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Abstract. The vehicle routing problem with stochastic demands (VRPSD) is a 

combinatorial optimization problem. The VRPSD looks for vehicle routes to connect all 

customers with a depot, so that the total distance is minimized, each customer visited once 

by one vehicle, every route starts and ends at a depot, and the travelled distance and 

capacity of each vehicle are less than or equal to the given maximum value. Contrary to 

the classical VRP, in the VRPSD the demand in a node is known only after a vehicle 

arrives at the very node. This means that the vehicle routes are designed in uncertain 

conditions. This paper presents a heuristic and meta-heuristic approach for solving the 

VRPSD and discusses the real problem of municipal waste collection in the City of Niš. 
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Heuristic and Meta-heuristic 

1. INTRODUCTION 

Waste and mail collection, delivery of newspapers, milk, bread and postal packages, 

distribution of buses and planes in their networks of lines, all of these represent problems 

that researchers and traffic experts face daily in practice. Inadequate collection and 

transport, as functions of municipal waste management, result in enormous economic and 

environmental losses, and they serve as a major incentive to many researchers in their quest 

for appropriate systemic solutions. The set of transport means supporting the municipal 

waste collection and transport process most often comprises the majority of the vehicle fleet 

of public utility companies, which usually amounts to 50–70% of all transport units. This 

process is also dominant in those business systems that integrate a number of public 

utilities. In such systems, 15–40% of transport units support the municipal waste collection 

and transport process. Optimizing and applying a combination of heuristic and meta-

                                                           
Received March 18, 2019 / Accepted May 28, 2019 

Corresponding author: Danijel Marković  

Faculty of Mechanical Engineering, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia 

E-mail: danijel.markovic@masfak.ni.ac.rs 



108 D. MARKOVIĆ, G. PETROVIĆ, Ţ. ĆOJBAŠIĆ, A. STANKOVIĆ 

heuristic methods in only one such system can lead to the reduction in mechanization fuels 

of 10 ÷ 25% [1].  

Collecting municipal waste in urban areas can be observed as solving a vehicle 

routing problem. Such a problem is known in the literature as the waste collection vehicle 

routing problem. The vehicle routing problem (VRP) is one of the most challenging 

problems of combinatorial optimization. It was first mentioned in 1959 by Dantzig and 

Ramser [2]. Since then, the VRP has been increasingly applied in the solution of various 

problems and it bears a great economic importance for the reduction in operating costs of 

distribution systems [3, 4]. 

With the aim of satisfying real problems for the VRP solution, several constraints are 

commonly introduced in the solution of the problem, such as a larger number of depots, 

different types of vehicles (homogeneous and heterogeneous), different types of customer 

demands (deterministic and stochastic), infrastructural limitations (one-way streets, 

prohibited roads), types of service performance (pickup, delivery and mixed), etc. If all 

these constraints are taken into consideration, the VRP becomes much more complicated 

to solve and it falls under the NP difficult problems category. Because of this, different 

variants of the VRP problem have been introduced in the literature. The basic model of 

the vehicle routing problem is the capacitated vehicle routing problem – CVRP [5]. In the 

CVRP customer demands are deterministic, known in advance and cannot be separated. 

Vehicles are identical and they have a common starting point, while the only constraint is 

the vehicle capacity. The goal function expresses the demand to minimize total costs. 

Various vehicle routing problems are derived from the CVRP such as: 

 

Fig. 1 Basic vehicle routing problems and their relations 

For the sake of a simplified presentation, Fig. 1 uses abbreviations. The detailed 

explanation of Fig. 1 is as follows: distance–constrained capacitated vehicle routing 

problem – DCCVPR [6]; vehicle routing problem with backhauls – VRPB [7]; vehicle 

routing problem with time window – VRPTW [8], vehicle routing problem with pickup 

and delivery – VRPPD [9]; vehicle routing problem with backhauls and time window – 

VRPBTW [10]; vehicle routing problem with pickup and delivery and time window – 

VRPPDTW [11] 

In the above vehicle routing problems, the demands of the given transport network are 

deterministic, i.e. known in advance. However, in certain cases these demands can be 

random variables, that is, they become a stochastic quantity, which results in the standard 
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CVRP being expanded into a capacitated vehicle routing problem with stochastic 

demands – CVRPSD [12]. In the past few years, numerous researchers have applied 

heuristic and meta-heuristic methods to solve the CVRPSD [13, 14, 15, 16]. Examples of 

stochastic demands can be found in various transport activities. One such example is the 

municipal waste collection considered in this paper. Namely, here we discuss a 

capacitated vehicle routing problem with stochastic demands – CVRPSD, for municipal 

waste collection in urban areas.  

2. MATHEMATICAL FORMULATION OF THE CVRPSD 

In practice, municipal waste collection in urban areas can be observed as a capacitated 

vehicle routing problem with stochastic demands – CVRPSD. This means that the amount 

of waste in nodes for the given transport network is a randomly variable quantity. The 

amount of waste may vary depending on the season and it can be known only after a vehicle 

arrives at a certain node to be served. For this reason, it is very hard to design the routes in 

the classical manner. 

Solving the CVRPSD for municipal waste collection (CVRPSD-MWC) thus encompasses 

finding their routes for the given transport network with minimal costs while meeting the 

following conditions: 

 there is only one depot and each route begins and ends in that depot, 

 the locations of the depot and the nodes are known, 

 the amount of waste in each node is a stochastic variable with normal distribution, 

 the capacity of the waste collection vehicle is known, 

 the sum of the amounts of municipal waste in a single route must not be greater 

than the vehicle capacity, 

 each node must be visited only once. 

2.1 The chance-constrained model of the CVRPSD 

The Chance-Constrained (Ch-C) method is one of the main methods for stochastic 

optimization under various conditions of uncertainty. The Ch-C method allows for the 

probability of meeting a certain constraint to be above a necessary level. In other words, this 

method limits the allowable region thus reaching a high level of solution reliability. In 

recent times, numerous researchers have applied the Ch-C method to solving certain 

variants of the VRP [17, 18, 19, 20]. In this paper the Ch-C model for the CVRPSD 

observes one level of constraint, and that is the amount of waste. Namely, it is expected that 

the amount of waste per node is smaller than the vehicle capacity, with the level of 

reliability α. 

Using the Ch-C method to solve the CVRPSD, the goal function can be defined as 

follows: 
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 0 ≤ qij ≤ Q, i = 0,1,..., n; j = 0,1,..., n (6) 

 zi{0, 1}, i = 0,1,..., n (7) 

 xij{0, 1}, i= 0,1,..., n; j = 0,1,..., n (8) 

The minimization function for the CVRPSD is shown in Eq. (1), where cij is the 

transport costs of the vehicle between node i and node j; i, jV it is assumed that cij=dij 

The constraint given in Eq. (2) shows that each node must be visited only once, while the 

constraint given in Eq. (3) presents the continuation of the vehicle flow, i.e. the fact that 

after serving node j the vehicle must leave that same node. The constraint given in Eq. (4) 

shows that each vehicle must start its route in the depot and end it there. Using the Ch-C 

conditions one can assure that the amount of collected waste on the route is smaller than 

the vehicle capacity with known probability (P) as shown in constraint (5). The capacity 

constraint (6) shows that the vehicle load never exceeds the vehicle capacity. 

Furthermore, Q is the maximum capacity of the vehicle, while qij is the capacity of the 

vehicle after visiting node i, and before visiting node j. Constraints (7) and (8) define the 

intervals of variables zi and xij. It follows that: 
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Constraint (5) can be solved by applying the Ch-C conditions. It is assumed that the 

amount of waste per each node is a random variable with normal distribution, which can 

be presented as: 

 qi ~ N(μi , σi
2) (9) 

where μi is the total expected amount of waste for the i-th node, σi
2 is the standard 

deviation (variance) from the amount of waste for the i-th node. Parameters μi and σi
2 can 

be written using Eqs. (10) and (11): 
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where E(qi xij) is the mathematical expectation of normal distribution, while Var (qi xij) is 

the variance, i.e. the normal distribution scaling parameter. 
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If the expected customer demand is presented in the following way: 
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and the standard deviation as: 
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using Eqs. (12) and (13) one can rework the Ch-C condition with constraint (5) into Eq. 

(14) [21]. 
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It is important to emphasize that Eq. (14) holds if and only if Eq. (15) holds as well: 
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Eq. (15) can be written as a deterministic equivalent: 
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where Φ is the standard function of normal distribution, while Φ-1 is the inverse function 
of function Φ . 

As the amount of waste is assumed to be a random variable with normal distribution, this 
means that the waste collection vehicle routes should be designed under the conditions of 
uncertainty regarding the amount of waste, i.e. the demand value in nodes. The next section of 
the paper presents the results of the routing optimization for the observed problem. Parameter 
α takes the value of 0.8 for the optimization of the case study routes [22]. 

 3. DEFINING THE MODEL AND METHOD FOR THE CVRPSD 

The CVRPSD model considered in this paper is defined by a transport network that 
comprises one depot and 29 nodes (Fig. 2). The transport network presents “area” 103 
according to the division of the territory of the City of Niš by the PUC “Mediana-Niš”. The 
nodes in the transport network present the locations of the containers as defined by the 
coordinates, i.e. the latitude and longitude (Tab. 1). Apart from the coordinates, Tab. 2 
provides the number of containers per each node for the observed transport network. In the 
transport network, the first and the final node (the depot) is marked with “1”. The other nodes 
of the transport network are numbered from 2 to 30. 
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Fig. 2 The transport network of container nodes for municipal waste collection 

Table 1 Coordinates and number of containers for the observed transport network 

Location 

number 

Latitude Longitude Number of containers 

per location 

Depot 43.319256 21.919682  

2 43.322794 21.913082 4 

3 43.322464 21.914317 4 

4 43.324196 21.914412 2 

5 43.324696 21.916001 2 

6 43.323830 21.916709 3 

7 43.323338 21.917632 5 

8 43.322615 21.918220 1 

9 43.323829 21.921069 2 

10 43.322712 21.920759 2 

11 43.322109 21.922545 1 

12 43.321878 21.921097 1 

13 43.321168 21.917535 4 

14 43.322144 21.918179 2 

15 43.322471 21.915755 3 

16 43.319104 21.920206 1 

17 43.319854 21.920548 2 

18 43.320413 21.921150 2 

19 43.320076 21.922198 3 

20 43.320751 21.921739 2 

21 43.320552 21.923959 2 

22 43.322529 21.910364 1 

23 43.322181 21.911683 1 

24 43.321311 21.913388 1 

25 43.321119 21.913767 1 

26 43.320082 21.916993 1 

27 43.319579 21.917587 1 

28  43.319241 21.918091 1 

29 43.319097 21.918627 1 

30 43.318779 21.919317 1 
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To solve the model, waste containers for municipal waste collection, so-called semi-

underground containers, with the capacity of 3m3 are installed in the transport network. This 

model does not consider the optimal locations and the number of containers. The number 

and location of containers are selected on the basis of the previous positions of waste 

containers determined by the PUC “Mediana-Niš”. On the locations where there are two or 

more containers, their positions are defined by a single node, i.e. a single coordinate. The 

waste collection vehicle departs the depot and it is always assumed empty. Waste collection 

should be performed with only one vehicle. This vehicle possesses a superstructure with a 

telescopic crane adapted to semi-underground waste containers. It is predicted that the 

waste collection in “area” 103 takes place three times a week (on Mondays, Wednesdays 

and Fridays). The matrix of shortest distances is symmetrical, and its elements represent the 

shortest possible real distance between the node pairs for the transport network. 

The amount of municipal waste in each node is stochastic, i.e. randomly variable. For the 

optimization purposes, the municipal waste collection route was monitored at specific time 

intervals. The monitoring was performed in ten instances for each node, during different 

seasons. The assessment of how full the containers were was made at each transport network 

node and this was recorded in a Tab. 2. This table was filled on the basis of the routing card. 

Table 2 Intervals of monitoring the amount of waste assessment per transport network node 

Node 
Interval of the amount of waste assessment 

1 2 3 4 5 6 7 8 9 10 

1 12.8 13.6 12.5 13.8 13.0 12.6 14.2 13.9 14.4 13.3 
2 13.3 14.4 13.9 12.6 14.2 13.0 13.8 12.5 13.6 12.8 
3 6.9 6.2 6.8 6.4 6.6 7.2 7.0 7.1 6.3 6.5 
4 6.4 6.8 6.2 6.9 6.5 6.3 7.1 7.0 7.2 6.6 
5 10.3 9.4 10.2 9.6 10.0 10.8 10.4 10.7 9.5 9.7 
6 16.6 18.0 17.4 15.8 17.8 16.2 17.2 15.6 17.0 16.0 
7 3.2 3.4 3.1 3.4 3.2 3.2 3.6 3.5 3.6 3.3 
8 6.9 6.2 6.8 6.4 6.6 7.2 7.0 7.1 6.3 6.5 
9 6.6 7.2 7.0 6.3 7.1 6.5 6.9 6.2 6.8 6.4 

10 3.1 3.4 3.6 3.7 3.1 3.0 3.4 3.4 3.5 3.2 
11 3.4 3.1 3.4 3.2 3.3 3.6 3.5 3.6 3.2 3.2 
12 13.3 14.4 13.9 12.6 14.2 13.0 13.8 12.5 13.6 12.8 
13 6.2 6.7 7.2 7.4 6.2 6.0 6.8 6.9 7.0 6.3 
14 9.6 10.2 9.4 10.3 9.7 9.5 10.7 10.4 10.8 10.0 
15 3.3 3.6 3.5 3.2 3.6 3.2 3.4 3.1 3.4 3.2 
16 6.9 6.2 6.8 6.4 6.6 7.2 7.0 7.1 6.3 6.5 
17 6.4 6.8 6.2 6.9 6.5 6.3 7.1 7.0 7.2 6.6 
18 10.3 9.4 10.2 9.6 10.0 10.8 10.4 10.7 9.5 9.7 
19 6.6 7.2 7.0 6.3 7.1 6.5 6.9 6.2 6.8 6.4 
20 6.4 6.8 6.2 6.9 6.5 6.3 7.1 7.0 7.2 6.6 
21 3.3 3.6 3.5 3.2 3.6 3.2 3.4 3.1 3.4 3.2 
22 3.1 3.4 3.6 3.7 3.1 3.0 3.4 3.4 3.5 3.2 
23 3.4 3.4 3.1 3.4 3.2 3.2 3.6 3.5 3.6 3.3 
24 3.3 3.6 3.5 3.2 3.6 3.2 3.4 3.1 3.4 3.2 
25 3.4 3.1 3.4 3.2 3.3 3.6 3.5 3.6 3.2 3.2 
26 3.2 3.4 3.1 3.4 3.2 3.2 3.6 3.5 3.6 3.3 
27 3.4 3.1 3.4 3.2 3.3 3.6 3.5 3.6 3.2 3.2 
28 3.3 3.6 3.5 3.2 3.6 3.2 3.4 3.1 3.4 3.2 
29 3.4 3.1 3.5 3.4 3.2 3.2 3.6 3.5 3.6 3.3 
30 12.8 13.6 12.5 13.8 13.0 12.6 14.2 13.9 14.4 13.3 
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The routing card contains the following information: the numerical marker of the 

container node; the name of the place where the containers are located; the time of 

arrival, pickup and departure; the number of containers per node and the assessment of 

how full the container is; the accessibility of the container; the note. 

3.1. Stochastic optimization problems 

In stochastic optimization, optimization parameters have a random character described 

by the methods from the theory of probability and statistics. When one observes the 

constraint functions whose parameters have a random character, it is not certain that a 

selection of control variables will ensure that the function is satisfied. Therefore, a new 

optimization task is defined to demand that the probability of a constraint being met should 

be greater than a predetermined value. If the parameters in constraint functions have a 

random character (random quantities), then they can be described using, for example, 

normal distribution, Poisson distribution or Gamma distribution. 

3.2. Heuristics and meta-heuristics for the CVRPSD 

When solving a vehicle routing problem, heuristic methods are used to construct routes, 

with the construction and improvement of routes being performed iteratively in relation to 

the goal function. Bearing in mind that this paper deals with the determination of the most 

favorable (optimal) routes of municipal waste collection vehicles, as well as considering all 

the observed constraints, it can be safely assumed that the sufficiently good solutions were 

determined by applying the global optimization methods. On the basis of research, the 

Clarke and Wright’s savings algorithm is considered in this paper as the representative of 

the approaches of the constructive heuristic methods [23].  

Meta-heuristics is conceived as a means of solution of complex optimization problems 

where other optimization methods cannot provide an efficient and economical solution to 

the optimization problem at hand. One of the basic representatives of meta-heuristics is the 

genetic algorithm [24]. Today these methods are regarded as belonging to the most practical 

approaches to solving various complex problems [25], which is particularly related to the 

solution of numerous real problems that are combinatorial in nature, such as the vehicle 

routing problem itself. It can generally be said that meta-heuristics is a higher level of 

heuristics. Out of the group of meta-heuristic methods used for the solution of municipal 

waste collection vehicle routing problems, this paper employs the 2-OPT local search [26] 

and Simulated Annealing – SA [27]. 

3.3. Stochastic simulation for computing the expected value and probability check 

The first step in the optimization of the CVRPSD is to compute the expected value of 

the amount of municipal waste (μi) and check probability (β). This step is necessary due 

to the stochastic character of the amount of municipal waste per transport network node. 

Based on the input data on the assessed amount of waste per node, one can compute the 

expected values of the amount of municipal waste (μi) for each node of the transport 

network since the distribution is known, i.e. normal distribution. After the expected value 

of the amount of municipal waste is computed, variance (σi
2) gets computed as well. To 

compute the mathematical expectancy and variance Procedure 1 was used, and its pseudo 

code is shown in Algorithm 1.  
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Algorithm 1: Procedure 1 
 

Start 

Define the assessed amount of waste per transport network node; 

Define Q; 

for n = 1; n ≤ nuk; n = n + 1; 

     sumn = 0;  

 for i =1; i ≤ 10; i = i + 1; 

            sumn = sumn + qni; 

            pi = qni / sumn: 

 end for  

end for 

for  n = 1; n ≤ nuk; n = n + 1; 

 compute En; 

 compute σn; 

 compute Φ(α); 

 if  
n

n QE





  

  probability condition = TRUE; 

  else 

  probability condition = FALSE; 

 end if 

end for 

end 

Here, sum is the amount of waste per transport network node, qni is the assessed amount 

of waste in the node. When these two parameters are computed, then probability (β) is 

checked. Algorithm 1 presents the procedures to check the probability. The last step in 

this procedure is the checking of the Ch-C condition, and if this condition is met, the 

procedure continues (TRUE). In the opposite case the procedure is stopped (FALSE). 

3.4. Initial solution 

The next step in the CVRPSD optimization is the formation of the initial solution. 
Bearing in mind that this is a stochastic problem, in line with the previous explanation, 
the problem is reduced to the solution of the deterministic problem by applying Eqs. (15) 
and (16). The C-W savings algorithm was used to obtain the initial solution. In the 
application of the C-W savings algorithm parameter qi was substituted with parameter  μi. 
Procedure 2 presents the pseudo code for the C-W savings algorithm (Algorithm 2). 

 
 

Algorithm 2: Procedure 2 

start 

Define distance matrix; 

Define Q; 

Call Procedure 1; 

Compute s; 

Sort s' in a non-increasing sequence; 

Form a partial route; 

Expected demand = µi; 

 for all savings from sequence 

   if (probability condition == TRUE) 

   if met operative constraints 
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    if Expected demand + µi ≤ Q  

     Expected demand = µi + Expected demand 

                           Form route 

   end if 

   end if 

  end if 

 end for 

Vehicle fullness = Expected demand; 

Print routes; 

Print vehicle fullness; 

end 

 

3.5. 2-OPT search and SA meta-heuristic for the CVRPSD 

The first improvement of the initial CVRPSD solution was performed by applying the 

2-OPT local search. During the improvement of the initial solution, the number of 

iterations was varied (1e3 and 1e6). The initial solution was improved by applying the 2-

OPT local search algorithm. The pseudo code of the 2-OPT algorithm for the 

improvement of the initial solution is presented in Algorithm 3.  

 
 

Algorithm 3: 2-OPT algorithm for the improvement of the initial solution 
 

start 

Load initial route; 

U0 = initial route length; 

     for (i = 1; i ≤ n - 2; i = i + 1) 

          for  (j = i + 2; j ≤ n; j = j + 1) 

               U' = d(i, j) + d(i+1, j+1) - d(i, i+1)- d(j, j+1); 

               if (U'< U) 

                    U' = U; 

               end if 

          end for 

     end for 

end 
 

 

The next algorithm used to optimize the CVRPSD was the SA algorithm. The 

solution obtained by applying the SA algorithm largely depends on adjusting the 

parameters of the algorithm itself. However, this paper does not consider the selection of 

optimal parameters for the given problem but uses the recommended parameters. The 

parameters of the SA algorithm used to solve the CVRPSD are [27]: initial temperature 

T0 = 100, temperature reduction factor α = 0.8. The pseudo code of the SA algorithm for 

the solution of the CVRPSD is presented by Algorithm 4.  
 

  

Algorithm 4:  SA algorithm for solving CVRPSD 

start 

Define model; 

Load initial solution U obtained by C-W savings algorithm; 

Define SA algorithm parameters; 

Best solution = U; 

T = T0; 
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 for it1 = 1; it1<maxIt1; it1 = it1 + 1; 

  for it2 = 1; it2<maxIt2; it2= it2 + 1; 

   Create adjacent node randomly; 

   Compute new route length U' ; 

   if (U' ≤ U); 

   U = U'; 

   else Δf = U' - U; 

    







 


T

f

expp ; 

          if p ≥ r, r is a random number from interval [0,1]; 

     U = U'; 

          end if 

   end if 

  end for 

  T = α∙T; 

 end for 

end 

 

Here it is the number of iterations, and maxIt is the maximum number of iterations, r is the 

random number from the interval [0,1], and p is the probability of accepting a new solution. 

4. COMPUTATIONAL RESULTS 

The application of the C-W savings algorithm to the solution of the CVRPSD yielded 
four routes with the total length of 11.34 km, and this solution represented the initial 
solution. This solution was improved by applying the 2-OPT local search algorithm and 
the SA algorithm. 

The initial solution was improved by applying the 2-OPT local search algorithm. The 
application of this algorithm yielded three routes with the total length of 9.92 km. Fig. 3 
shows the appearance of the transport network routes. 

 

Fig. 3 Graphic representation of the model routes obtained by the 2-OPT search algorithm 
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The application of the SA algorithm, with the recommended parameters, yielded three 
routes with the total length of 9.72 km. Fig. 4 shows the appearance of the transport network 
routes. 

Fig. 5 illustrates a comparison of the vehicle loading on the routes obtained by the 2-OPT 
local search algorithm, on the one hand, and the SA algorithm of the solution of the CVRPSD, 
on the other. The figure shows that the vehicle is not loaded when it leaves the depot and the 
change in the vehicle loading can be observed along the route. As already emphasized, the 
maximum capacity of the vehicle is 60 m3. Furthermore, Fig. 5 shows that the solution 
obtained by applying the 2-OPT local search algorithm results in the vehicle loading in the 
range of 59.71 m3, 58.76 m3 and 50.34 m3, which represents around 93.8% of the vehicle 
capacity. The solution obtained by applying the SA algorithm results in the vehicle loading in 
the range of 59.25 m3, 59.80 m3 and 49.76 m3, which also represents around 93.8% of the 
vehicle capacity. This shows that the application of both algorithms for the solution of such 
problems is justified. 

 

Fig. 4 Graphic representation of the model routes obtained by the SA algorithm 

    
Fig. 5 Graphic representation of the expected vehicle loading 
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5. CONCLUSION 

The optimization of the CVRPSD by applying the heuristic and meta-heuristic algorithms 

yielded the routes of the municipal waste collection and transport vehicles for the observed 

transport network. The improvements obtained by thus designed routes in comparison with 

the existing routes determined by the PUC “Mediana-Niš” are related to the reduction in the 

total length of the path and the reduction in the total operating time of the municipal waste 

collection vehicles. Fig. 6 shows the relation between the total length of the routes per day 

obtained by solving the CVRPSD and the routes of the PUC “Mediana-Niš” vehicles for 

municipal waste collection. This relation is presented for six intervals, where one interval 

takes two months into account. Fig.6 below shows that the routes obtained in the solution of 

the CVRPSD model are shorter in five intervals, while the route currently taken by the PUC 

“Mediana-Niš” vehicles is slightly shorter only in the second interval. The average length of 

the routes of the PUC “Mediana-Niš” municipal waste collection vehicles in “area” 103 is 

65.33 km/day, while the length of the routes along which municipal waste collection vehicles 

travel, in the same “area”, obtained by the optimization of the CVRPSD is 59.82 km/day.  

 

Fig. 6 Graphic representation of the total length of the CVRPSD routes and the existing 

PUC “Mediana-Niš” routes 

These results show that by applying the proposed solution the mechanization fuel costs 

can be reduced by 10%. In order to achieve an even greater reduction in municipal waste 

collection in urban areas it is necessary to expand the problem and observe it in real time. 

Such problems will be the subject matter of future research conducted by the authors of this 

paper. 
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