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Abstract. A typical setup for energy harvesting is that of a cantilever beam with 

piezoceramics excited by ambient base vibrations. In order to get higher energy output 

for a wide range of excitation frequencies, often a nonlinearity is introduced by 

intention in that way, that two magnets are fixed close to the free tip of the beam. 

Depending on strength and position of the magnets, this can either result in a mono-, 

bi- or tristable system. In our study, we focus on a bistable system. Such systems have 

been investigated thoroughly in literature while in almost all cases the beam has been 

discretized by a single shape function, in general the first eigenshape of the linear beam 

with undeflected stable equilibrium position.  

There can be some doubts about the suitability of a discretization by a single shape 

function mainly due to two reasons. First: In case of stochastic broadband excitations a 

discretization, taking into consideration just the first vibration shape seems not to be 

reasonable. Second: as the undeflected position of the considered system is unstable 

and the system significantly nonlinear, the question arises, if using just one eigenshape 

of the linear beam is a suitable approximation of the operation shapes during excited 

oscillations even in the case of harmonic excitation. Are there other, e.g. amplitude 

dependent, possibilities and/or should multiple ansatz functions be considered instead?  

In this paper, we focus mainly on the second point. Therefore, a bistable cantilever 

beam with harmonic base excitation is considered and experimental investigations of 

operation shapes are performed using a high-speed camera. The observed operation 

shapes are expanded in a similar way as it is done in a theoretical analysis by a 

corresponding mixed Ritz ansatz. The results show the existence of distinct 

superharmonics (as one can expect for a nonlinear system) but additionally the 

necessity to use more than one shape function in the discretization, covering also the 

amplitude dependence of the observed operation shapes. 
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1. INTRODUCTION 

Harvesting of energy from ambient vibrations has attracted much interest and 

corresponding research in the past decades. A common method for transferring the 

mechanical energy into electric one is the usage of piezoceramics fixed on corresponding 

vibration structures. A survey of such systems gives, for example, the paper [1]. The 

classical setup in that case is a cantilever beam with piezoceramics bonded close to the 

clamping excited by ambient base vibrations. These systems perform well when they are 

designed as a linear resonator with its eigenfrequency tuned to the frequency of the 

excitation. A higher energy output, especially for broadband or stochastic excitations, can 

be realized in such systems, if nonlinearities are introduced by intention resulting in a 

broadband characteristic for large responses of excited vibrations compared to sharp 

resonance peaks of the linear system [2]. A common setup is to fix two magnets 

symmetrically close to the free end of the beam, as shown in Fig. 1. 

 

Fig. 1 Vibrational energy harvesting system [3] 

Depending on strength and position of the magnets, this can either result in a mono-, bi- 

or tristable (e.g. [4, 5, 6] respectively) system. In this paper we investigate the bistable 

configuration and focus on the occurring vibration shapes during non-chaotic operation. In 

that case, there are two main types of solutions, namely so-called intrawell solutions around 

one of the two stable equilibrium positions and so-called interwell solution with large 

displacements covering both stable equilibrium positions. For the modeling of the system, 

knowledge is necessary for the discretization of the beam with respect to its longitudinal 

coordinate x, introducing a mixed (dependence on both x and time t) Ritz ansatz  
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into the partial differential equation describing the continuum vibrations of the beam. 

Herein w(x,t) is the lateral displacement of the beam relatively to the moving frame and n 

the chosen ansatz order. In this ansatz shape functions Wi(x) shall be given (they must 

fulfill all the boundary conditions) while functions pi(t) can be calculated from the 

thereby discretized model equations e.g. by Harmonic Balance. This let arise the question 

of suitable shape functions Wi(x) and ansatz orders n.  

For the sake of simplicity and in order to concentrate on the question of how to 

discretize a bistable beam, the piezoceramics are neglected in the following. Only the 
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setup of the cantilever beam with magnets and base excitation is considered. The classical 

paper describing a corresponding modeling is that of Moon [7] discretizing the beam with 

the first eigenshape of the linear Euler-Bernoulli beam and modeling the magnetic forces 

by a third order polynomial. This discretization results in a Duffing-oscillator with negative 

linear and positive cubic restoring term. Most publications follow this model when adding 

the piezoceramics for the energy harvesting system, e.g. [8] where it was shown, that the 

nonlinear system performs better than its linear counterpart for a non-resonant excitation 

and [9] where the system was analyzed for the case of a stochastic excitation. Publications 

using more than one ansatz function are very rare. In [10] multiple ansatz functions are 

applied for a buckled beam system, nevertheless ending finally up again with a one-

degree of freedom model.  

There can be some doubts about the suitability of this discretization by a single shape 

function mainly due to two reasons. First: In the case of stochastic broadband excitation a 

discretization, taking into consideration just the first vibration shape, seems not to be 

reasonable. Therefore, the authors have in prior investigations [11, 12] added a second 

ansatz function in that way, that not just the first, but also the second eigenfunction of the 

linear beam is considered in the Ritz ansatz. Second: as the undeflected position of the 

considered system is unstable and the system significantly nonlinear, the question arises 

if using just the first eigenshape of the linear beam is a suitable approximation of the 

operation shapes during excited oscillations even in the case of harmonic excitation. Are 

there other, e.g. amplitude dependent, possibilities and should multiple ansatz functions 

be considered instead? In the work [13] and [14] this topic was already addressed, and it 

is shown how the usage of linear shape functions leads to erroneous results. Furthermore, 

a purely theoretical method to compute nonlinear, i.e. amplitude dependent shape functions, 

is presented. Later the concept of nonlinear normal-modes was transferred to the analysis of 

discrete nonlinear systems, see e.g. the review [15] and the references therein.  

On the other hand in [16] it is shown, that for a bistable system, in that case a buckled 

beam, the two first modes coexist during the snapping process. In [17] exact solutions of 

postbuckling configurations of beams are calculated, but also the interaction between 

vibration modes is shown. Nevertheless, as already mentioned, it is state of the art in 

considering energy harvesting systems to use just one mode shape for discretization. An 

example for this is [18], where both the buckled beam as in the two papers mentioned 

before as well as the bistable cantilever beam, that is considered in the actual paper, is 

discretized by a single degree of freedom.  

In this paper, the questions, if the mixed Ritz ansatz, Eq. (1), gives a suitable 

modeling as well as how many and which ansatz functions should be used, is discussed in 

the case of harmonic base excitation by analyzing experimental results. Therefore, operation 

shapes have been captured by a high-speed camera. The observed operation shapes are 

expanded into their frequency content and then the vibration shape corresponding to each 

frequency is analyzed. 

2. EXPERIMENTAL SETUP 

The chosen setup for the experimental investigations is shown in Fig. 2. The steel 

cantilever beam is placed in an aluminum frame excited by a shaker and the bistability is 

realized by two magnets placed approximately symmetrical to the undeflected position of 
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the beam, therefore becoming unstable. The beam’s static deflection, when there is no 

base excitation, as well as the dynamic displacement of the beam tip are measured using a 

laser triangulation sensor which is attached to the moving frame, hence directly providing 

the relative displacement of the beam tip from its undeflected position without the 

superposed movement of the supporting frame. The base excitation of the system is 

captured by a (nonmoving) laser vibrometer. Laptop I is used to process the data delivered 

by these two measurement devices with the software package vAnalyzer. 

 

 

Fig. 2 Experimental setup with bistable cantilever beam excited by a shaker (left) and 

beam with magnets in detail (right) [19] 

Laptop II is utilized to control the high-speed camera Photron Fastcam Mini AX100 

by the software package Phontron FASTCAM Viewer for high speed digital imaging. 

The dimensions of the cantilever beam together with its first natural frequency (without 

magnets) are given in Table 1.  

Table 1 Properties of the cantilever beam 

Property Value 

Beam length 

Beam width 

Beam thickness 

1st eigenfrequency 

250 mm 

20 mm 

1 mm 

13.1 Hz 
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The magnets are intended to be placed symmetrically with respect to the undeflected 

position of the beam in order to realize an approximately equal distance of the two 

equilibrium positions from the undeflected beam position. The magnets are glued to a 

magnet carrier, also made of aluminum, which ensures a constant and reproducible 

distance between the magnets of approximately 14 mm. The exact placement of the 

magnet carrier with respect to the beam is however limited by the manual adjustment of 

the carrier with finite accuracy and reproducibility. The resulting distances of two 

realized experiments together with the frequencies of small free vibrations around the two 

stable equilibrium positions (intrawell solutions) are given in Table 2. 

Table 2 Properties of bistable beam configuration (magnet distance approx. 14 mm) 

 left right 

Setup I (static experiment in Fig. 6) 

Equilibrium position 

Frequency 

 

Setup II (dynamic experiments) 

Equilibrium position 

 

-6.91 mm 

15.1 Hz 

 

 

-7.01 mm 

 

7.13 mm 

14.5 Hz 

 

 

7.40 mm 

Frequency 16.0 Hz 16.0 Hz 

 

A paper stripe with geometry given in Fig. 3 is attached to the front side of the beam. 

The beam itself has a thickness of one millimeter, but for a higher detection rate of the 

markers their size is chosen to be two millimeters in diameter on an all-black background of 

the three millimeters wide paper stripe, which therefore exceeds the thickness of the beam. 

 

Fig. 3 Geometry of marker stripe 

The camera was positioned manually in front of the beam setup with three goals 

regarding its arrangement. First: the camera was orientated orthogonal to the beam’s 

plane of motion. Second: the camera was placed as far as possible from the beam to reduce 

errors due to perspective influences. Third: the camera was placed as close as needed so that 

the beam took up almost the full height of the pictures in order to use the full resolution to 

capture each marker.  

The camera is taking monochrome black and white videos with a frame rate of 4000 

frames per second and each frame has a resolution of 384×944 pixels. Each video has a 

duration of at least one second. To further reduce the amount of data and processing time 

only every second frame was considered for further evaluation. The authors are aware that 

taking a picture is a sampling like process of the time continuous movement of the markers. 

That means that not only the sampling rate needs to be at least two times the highest 

frequency that is expected to be occurring in the measured signal (Nyquist criteria), but 
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also needs to be filtered for even higher frequencies to prevent aliasing effects. Since 

there is no possible way to filter these analog signals, we have checked the results from 

the digital image analysis to the frequencies determined by the laser triangulation sensor, 

for which the signal has been aliasing filtered properly before sampling. Both results are 

in good accordance with each other. 

The very first frame of each video is replaced by a frame showing the static, undeflected 

beam without magnets (Fig. 4 (left)), which was taken before the magnets were applied. 

This first frame is taken as the reference to determine the relative displacement of each 

marker on each frame from its position when the beam is undeflected. The software GOM 

Correlate is used to analyze each frame of the video and to detect the relative distance from 

its position on the reference frame. The calibration of the distance measurement from the 

frames is done using the known distance of the markers on the maker strip, which results in 

a resolution of roughly 3.5 pixel/mm.  

 

Fig. 4 Reference frame of undeflected beam without magnets (left) and marker detection 

and evaluation of marker displacement with GOM Correlate (right) 

Further it is necessary to eliminate the relative movement of the supporting frame to 

the nonmoving camera in order to find the relative displacement of each marker. This is 

done by subtracting the current displacement of the marker that is the nearest to the beam 

clamping from all other marker displacements of that current frame.  

3. RESULTS OF EXPERIMENTAL INVESTIGATIONS AND THEIR ANALYSIS 

The aim of the following investigations is to decide if the observed operational vibration 

shapes of the harmonically excited bistable beam can be expanded in the eigenshapes of the 

Euler-Bernoulli beam as well as how many ansatz functions are required according to the 
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mixed Ritz ansatz (Eq. (1)). Fig. 5 shows the first two eigenshapes 1, 2 of the beam 

together with the static bending line caused by a constant lateral tip force. 

 

Fig. 5 Beam eigenshapes and static bending line according to the linear Euler-Bernoulli 

beam theory 

In Fig. 6 the measured static bending line resulting in the “right” stable equilibrium 

(positive displacement according to Table 2) resulting from the magnets from the setup I 

is displayed. This measured bending line shows a high agreement with the theoretical 

static bending line. 

 

Fig. 6 Static bending of the beam in “right” equilibrium position (Table 2, setup I) 

Now the operation shapes are measured with a high-speed camera. Fig. 7 shows 

typical examples of the two main types of solutions, namely the intrawell solution (left) 

and the interwell solution (right). The phase diagram of the last marker at the tip of the 

beam is shown, where the velocity has been determined by the time derivative of the 

displacement after filtering the signal by a Butterworth low pass filter.  

Both solution types do not show any period multiplication in these tests, which 

restricts in the stationary case the occurring response frequencies to the excitation frequency 

and corresponding superharmonics while subharmonics do not occur. 
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Fig. 7 Phase diagram of beam tip: intrawell solution (left) and interwell solution (right) 

(setup II) 

For distinct points jx̂  time series for the displacement can be derived. A corresponding 

result is shown in Fig. 8 in the case of harmonic excitation with f0=14 Hz.  

          

Fig. 8 Time series of three points xj, j = 32,42,52 of the beam in case of an intrawell (left) and 

interwell solution (right) resulting from harmonic excitation with f0=14 Hz (setup II) 

Again in Fig. 8 on the left an intrawell solution is shown while an interwell solution is 

displayed on the right. An FFT (Fast Fourier Transformation) analysis for each of the 

time series ˆ ( )j ix t  is performed. A corresponding result is shown in Fig. 9.  

         

Fig. 9 FFT analysis of the time series in Fig. 8 (setup II) 
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According to the nonlinear character of the system, distinct superharmonics of the 

excitation frequency in the response can be expected. Due to the symmetric characteristic of 

the interwell solutions, odd superharmonics are expected while even and odd superharmonics 

can be expected in the intrawell case due to the asymmetric restoring characteristic around 

the stable equilibrium positions originating from the magnets. This is confirmed by the 

experimental results. Subharmonics do not occur, as there are no period multiplications.  

Having considered these initial results, we will first reconsider the mixed Ritz ansatz 

(Eq. (1)) and the corresponding theoretical analysis. Using e.g. Harmonic Balance as 

solution method for the discretized system equations and considering an excitation being 

proportional to cost with =2f0 where  is the circular excitation frequency, one can 

expect, that time function pi(t) in the mixed Ritz ansatz can be expanded as follows 
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where k=0,1,2,3, … in the case of the intrawell solution and k=1,3,5,7, … in the interwell 

case. The intrawell case contains both a constant solution part (k=0) due to the deflected 

stable equilibrium position as well as even superharmonics due to the non-symmetric 

magnet force characteristic. On the other hand, the interwell solution has in theory a zero 

mean value and is symmetric, which limits k to odd numbers. These considerations are 

almost fully confirmed by the results shown in Fig. 8 and 9. Only a small constant part of 

the interwell solution is possibly due to the non-perfect symmetry of the magnets (Table 

2). Inserting the expansion (2) in the mixed Ritz ansatz results after sorting in 
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As already mentioned in the introduction, we are interested in the question which and 

how many shape functions Wi(x) are necessary for a good representation of intra- and 

interwell solutions in our setup. Therefore, we will now do the same expansion with the 

experimental results. For the j-th distinct point 
jx̂  (position on the beam) the time series 

of its movement is expanded by a Fourier expansion 
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with coefficients jka~  and a phase shift jk~ . While 
ik  in Eq. (2) describe the phase shift 

compared to the excitation, jk~  depend on the time sequence of the video to be analyzed, 

and are triggered by the starting of the measurement. As we are interested purely in 

vibration shapes this is not a restriction. 

For each considered multiple k of excitation circular frequency , from jka~  a shape 
ˆ ( )kw x  shall be formed, which is then expanded in considered shape functions Wi(x). To do 

so, the following circumstances must be taken into consideration. jka~  are taken from the 

absolute values of the Fourier expansion (which is performed in a complex notation), 

therefore they have positive values only. This means that in the cases where the beam 

vibration has vibration nodes it is to be considered that there is a phase shift of  between 
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jk~ , even for one fixed mode k. Therefore, applicability of Eq. (4) requires, that for each 

k all jk~  are constant for all j with the exception that a jump with size  is possible in the 

case of nodes. If this is the case, subscript j can be neglected in the following and the 

final phase shift k̂ is described by 
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while 
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From 
jkâ  the shape ˆ ( )kw x  is formed, which is expanded as follows  
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with coefficients 
ikÂ . In general, displacement w(x,t) from the experiments is therefore given 

by 
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Inserting Eq. (7) in (8) results in 
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and after sorting in 
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which is almost equal to the theoretical result (3). The only differences are that subscript i 

is missing in k̂ , i.e. if the expansion is possible as described, the phase shift for the k-th 

harmonic does not depend on the number i of the mode Wi(x), and reference times for the 

phase shifts may differ as described above. 

In the following, the steps (4)–(7) are performed with the experimental results. Fig. 10 

shows a more detailed analysis of the frequency contents of the intrawell solution (left) 

and interwell solution (right) of the beam tip with a logarithmic scale. Constant parts 

(zero frequency) are not considered in the following as they are due to the static bending 

line, which is geometric almost similar to the first eigenshape 1 (Fig. 4) and therefore 

anyway covered by the following expansion in 1 and 2. In the case of the intrawell 

solution we limit our result in accordance with Fig. 10 (left) to k=1, 2 and 3, while we 

will take in the case of the interwell solution k=1, 3, 5 and 7 into consideration.  
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Fig. 10 FFT of beam tip displacement of intrawell (left) and interwell (right) oscillation 

(setup II) 

Fig. 11 shows 1
ˆ

ja  for the intrawell and interwell solution respectively, forming the 

corresponding shapes 1
ˆ ( )w x . In the following these shapes shall be expanded according to Eq. 

(7), where coefficients ikÂ  are found from the experimental data using a least square 

approach. As shape functions Wi(x) we take the first two eigenfunctions 1, 2 of the beam as 

sketched in Fig. 5, i.e. we limit n by 2, which means i = 1, 2. The corresponding expansion 

shows, that shapes 1
ˆ ( )w x  are almost identical to 111

ˆ A , and 0ˆ
21 A  (red lines in Fig. 11 (top)). 

Fig. 11 (bottom) shows the corresponding phases 1
~

j , which should be equal, or only 

have a jump of  at a vibration node, for all j in order to allow the expansion (4). In fact, 

it can be seen that there are only small deviations occurring mainly close to the clamping, 

i.e. at points with only small displacements. 

              

         

Fig. 11 Vibration shape 1
ˆ

ja  of intrawell (top left) and interwell (top right) for frequency 

f=f0  and corresponding phases 
j~  beneath (setup II) 
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For the intrawell solution Fig. 12 shows the 2
ˆ

ja  and 3
ˆ

ja  forming the shapes 
2

ˆ ( )w x  and 

3
ˆ ( )w x  corresponding to twice and three times excitation frequency 2f0 and 3f0. 

     

Fig. 12 Vibration shape of intrawell oscillation for frequency f = 2f0 (left) and f = 3f0 (right) 

(setup II)  

While 
2

ˆ ( )w x  gives a somewhat smooth curve there are several small deviations in 

3
ˆ ( )w x  but the shapes of both functions can be expanded with the chosen ansatz functions 

1 and 2.  

Fig. 13 shows this step in the case of the interwell solutions for shapes 
3

ˆ ( )w x , 
5

ˆ ( )w x  

and 
7

ˆ ( )w x . All shapes can be expanded in good approximation by 1 and 2.  

   

Fig. 13 Vibration shape for interwell oscillation for frequency f = 3f0 (left), f = 5f0 (middle) 

and f = 7f0 (right) (setup II) 

From these results it can be concluded that expansions (3) and (10), respectively, can 

give a good approximation of the experimentally observed shapes and that the beam 

eigenshapes are suitable functions for the expansion, which is in agreement to most used 

models in literature (cf. section 1).  

On the other hand, the shapes corresponding to the superharmonics k with k>1 can 

only be suitably expanded, when using at least two shape functions in the Ritz ansatz (1), 

while most publications restrict to a single one! 
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Finally, the amplitude dependence shall be discussed. Fig. 14 shows 1
ˆ

ja  forming  

shape 3
ˆ ( )w x  in the case of the intrawell (left) and the interwell solution (right) in the case 

of different excitation and, therefore, response amplitudes as well. The shapes are almost 

proportional and are represented for all excitation amplitudes in good approximation by 

1. This changes for the higher harmonic shapes. In Fig. 15 and 16 the shapes for twice 

the excitation frequency in the case of the intrawell and three times excitation frequency 

in the case of the interwell solution are displayed. It can be seen especially in Fig. 15 that 

the corresponding shapes change with excitation amplitude, but all shapes can be very 

well approximated by 1 and 2. 

From this it follows that the ansatz (1), (2) with W1,2 = 1,2 can represent all the 

observed behavior in good approximation, but at least two ansatz functions are necessary 

while there is no need for amplitude dependent (nonlinear) ansatz functions in that case. 

             

Fig. 14 Vibration shape for frequency f=f0 for different amplitudes of the excitation (intrawell 

left, interwell right) 

           

Fig. 15 Vibration shape for frequency f=2f0 

(intrawell) for different amplitudes 

of the excitation 

Fig. 16 Vibration shape for frequency f=3f0 

(interwell) for different amplitudes 

of the excitation 
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4. CONCLUSIONS 

Energy harvesting performed by a bistable cantilever beam has attracted much attention. 

In general, the beam is in corresponding modeling discretized by the first eigenshape of the 

linear beam in a corresponding mixed Ritz ansatz. In this paper, this common assumption 

has been proofed for suitability. Therefore, the beam has been harmonically excited and 

corresponding response vibrations have been captured by a high-speed camera. Distinct 

markers have been applied to the beam and their positions were tracked over a series of 

frames. In accordance with the Ritz ansatz in theory the experimental results have been 

analyzed for both intrawell and interwell solution performing the following steps: first a 

Fourier expansion of the responses has been performed. As there was no period multiplication 

only the excitation frequency and superharmonics exist in the responses. For these 

harmonics, corresponding shapes could be identified which are afterwards expanded in the 

two first eigenfunctions of the undeflected cantilever beam.  

The results show that the general ansatz to separate the solution of the beam vibration 

into a product of functions depending on t and x respectively is possible and sufficient. 

On the other hand, a good approximation of the experimentally observed shapes can only 

be reached if at least two ansatz functions are applied. Only for considering the excitation 

frequency in the response a single ansatz function is sufficient while for superharmonics 

a second ansatz function is needed to sufficiently approximate the observed vibration 

shapes. Further, the existing amplitude-dependence of the shapes due to the nonlinearities, 

can also be covered by the two ansatz functions. 
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