Poisson ratio of ν =1/(2+k), known 

as Holl ratio. Thus, negative exponents of elastic inhomogeneity would lead to unphysical 

values.  However, more detailed studies show that there is only a very weak coupling if 

we consider Poisson’s ratios of 0.5 instead and all solutions deviate only slightly from the 

solutions using Holl’s ratio [27]. For this reason, we adopt it for negative exponents as 

well. The solution of the initial contact state of Fig. 1 can be taken from Booker et al. 

[25]. The normalized pressure distribution is given by  
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where hN(k,) is defined in the appendix. The pressure has a singularity at the edge of 

contact which becomes milder with increasing exponent of elastic inhomogeneity. The 

displacement of the half-space surface reads 
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where 2F1(a,b;c;z) represents the Gaussian hypergeometric series 
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According to Archard’s wear law, the wear rate during sliding will be higher at larger 

pressures, so that wear takes place primarily at the edge of contact. After a sufficiently 

long time the pressure distribution becomes uniform and the rigid punch reaches a steady 

state profile. This final shape coincides with the surface displacement of a circular domain 

on a power-law graded half-space which is loaded by a constant pressure. The solution of 

the steady contact state can be taken again from [25]. The displacement of the half-space 

surface is 

 

2

2 1 2

1 2

2 1 2

1 1
F , ;1; for 0

2 2( )

1 1 1
F , ;2; for

2 2 2

k

k k r
r a

aw r

d k a k k a
r a

r r





   
   

 
 

    
  

   

 . (5) 

According to Eqs. (3) and (5), the shape of the indenter and the surface displacements 

of the power-law graded half-space both in the initial state and the steady wear state are 

depicted in Fig. 2 and 3. The gradient material in Fig. 2 is characterized by a negative 

exponent of elastic inhomogeneity (k = -0.5), which maps a grading from a hard surface to 

a soft ground. In contrast, the displacements in Fig. 3 correspond to a power-law graded 

half-space with a soft surface and a hard ground (k = 0.5).   
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Fig. 2 Indenter profile and surface displacement of a power-law graded half-space with a 

negative power-law exponent k=-0.5 in the initial and the steady wear state 

 

Fig. 3 Indenter profile and surface displacement of a power-law graded half-space with a 

positive power-law exponent k=0.5 in the initial and the steady wear state 

A comparison of both indicates that the contact depth becomes larger and the surface 

displacements decrease with increasing the power-law exponent. Furthermore, the 

effective volume changes of the profile shape are highlighted by the shaded areas. Note 

that these volume changes do not represent absolute wear volumes. The effective volume 

change can be calculated as follows: 
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Inserting Eqs. (3) and (5) into Eq. (6) yields 
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Fig. 4 illustrates the dependence of the normalized effective volume change on the 

exponent of elastic inhomogeneity. While it tends to zero at the edges of the exponent's 

domain, it reaches a maximum of 15.5 % at a defined exponent of k = 0.169. The absence 

of any change in the profile for k = -1 and k = 1 is a consequence of the vanishing contact 

stiffness [29]. Only in the special case of a linear-inhomogeneous, incompressible half-

space there exists non-zero contact stiffness. This is the famous Gibson medium which 

responds to normal stresses on its surface like a Winkler foundation [30]. Therefore, once 

again, the initial shape of the profile does not change.  

 

Fig. 4 Normalized effective volume change of the profile shape as a function of the 

exponent of the elastic inhomogeneity 

Note that the wear process takes place under constant indentation depth. However, the 

shape variation leads to a redistribution of the contact pressure and thus a change of the 

normal force. Simple integration of the pressure distribution in the initial and the steady 

state over the contact area gives 
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Fig. 5 demonstrates that the normal force generally decreases during the transition 

from the initial to the steady state, regardless of the choice of the characteristic depth. One 

could say that the system is trying to achieve an optimized state. The magnitudes of the 

normal forces according to Eqs. (8) and (9) strongly depend on both the exponent of 

elastic inhomogeneity k and the characteristic depth z0. The qualitative behavior of the 

normal force depending on these parameters can be taken from Fig. 5 and is compared in 

Table 1 with the behavior of the elastically homogeneous half-space. At small characteristic 
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depths coupled with a positive power-law exponent or large characteristic depths coupled 

with a negative exponent, a larger normal force is required to produce the same 

indentation depth as for elastically homogeneous materials (exponents closer to -1 or 1 

are excepted). In a very rough approximation one can compare the mentioned cases with 

the indentation of a layered half-space. Both a very thin and soft layer on a stiff substrate 

(ES >> E0 >> EL) as well as a very thick and stiff layer (EL >> E0 >> ES) on a soft 

substrate require a greater normal force for indentation. In a similar way, the tendencies 

associated with a decrease in the required normal force can be interpreted.  

 

Fig. 5 Normal force in the initial and steady state as a function of the power-law grading 

exponent for different characteristic depths  

Another interesting result is derived from the ratio of the normal forces given by Eqs. 

(9) and (8): 
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It is independent of the characteristic depth z0 as well as an even function of exponent k 

and confirms once again the fundamental decrease of the normal force. 

Finally, let us briefly discuss the more practical boundary condition of gross slip under 

a constant normal force. Apart from a scaling factor, the relevant initial and steady state 

equations are the same as those given here. Under fixed normal force the indentation 

depth generally increases during the transition from the initial to the steady state. The 

ratio of the indentation depth in the final state to that in the initial state is given by the 

reverse of Eq. (10). Analogously, by rearranging of Eqs. (8) and (9), we obtain reverse 

curves to those shown in Fig. 5. In other words, very small values of the normal force 

under fixed penetration depth correspond to very high, and in the limit, even infinitely 
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large values of the penetration depth under fixed load. This unphysical behavior is due to 

the choice of a power-law material gradient. Hence, we decided to prefer a study under 

fixed penetration depth. 

Table 1 Tendencies of the change of normal force in comparison to an elastic homogeneous 

material 

 z0 < a z0 > a 

-1 < k < 0 FN ↓ FN ↑ 

0 < k < 1 FN ↑ FN ↓ 

3. FRETTING WEAR ANALYSIS OF THE CONTACT BETWEEN A RIGID PARABOLIC INDENTER 

AND A POWER-LAW GRADED HALF-SPACE  

We now come to the much more important partial slip contact problem between a 

rigid initially parabolic shaped indenter and a power-law graded half-space depicted in 

Fig. 6. The rigid indenter is pressed against the half-space by a fixed normal force FN and 

subsequently subjected by an oscillating tangential force Fx whose magnitude does not 

exceed limiting value μ FN. Once again, we suppose uncoupling of the normal and 

tangential contact as mentioned in the beginning of Chapt. 2 and assume that the indenter 

is rigid although it can wear. By contrast, wear of the power-law graded material should 

be neglected. At this point, it should be noted that all results are expected to remain valid 

even for opposite assumptions. Due to the change in the surface material properties of the 

worn gradient material, the redistribution of the pressure during the transient process will 

be different but the steady state should be unaffected by that. We consider very severe 

wear which means that wear proceeds until all partial slip is ceased.  

 

Fig. 6 Initial state (left) and steady state (right) of a partial slip contact problem between a 

rigid (initially) parabolic shaped indenter and a power-law graded half-space 

In the initial state shown on the left in Fig. 6, the solution of the normal contact problem 

was derived by Giannakopoulos and Suresh [31]. The penetration depth, normal force, 

pressure distribution and normal surface displacement outside of the contact area are 

given by: 
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where B( ; , )z x y  represents the incomplete beta function according to 
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The solution of the tangential contact problem goes back to Heß [27]. The (minimum) 

stick radius c as a function of (fixed) tangential force amplitude Fx is 
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where a0 denotes the initial contact radius [28,32]. Herein, it was made use of the usual 

assumptions: The direction of the tangential stresses coincides with the direction of the 

applied tangential force. Moreover, the (small) slip component perpendicular to the 

applied tangential force is neglected.  

In the steady state depicted on the right in Fig. 6 an inner part of the contact still 

remains in the state of stick so that in this region the final indenter profile coincides with 

the initial one. This stick region of radius b ≤ c is enclosed by an annular domain of outer 

radius a∞ in which the pressure becomes zero and the surfaces of the two bodies are in 

glancing contact. Thus, the steady contact state can be calculated by using the normal 

contact solution of a cylindrical punch of radius b with a parabolic tip. The solution can 

be interpreted as a superposition of two parts:  

I. The solution for the indentation by a parabolic indenter until contact radius b is 

reached. Corresponding load F1 is given by Eq. (12) if we replace a  with b.  

II. A rigid body translation of the contact area of radius b in vertical direction caused by 

an applied load FN -F1 which corresponds to the indentation by a flat-ended cylindrical 

punch whose solution can be adopted from Eqs. (2) and (3). 
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In this way we come to the following solution of the normal contact in the steady state: 
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The tangential contact in the steady state is characterized by a rigid body (tangential) 

displacement of the whole stick area. The corresponding distribution of tangential traction 

due to a tangential force Fx is [27] 
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3.1. Extent of the stick area in the steady state 

In the following, we will prove that the limiting stick radius b in the steady state 

coincides with the minimum stick radius c in the initial state. For this purpose, we study 

the distributions of pressure and tangential tractions at the vicinity of the edge of contact 

in the steady state. Let r = b (1-δ) with δ << 1, then from Eqs. (17) and (19) we obtain the 

asymptotic expressions 
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Both tend towards infinity like δ
(k-1)/2

. However, close to the edge of the contact (within 

the stick area) we expect tangential stresses which are only slightly smaller than the 

limiting value prescribed by Amontons law, i.e. τ∞(δ) = µp∞(δ) - ε. Using Eq. (20) as well 

as Eq. (21) and taking the limit ε→0 yield  
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Remember that the normal force is kept constant during the transient wear process which 

is why we can substitute the normal force FN on the right side of Eq. (22) by the 

expression given in Eq. (12). Since the force F1 is also defined by Eq. (12) - we just have 

to replace radius a0 by radius b, Eq. (22) gives 
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A comparison with Eq. (16) proves that the radius of the stick area in the steady state is 

indeed equal to the radius of the minimum stick area in the initial state. 

3.2. Limiting shape of the profile in the steady state   

The shape f∞ of the steady state profile in the worn area is determined by the 

displacement of the free half-space surface due to the indentation by a cylindrical punch 

of radius c with a parabolic tip. Taking into account b = c as well as Eq. (12), Eq. (18) 

results in 
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where we have introduced    = c/a0 and    = r/a0. 

As can be seen in Fig. 6 on the right, the steady state wear profile is defined as follows: 
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However, the outer radius of worn region a∞ is still unknown and must be determined 

from the condition that the initial profile and the steady state profile coincide at this point: 

 0 0 0( ) ( ) ( ) ( ) ( ) ( )f a f a f a f c w c w a           .  (26) 

Normalized by the contact radius in the initial state, Fig. 7 shows the limiting radii of 

the worn annular region in the steady state as a function of the normalized amplitude of 

the applied tangential force according to Eqs. (16) and (26). Curves are plotted for both a 

homogeneous material and two power-law graded materials characterized by exponents 

 k = -0.5 and k = 0.5. It is obvious that the larger the exponent of elastic inhomogeneity 

the larger the stick radius c and the smaller the radius of the maximum extent of worn 

region a∞. However, this statement should be treated with caution since the radii have 

been normalized to contact radius a0 in the initial state and the latter depends strongly on 

both the exponent of elastic inhomogeneity and the characteristic depth. To be able to 

compare absolute values, we would have to presuppose power-law graded materials, 

which exhibit the same contact area in the initial contact state if subjected by the same 

fixed normal force. Such conditions could be of interest in designing an electrical contact, 

which require both a fixed normal force and a fixed contact area to transmit a certain 

current (the change in conductivity due to the material gradient is disregarded). 
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Fig. 7 Inner radius c and outer radius a∞ of the annular worn region in the steady state 

versus aspect traction ratio Fx /μFN   

Three sample materials that meet these conditions are characterized by the following 

elastic material gradients:  

 0 0 0 0 01. ( ) 2. ( ) 0.88 / 3. ( ) 2.06 /E z E E z E a z E z E z a   .  (27) 

That the entire worn area decreases with increasing exponent of elastic inhomogeneity, is 

also evident in Fig. 8. In this Figure, the final shapes of the wear profile for 3 different 

materials are compared: at the top an inhomogeneous material with k = -0.5, which is 

characterized by a hard surface and a soft ground; in the middle an elastically 

homogeneous material and at the bottom an inhomogeneous material with k = 0.5, which 

maps a half-space characterized by a soft surface and a hard ground. In addition to the 

initial profile of the rigid indenter, its wear profiles are shown for three different 

amplitudes of the tangential force. It need not be mentioned that in all cases the wear 

volume grows with increasing amplitude of the tangential force. But Fig. 8 also indicates 

that in comparison to the homogeneous case, the wear volume is greater for negative 

exponents and smaller for positive ones. In other words, for the three tangential force 

amplitudes considered, the wear in the case of gradient materials with a soft surface and a 

hard ground is smaller than that for those with a hard surface and a soft ground. However, 

that this statement is not universally valid is supported by Fig. 9, in which the wear 

volume is plotted as a function of the amplitude of the tangential force for different 

exponents of elastic inhomogeneity. The worn volume was determined according to 

    0 0( ) ( ) 2 d (0) ( ) ( ) 2 d

a a

c c

V f r f r r r w w r f r r r 
 

        .  (28) 



 A Study on Gross Slip and Fretting Wear of Contacts Involving a Power-Law Graded Elastic Half-Space 59 

 

 

 

Fig. 8 Limiting shapes of the profile for three different tangential force amplitudes and 

three different exponents of elastic inhomogeneity: k = -0.5 (top), k = 0 (middle) 

and k = 0.5 (bottom) 

It is clearly visible that amplitudes less than about 20 % of the limiting value μFN 

cause more wear if the materials show a gradient ranged from a soft surface to a hard 
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ground. This is a significant result which can be important for optimized material 

selection of many technical systems. Numerous force-fitted connections are characterized 

by a very high normal force to realize a preferably large stick region. However, it is well-

known that even the smallest vibrations perpendicular to the normal load result in a small 

annulus of slip which inevitably causes energy dissipation and wear. According to our 

results, in the mentioned range of small tangential force amplitudes, the use of a power-

law gradient material with a negative exponent would reduce wear. Thus, a material 

gradient is needed that ranges from a hard surface to a soft ground. In contrast, an 

operating area of high tangential force amplitudes requires a power-law graded material 

with a positive exponent to minimize wear. The tendencies in the behavior of the wear 

volume depending on the material gradient can be intuited from Fig. 8. It reveals that the 

amount of curvature of the worn area increases significantly with increasing exponent, 

whereas the worn area itself decreases. For very small slip annuli, the influence of the 

curvature on the wear volume seems to predominate.   

 

Fig. 9 Normalized representation of the wear volume as a function of the tangential force 

amplitude for different exponents of elastic inhomogeneity; red curves indicate a 

negative exponent, blue curves a positive exponent  

In Sec. 3.1, we have already examined the normal and tangential stresses near the edge 

of the stick area in the fully worn steady state. In Fig. 9 the pressure distribution in the 

fully worn steady state for three different tangential force amplitudes and three different 

exponents of elastic inhomogeneity are displayed – k = -0.5 at the top, k = 0 in the middle 

and k = 0.5 at the bottom. Once again it is clearly visible that the stick radius and thus the 

area for transmitting the normal force grow with increasing exponent of elastic 

inhomogeneity. This is tantamount with a decrease of the mean pressure. Furthermore, the 

stress singularity becomes milder with increasing exponent k. The same applies to the 

singularity of the tangential stresses according to Eq. (21). The stress field resembles the 

near-tip stress field of a mixed-mode II/III crack, whose weighting depends on the 

surrounding position on the edge of contact. On the x-axis it corresponds to a pure mode 
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II loading, whereas on the y-axis to a pure mode III loading. The influence of the 

exponent of elastic inhomogeneity on the stress singularity can be profitably used to 

suppress plastic yielding and crack nucleation at the edge of contact. 

 

 

 

Fig. 9 Pressure distribution in the fully worn steady state for three different tangential 

force amplitudes and three different exponents of elastic inhomogeneity: k = -0.5 

(top), k = 0 (middle) and k = 0.5 (bottom) 
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4. CONCLUSIONS AND DISCUSSION 

We have investigated the steady wear state for two types of frictional contact problems 

between a rigid indenter and a power-law graded material. First, we considered a gross slip 

between a rigid, cylindrical punch with an initially flat circular base and a power-law graded 

half-space. Under fixed penetration depth and the strong assumption that merely the indenter 

can wear, the solutions for the initial contact state as well as the steady wear state are given in 

terms of pressure distribution and normal surface displacements. Moreover, the steady wear 

shape of the profile and the effective volume change were determined. We have found that the 

effective volume change becomes a maximum of 15.5 % at a defined exponent of k = 0.169. 

For power-law graded materials characterized by either small characteristic depths coupled with 

a positive power-law exponent or large characteristic depths coupled with a negative exponent, 

a larger normal force is required to produce the same indentation depth as for elastically 

homogeneous material. 

Second, we analyzed fretting wear under load-controlled conditions for the contact 

between a rigid initially parabolic indenter and a power-law graded half-space. Again, 

complete solutions are given in terms of stresses and normal surface displacements for 

both the initial and the steady state. Following previous studies for homogeneous 

materials, we prove that the size of the stick zone does not change during the transition 

from the initial to the steady state. As mentioned above, the power-law graded half-space 

is assumed to be resistant to wear but the rigid indenter should wear. The dependence of   

limiting profile shapes f∞ on the exponent of elastic inhomogeneity as well as on the 

tangential force has been completely determined. One interesting result is that the amount 

of curvature of the worn area increases significantly with increasing exponent. But 

probably the most significant result of our analyses is the finding that opposing material 

gradients for small and large tangential force amplitudes are necessary to minimize the 

wear. Whereas for large amplitudes a gradient ranged from a soft surface to a hard ground 

is beneficial, small amplitudes require a reverse gradient characterized by a hard surface 

and a soft ground. Although it is frequently stated in the literature that power-law graded 

materials reflect the qualitative behavior of real gradient materials quite well, appropriate 

analytical and experimental investigations should be made to ensure this result. The same 

applies to the influence of the milder stress singularity on fretting fatigue crack initiation.  

In addition, we would like to emphasize that all our studies are restricted to purely 

power-law graded elastic material behavior. However, in practice, stress singularities are 

avoided by plastic deformation of the material and this in turn strongly influence the wear 

state. By using a finite-element model and considering elastic-plastic material behavior, 

Hu et al. [33] found that the stick-slip boundary can move steadily into the stick region 

and thus wear continues indefinitely. Thus, future investigations on wear of functionally 

graded materials should consider the elastic-plastic regime. 
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valuable discussions.  
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APPENDIX 

The function ( , )Nh k   in Eq. (2) is defined by (see [32]) 
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