
FACTA UNIVERSITATIS  
Series: Mechanical Engineering Vol. 17, No 2, 2019, pp. 181 - 190 
https://doi.org/10.22190/FUME190330024A 

© 2019 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND 

Original scientific paper1 

FROM WINKLER’S FOUNDATION TO POPOV’S FOUNDATION 

 

Ivan Argatov  
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Abstract. In recent years, the method of dimensionality reduction (MDR) has started to 

figure as a very convenient tool for dealing with a wide class of elastic contact 

problems. The MDR modeling framework introduces an equivalent punch profile and a 

one-dimensional Winkler-type elastic foundation, called henceforth Popov’s 

foundation. While the former mainly accounts for the geometry of contact 

configuration, the Popov foundation inherits the main characteristics of both the 

contact interface (like friction and adhesion) and the contacting elastic bodies (e.g., 

anisotropy, viscoelasticity or inhomogeneity). The discussion is illustrated with an 

example of the Kendall-type adhesive contact for an isotropic elastic half-space. 
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1. INTRODUCTION 

Contact phenomena [1,2] can be encountered in diverse applications ranging from 

engineering (wheel/rail contact [3], tribological systems [4], etc.) to medicine (e.g., contact 

of articular cartilage layers [5]). Depending on the material’s deformation response to 

external loading, contact geometry configuration, and accompanying surface effects such as 

friction or adhesion, a particular contact problem can be very complicated for analytical 

treatment. While a number of numerical techniques have been developed in the last few 

decades [6,7], still analytical and semi-analytical models [8,9] of contact interactions are 

preferred over computer simulations, especially if qualitative understanding of the contact 

problem is required.  

 For many years, the theory of local contact of elastic bodies, which was created by 

Heinrich Hertz [10], was one of the most difficult parts of the solid mechanics courses. In 

recent years, the method of dimensionality reduction (MDR) has been developed by 
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Valentin L. Popov and his collaborators [11] into a mature and effective semi-analytical 

framework for analysis of the Hertzian type elastic contact. 

A great advantage of the MDR is that it reduces the contact problem to a much simpler 

one for a one-dimensional Winkler foundation. However, the matter is not so simple, and a 

vulgar interpretation of the MDR methodology may lead to erroneous conclusions (see, e.g., 

the author’s discussion [12]). In the present paper, we consider the adhesion aspect of elastic 

contact, how it is introduced into the core MDR for axisymmetric JKR (Johnson–Kendall–

Roberts)-type contact [13], and how it could be generalized into the non-axisymmetric case.  

2. WINKLER’S FOUNDATION 

In this section, we briefly outline the basics of the Winkler foundation model in the 

light of the comparison with an elastic half-space model. 

2.1. Response equation of the Winkler foundation 

Consider an elastic foundation bounded by a flat surface, which is assumed to be 

smooth (that is, contact is frictionless) and non-sticky (non-adhesive). Let an absolutely 

rigid body be pressed against the foundation surface by a normal force,  . The external 

load is equilibrated by the contact pressures,  (     ), distributed over a contact area. 

According to the hypothesis introduced by Emil Winkler (see, in particular, [14]), the 

contact pressures are determined solely by the local normal displacements,   (     ), of 

the surface points which come into contact, i.e.,  

 
1 2 3 1 2( , ) ( , )p x x ku x x , (1) 

Constant   is called the coefficient of foundation.  

Under the assumption that the contact is unilateral, so that the contact pressure density 

is not allowed to take negative values, the contact area will be determined by the 

displaced surface points.  

2.2. Contact stiffness and incremental contact stiffness 

In the case of a flat-ended rigid body, which touches the foundation surface over a 

certain domain,  , generally speaking, we will have 

 3 1 2 1 2 2 1( , )u x x x x     , (2) 

where    and    are small angles of the rigid body’s rotation. 

In view of (1), the equilibrium equation implies that  

 1 1 2 2( )F k A S S     , (3) 

where   is the area of  ,    and    are the first moments of area   in the    and    

directions, respectively, i.e., 
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Let (  
    

 ) denote the center of mass of  , that is 
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where the integration is carried out over the domain  . 

Then, in view of Eqs. (1) and (2), Eq. (3) can be rewritten as  

 cF kA  , (4) 

where      (  
    

 ) is the vertical displacement of the rigid body’s flat base at the 

mass center of  . 

The quantity   

 K kA  (5) 

is called the contact stiffness.  

Now, let a rigid body be bounded by a surface   

 3 1 2( , )x x x  , (6) 

such that  (     )    and  (   )   . (This is not a restrictive assumption.) 

If the rigid body is translationally displaced into the Winkler foundation to some 

depth,  , then the surface displacements are 

 3 1 2 1 2( , ) ( , )u x x x x  , (7) 

And contact domain    will be determined by inequality    (     )   .  

In this case, the contact force is given by 

 1 2 1 2( ( , )) d dF k x x x x



 

  , (8) 

where ( )    | | is the positive part function.  

The force-displacement relation (8) is nonlinear, but the incremental contact stiffness 

can be simply evaluated as follows (cf. Eq. (5)): 

 
d

d

F
kA 


. (9) 

Here,    is the area of the domain   . 

2.3. Comparison with the elasticity theory model 

Let us compare the simple solution of the contact problem obtained in the framework 

of the Winkler foundation model with the corresponding results for an isotropic elastic 

half-space (with Young’s modulus   and Poisson’s ratio  ). In particular, what we are 

interested in is the contact stiffness for a flat-ended indenter, which can be represented as  

 *2K E  , (10) 

where      (    ) is the reduced elastic modulus, and   is the so-called harmonic 

capacity radius of the current contact area (see, e.g. [15]).  
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The main difference between formulas (5) and (10) is that they predict different 

variations of the contact stiffness under a similarity scaling of the contact area, since   

and   have dimensions of    and  , respectively, where   is the dimension of length. 

Explicit formulas for   (or for the harmonic capacity) are known only in a limited 

number of cases (for instance, for an annular contact area [9]). Also, some approximations 

for the  -related characteristic (such as contact compliance or constriction resistance) can 

be found in the literature (see, e.g., [16,17]). In particular, using the cross-property 

connection established by Sevostianov and Kachanov [18], the following approximation 

can be written out for the harmonic capacity radius of a circular cluster of   identical 

circular microcontacts: 
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Here,    is the radius of identical microcontacts,    is Holm’s radius [19], whose value 

was estimated in [20,21]. 

Finally, it is clear that for a circular contact area   coincides with the contact radius.  

3. POPOV’S FOUNDATION 

In this section we recast the underlying concept of the MDR into a simple form. For a 

complete and detailed review of the MDR, the reader is referred to [22–26]. 

3.1. Equivalent profile 

Returning back to the contact problem for a rigid indenter, which is bounded by the 

surface (6), let us now assume that it is pressed against an elastic half-space. Considering 

the indentation as a one-parametric process, that is the case for normal translational 

displacement of the indenter, both contact force   and indenter displacement   can be 

regarded as one-valued functions of harmonic capacity radius  . In particular, let the 

latter function be designated as  

 ( )g   (11) 

The MDR reduces the elastic contact problem to a much simpler contact problem for 

a one-dimensional Winkler-type linearly deformable foundation, which will be called the 

Popov foundation, and a rigid punch of equivalent profile. The latter is described by the 

equation 

 (| |)z g x  , (12)  

where   and   are horizontal and vertical coordinates, and function  ( ),    , is 

defined according to Eq. (11). Note that, by definition, the equivalent punch is symmetric, 

and, therefore, the contact interval will be symmetric with respect to the  -axis as well.  
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3.2. Stiffness coefficient of the Popov foundation 

The intuitive simplicity of solving the MDR equivalent contact problem is explained 

not only by the simple character of the deformation response of the Popov linearly 

deformable foundation, but by the exact correspondences (equalities) between the 

kinematic and force parameters, which are denoted by the same symbols   and  . While 

the first (kinematic) correspondence is facilitated by Eqs. (11) and (12), the second 

(force) correspondence is achieved by tuning the Popov foundation coefficient,   . It is to 

note here that the MDR transformation rules for the exact mapping of any axisymmetric 

normal contact with and without adhesion have been first given by Heß [27]. 

The incremental indentation stiffness for the Popov foundation is equal to     , since 

   is the length of the one-dimensional contact interval. On the other hand, the 

incremental contact stiffness of an elastic half-space is given by Eq. (10). By equating 

these two values, we readily arrive at the following relation [11]: 

 *

zk E . (13) 

Let us emphasize [15] that, while in the one-dimensional equivalent contact problem 

  is the half-width of the contact interval, in the original elastic contact problem   has the 

meaning of the harmonic capacity radius of the current contact area, which corresponds 

to the same value of kinematic parameter  . 

4. ADHESIVE STRENGTH OF ELASTIC CONTACTS 

In this section, we touch on the adhesive aspect of unilateral frictionless contact. 

4.1. Adhesive strength of the Winkler foundation 

Consider first a flat-ended contact with a Winkler foundation. To be more specific, we 

assume that a flat-ended indenter is pressed against a very thin compressible elastic layer 

bonded to an absolutely rigid substrate. It was shown by Aleksandrov [28] that the 

normal deformation of such isotropic elastic layer coincides with that of a Winkler 

foundation with the foundation constant  

 AE
k

h
 , (14) 

where   is the layer thickness, and     (   )  (   )(    )  is the so-called 

aggregate elastic modulus.  

Under certain conditions (when contour   of contact area   is smooth with a variable 

curvature radius much larger than the layer thickness), the JKR-type detachment criterion 

on the contact contour can be formulated as follows [29]: 
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, (15) 

where    denotes the work of adhesion, and negative sign denotes tensile stresses.  
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Observe that Eq. (15) was derived with the help of asymptotic modeling technique from 

the stress-intensity factor (SIF) of the boundary layer (we refer to [30,31] for more details). 

Now, let the flat-ended indenter is pulled from the layer surface with its base 

maintaining a horizontal position. The pull-off force,   , thus, is given by  

 c cF Ap . (16) 

This means that the Winkler foundation based model of adhesive contact, Eqs. (14)–(16), 

predicts that the adhesive strength is proportional to the contact area.  

4.2. Adhesive strength of the Kendall type contact 

In the case of an isotropic elastic half-space, the pull-off force of a circular cylindrical 

indenter of radius   was evaluated by Kendall as  

 3 *8cF a E    , (17) 

However, generalization of Kendall’s formula (17) to the non-axisymmetric case is 

not trivial. Following Kendall [32], we consider an arbitrary flat-ended punch making 

perfect contact with an elastic half-space of reduced modulus   . When a pull-off force   

is applied to the punch, its displacement is given by 

 
*2

F

E
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,  

where   is the harmonic capacity radius of the contact area, and the elastic energy will be 
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The surface energy is 

 SU A  ,  

where   is the area of contact.  

Further, the potential energy of the load              is  
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Thus, collecting the above formulas, we evaluate the total energy              

as follows: 
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*
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Observe that   and   represent two different integral characteristics of the contact 

area. In the general case, the following inequality takes place [33]: 
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So, differentiating Eq. (18) with respect to  , we readily get 

 
2

* 24
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. (20) 

Now, making use of the monotonicity property, which holds for both geometric 

quantities   and  , and assuming that     for    , we derive from (19) by 

differentiation that  

 
1

2 AA


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
. (21) 

Following the argumentation of Kendall [29], we state that detachment is possible 

when 

 0TU

A





. (22) 

Thus, from Eqs. (20)–(22), it follows that 

 2 * 28cF AE    . (23) 

or using the inequality (19) once again, we arrive at the following relation [34]: 

 2 * 38cF E    . (24) 

Another estimate for the pull-off force can be derived from the approximate solution 

obtained by Fabrikant [16] for an arbitrary flat-ended indenter 

 
2 2

( )
( , )

2 ( )

Fa
p r

A a r








, (25) 

where the equation    ( ) determines the boundary of the contact area in the polar 

coordinates (   ). 

Formula (25) implies the following approximation for the maximum SIF: 

 1max ( ) max ( )
2

F
K a

A


   . (26) 

Recall that we assume that    , i.e, the pull-off force is assumed to be negative. 

So, the substitution of (26) into the JKR detachment criterion (see [30,31])  

 *

1max ( ) 2K E    

yields 
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where   is the diameter of the contact area. 

Observe that formula (27) correctly predicts the onset of detachment for a flat-ended 

elliptical indenter.  
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4.3. On extension of the MDR to the Kendall type adhesive contact 

In the case of a flat-ended cylindrical indenter, the shape function can be described as 

follows: 

 
1 2

1 2 2

1 2

0,       ( , ) ,
( , )     

,      ( , ) \ .

x x
x x

x x


  

  
 

Here,  is the contact area, which does not change during the normal translational 

indentation. 

Let   denote the harmonic capacity radius of  . Then, the shape function of the 

equivalent one-dimensional punch will simply be 
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Note that in the axisymmetric case, when   equals the contact radius  , the above 

definition coincides with that of [11]. This means that the pull-off force 

 
12 c

c DF p   (28) 

must coincide with Kendall’s result (17), when    . 

According to the logic of the rule of Heß for the adhesive contact between axially-

symmetric bodies (see [11], section 4.2), the critical value of pressure    
  may depend on 

 . The only question now is, what meaning should be attached to    
 ? In view of the 

surprising difficulty of the evolution of the detachment process (see [35]), it is suggested 

to associate    
  with critical force     at which the detachment process starts (see [34] 

for details).  

Observe that among the three upper estimates (23), (24), and (27), only the second 

one is a function of solely the harmonic capacity radius of the contact area. This fact 

limits the choice of approximations for    
  to the following one: 

 
*

1 2c

Dp E    . (29) 

It is interesting and significant that the substitution of Eq. (29) into Eq. (28) yields 

Kendall’s formula, Eq. (17), in the axisymmetric case, when    . 

5. DISCUSSION AND CONCLUSION 

The model of Winkler’s foundation is based on two concepts: linear deformation of 

spring elements according to Hooke’s law and non-interaction between the spring 

elements. There are known many generalizations of the Winkler model [36] and, in 

particular, its varied adaptations to the field of adhesion [37]. It is clear that Popov’s 

foundation is a one-dimensional Winkler foundation. But it is more than that. The MDR 

(and correspondingly the Popov foundation) has been extended to cope with tangential 

[11] and torsional [38] contacts and to account for viscoelastic material’s constitutive 

relationship [39] as well as for material grading [40,41]. 
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Having been stemmed from a simple observation [22] that — as far as one is interested in 

the stiffness of the Hertzian type contact — the three-dimensional contact problem can be 

reduced to a one-dimensional problem for a Winkler foundation, the MDR has grown to 

become a comprehensive methodology for dealing with a wide class of elastic contacts. 

Strictly speaking, a range of elastic contact problems solved by the MDR is 

characterized by a hierarchy of Popov foundations, or to be more precise, each type of 

contact interaction, which is covered by the MDR, requires its own Popov foundation. 

Since distinct types of contact can differ by diverse surface effects (like friction and 

adhesion), one can consider a generic case with a combination of the effects and forms of 

loading. In the MDR framework, this can be done in a straightforward way, assuming 

superposition of the effects. However, a care should be taken in this regard since the 

superposition of physical effects is not always valid.  

To conclude, Popov’s foundation, which serves as the basis for the MDR, represents a 

major advance in developing a unified approach to effective dealing with elastic contacts.  
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