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Marko Milojković, Staniša Perić 
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Abstract. A new class of cascade digital orthogonal filters of the Malmquist type based 

on bilinear transformation for mapping poles to zeroes and vice versa is presented in 

this paper. In a way, it is a generalization of the majority of the classical orthogonal 

filters and some newly designed filters as well. These filters are orthogonal with 

respect to the generalized inner product which is actually a generalization of the 

classical inner product. Outputs of these filters are obtained by using polynomials 

orthogonal with respect to the new inner product. The main quality of these filters is 

that they are parametric adaptive. The filter with six sections is practically realized in 

the Laboratory for Modeling, Simulation and Control Systems. Performances of the 

designed filter are proved on modeling and identification of the system for differential 

pulse code modulation. Real response and response from the proposed filter are 

compared with regard to the chosen criteria function. Also, a comparative analysis of 

the proposed filter with some existing filters is performed.  

Key Words: Digital Orthogonal Filters, Malmquist Functions, Müntz Polynomials, 

Bilinear Transformation, Inner Product, Differential Pulse Code Modulation 

1. INTRODUCTION 

The majority of the already existing classes of orthogonal rational functions are obtained 

by using one of the two simple transformations. The first one is a linear transformation 

s→as+b which was used for obtaining classical orthogonal functions as Legendre, Müntz-

Legendre, Jacobi, and some other classes of orthogonal functions and appropriate filters as 

almost orthogonal [1–3], quasi-orthogonal [4, 5], and some generalized classes of 
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orthogonal functions and filters [6]. The second transformation is a reciprocal transformation 

of poles to zeroes s→1/s (Malmquist, Laguerre functions) [7, 8]. 

In [9] and [10] the relation between generalized Malmquist functions and new Müntz 

polynomials is given. In [11] this relation is generalized using bilinear transformation for 

mapping poles to zeroes and vice versa. A new class of Müntz polynomials, orthogonal 

with respect to the inner product obtained by this transformation of poles to zeroes, is 

derived. The filters based on the generalized Malmquist orthogonal functions are designed in 

[12]. These filters are orthogonal with respect to the new inner product which is derived 

from symmetric reciprocal transformation s→b/(cs) which is a generalization of the 

reciprocal transformation given in [7, 8]. Two types of these filters are designed in [12], 

namely, analogue and digital ones. Further generalization of these orthogonal functions is 

based on the above mentioned symmetric bilinear transformation s→(as+b)/(cs-a) [11]. This 

transformation includes the above mentioned linear and reciprocal transformations. In [13], 

analogue orthogonal filters based on these functions are designed.  

Since the first pulse-code modulation transmission of digitally quantized speech, in 

World War II, digital signal processing (DSP) began to proliferate to all areas of human life. 

Classical digital systems are known to possess poor parameters under finite-precision 

arithmetic, like frequency response sensitivity to changes in the structural parameters, noise, 

inner oscillations, and limit cycles [14]. These effects have led to development of wave 

filters [15] and orthogonal filters. Rapid development of the digital orthogonal filters started 

in early 1980's [16, 17]. The most common approaches to the orthogonal filter synthesis are 

transfer function decomposition [16, 18] and the state space approach [19, 20]. Various 

realizations of the digital orthogonal filters developed in the last several decades. For 

example, in [18], the development of the pipelined structure of digital orthogonal filters 

started. It continued in the 1990's till present days [14]. When the two most common 

approaches are compared, state-space realization has advantages in the case of MIMO 

filters; it provides a better insight into their structure. However, in this paper the authors use 

transfer function realization of the proposed filters that is suitable for our purpose of 

modeling real systems. It was noted that IIR digital filter can be applied to modern DSP 

applications (e.g. mobile communication), to multichannel prediction, etc. Because of all 

this, the main goal of this paper is design and later practical realization of a new class of 

digital orthogonal filters.  

In this paper a bilinear transformation for mapping poles to zeroes and vice versa in 

the case of digital system is performed: z→(az+b)/(cz-a). In this way, the filters, orthogonal 

with respect to a more generalized inner product, are obtained both in z-domain and discrete-

time domain. The class of discrete orthogonal polynomials derived from [9, 10] will be used for 

determining outputs of the proposed filters. The proof of this orthogonality is given in the 

Appendix. In this way, the designed orthogonal digital filter is a generalization of the majority 

of classical orthogonal filters (Legendre, Müntz-Legendre, Laguerre, Jacobi, Malmquist) as 

well as the most recently designed filter based on the reciprocal transformation [12]. The 

generalized Malmquist filters designed in this paper are parametric adaptive.  

The proposed digital orthogonal filter is practically realized in the Laboratory for 

Modeling, Simulation and Control Systems [21] and it will be applied to modeling of the 

well-known digital system for signal transmission, Differential Pulse Code Modulation 

(DPCM) system [22–24]. Performances of the new filter are verified by comparing them 

with some other classes of digital orthogonal filters. 
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The rest of the paper is organized as follows. In Section 2, new digital orthogonal filters 

based on bilinear transformation are developed; first theoretically, later by simulation; finally, 

they are practically realized. The proposed filter is used to modeling a linear part of the DPCM 

system in Section 3. Comparison between the practically realized filter and some other filters is 

performed in Section 4. In Section 5, the authors give conclusions and discuss a possibility for 

further development in this area. Finally, at the end, the Appendix includes the proof of 

orthogonality of these filters in discrete-time domain, and also relations for the inner products 

and norms. 

2. DIGITAL MALMQUIST-TYPE ORTHOGONAL FILTERS:  

MATHEMATICAL BACKGROUND, DESIGN AND PRACTICAL REALIZATION  

The generalized Malmquist filters based on bilinear transformation in discrete-time 

domain can be derived from corresponding generalized Malmquist filters in continuous-

time domain [13] with the same procedure given in [12]. Namely, operator s (operator of 

differentiation) is substituted by operator z (operator of prediction) to design corresponding 

digital filters. The transfer function of new digital filters has the following form: 
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Cascade scheme based on (1) is given in Fig. 1, where K is the number of samples, 

and T is a sample period. The authors assume the sample period is one second because it 

is not important for further analysis, i.e. K≡KT (discrete time). 

 

Fig. 1 Block diagram of a digital orthogonal filter based on bilinear transformation 

A sequence of functions on the outputs of cascades of the proposed digital filter (1) 

obtained mathematically corresponds to responses by simulation and from practically realized 

orthogonal digital filter. These outputs for the specific case a=0, b=1, c=1 (reciprocal 

transformation) are already given (α0=1/2, α1=1/3, α2=1/4, α3=1/5) in [12] illustratively.  

These filters are orthogonal in complex z-plane: 
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surrounds all the poles of Wn(s).  
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The proof of orthogonality is similar as in the case of continuous-time systems [11, 13]. 

If in transfer function Wn(z) bilinear transformation is performed, the authors obtain Wn
*
(z) 

whose poles are equal to zeroes of Wn(z) and zeroes of Wn
*
(z) are equal to poles of Wn(z). 

Thereby, all poles of Wn
*
(z) are outside contour Г, and zeroes of Wn

*
(z) are inside contour Г. 

If m≠n due to symmetry of the bilinear transformation, all the poles of the integrand 

(2) that lie inside contour Г are annulled with appropriate zeros of Wm
*
(s), so  the contour 

integral (2) is equal to zero. In the case of m=n, there exists one first-order pole inside   

contour Г. After applying the Cauchy theorem, the following expression is obtained: 

(Wn(s), Wm(s))=Nn
2
≠0. Finally, all the expressions stated above imply (2). 

Practical realization of the generalized Malmquist digital orthogonal filter is shown in 

Fig. 2. 

 

Fig. 2 Practical realization of the generalized digital orthogonal filter based on bilinear 

transformation – printed circuit board 

Outputs from the filter in z-domain Φl(z)=U(z)Wl(z), l=0, 1, 2, ..., n are orthogonal [12, 

13, 25]: 
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Outputs from this digital filter in time domain are obtained using inverse z-transformation: 
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where contour Γ surrounds all the poles of Wl(z). This contour can be obtained by 

mapping s- to z-domain: Γ={c|z|
2
-2aRez-b=0}[25]. 

A new inner product for the filter outputs is: 
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The relation for Jn,m and Nn
2
 is given in the Appendix. Otherwise, this inner product is 

generated in the practically realized filter thanks to its structure.  

These filters are adjustable. It means that their parameters can be changed: numerical values 

of poles and parameters of bilinear transformation. For example, for c=0 well-known classical 

orthogonal filters based on linear transformation are obtained, and for a=0 orthogonal filters 

based on the reciprocal transformation (Malmquist type). Finally, in the case of a≠0, b≠0, c≠0 

the most generalized orthogonal digital filter can be obtained. 

This digital cascade orthogonal filter will be practically applied to modeling a prediction 

filter in a well-known digital system in telecommunications, the DPCM system [22]. Because of 

the cascade structure of the realized filter, i.e. a possibility to append more sections, the authors 

suppose that the filter will be suitable for modeling DPCM systems which can theoretically 

have an arbitrary high order predictor. A cascade structure is already verified in the case of 

appropriate class of analogue generalized Malmquist filters [4]. 

3. APPLICATION TO MODELING DPCM SYSTEM  

A new digital cascade orthogonal filter based on bilinear transformation will be 

applied to modeling and signal identification of a linear part of the DPCM system [22]. 

The DPCM is a well-known and commonly used technique for signal transmission in 

telecommunications. This system has a wide usage in different areas, starting from speech 

and image coding to the latest medical research [23]. An estimate, i.e. a prediction of the 

present value of the input signal is based on the knowledge of its earlier values [24]. That 

is why one of the most important parts of every DPCM and ADPCM (Adaptive 

Differential Pulse Code Modulation) is a predictor (a linear part of the system). 

For modeling of the prediction filter the authors use an adjustable model based on the 

proposed generalized digital filter (Fig. 1). A block diagram of the digital orthogonal adjustable 

model based on bilinear transformation is shown in Fig. 3. In this case the authors use a 

filter with six sections and real poles αk
*
=(aαk+b)/(cαk-a), k=0, 1, ..., n. 

 

Fig. 3 Block diagram of an adjustable model with the proposed orthogonal digital filter 

based on bilinear transformation 

It can be noticed from Fig. 3 that the orthogonal model output is: 
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where K is the number of samples, n=5 in our case. 
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The desired model of the linear part of DPCM system (exactly, the prediction filter in the 

encoder) is obtained by adjusting the following parameters: αk (k=0,1,…,5), summation 

coefficients bk (k=0,1,…,5), and parameters of bilinear transformation a, b, and c. In the case 

of modeling a particular unknown system, the parameters of the model should be adjusted in 

such a way that the model (Fig. 3) corresponds as closely as possible to the unknown system. 

The process of modeling is performed in the well-known manner by introducing the same 

input to the system itself and to its adjustable model based on the new cascade orthogonal 

digital filter [12]. This input signal is shown in Fig. 4. 

 

Fig. 4 The input of DPCM linear part and the adjustable model 

The next step is measuring the outputs from system ys(t) and filter yM(t) and calculating the 

mean squared error (criteria function):  
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Optimal values of unknown parameters which lead to minimization of mean squared 

error can be obtained by using genetic algorithm with J is fitness function.  

The specific genetic algorithm used in experiments has the following parameters: initial 

population of 1000 individuals, a number of generations of 300, a stochastic uniform selection, 

a reproduction with 12 elite individuals, and Gaussian mutation with shrinking. The used 

structure of chromosome was with eight parameters coded by real numbers: a, b, c, b0, b1, b2, b3, 

b4, and b5 (Eq. 1). Poles a0, a1, a2, a3, a4, a5 are also adjustable, and in these experiments their 

values are fixed. A series of experiments can be performed with other values of poles until the 

obtained model fill requirements in advance. The main goal of the experiment was to obtain the 

best model of the unknown system in regard to the criteria function, i.e. mean squared error. 

The original signal (output from the DPCM linear part) and the signal from the 

adjustable model based on the orthogonal digital filter of the generalized Malmquist type are 

given in Fig. 5. 
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Fig. 5 Outputs from the DPCM linear part and the adjustable model 

The authors performed experiments with six sections. In the case of the digital 

orthogonal filter based on reciprocal transformation the filter with six sections is verified 

as better related to the criteria function than one with four or five sections [12].  

Obtained optimal values for parameters of adjustable orthogonal model are presented 

in Table 1. Mean squared error is: Jmin=5.7216∙10
-3

. 

Table 1 Values for parameters of the adjustable orthogonal model  

Parameters Numerical values 

b0 0.56713 

b1 0.59111 

b2 0.32604 

b3 0.61674 

b4 -0.21408 

b5 0.25053 

α0 0.91286 

α1 0.87552 

α2 0.77119 

α3 0.82101 

α4 -0.15647 

α5 0.79444 

A 0.28327 

B 0.09449 

C 0.73071 

In Fig. 5 one representative sample is zoomed for illustrative purposes because of very 

small differences between sample values. Measured outputs in discrete-time periods (sample 

periods) of the prediction filter and the adjustable model based on the new digital orthogonal 

filter are given in Table 2. 



392 N. DANKOVIĆ, D. ANTIĆ, S. NIKOLIĆ, M. MILOJKOVIĆ, S. PERIĆ 

Table 2 Obtained outputs from the DPCM prediction filter and the adjustable model based 

on the digital orthogonal filter 

K 
Output from the DPCM 

prediction filter 

Output from the adjustable 

orthogonal model 

0 0.82500 0.82500 

1 2.09125 2.09215 

2 3.68806 3.68806 

3 5.71962 5.70912 

4 7.18302 7.18302 

5 9.53761 9.51500 

6 10.89502 10.86011 

7 12.05639 12.03209 

8 14.99215 14.97022 

9 16.44441 16.39001 

10 17.93314 17.91510 

11 19.39597 19.36826 

12 19.98442 19.97384 

13 20.04930 20.03347 

14 19.59736 19.57832 

15 20.33942 20.31451 

From Fig. 5 and Table 2 a high level of matching can be noticed between signals from 

the DPCM linear part and the proposed orthogonal digital filter. 

Finally, the model of the prediction filter in the DPCM encoder is formed as:  
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where αk
*
=(aαk+b)/(cαk-a), and appropriate values of parameters are given in Table 1. 

The proposed filter model (8) using numerical values in Table 1 can be written in the 

following form:  

  
5 4 3 2

6 5 4 3 2
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The relation (9) for the transfer function of the system is more suitable for control system 

theory analysis, while the relation (8) is more suitable for system modeling.  

4. COMPARATIVE ANALYSIS  BETWEEN THE PROPOSED FILTER  

AND SOME OTHER CLASSES OF DIGITAL ORTHOGONAL FILTERS 

In order to verify the quality of the model based on the new filter with six sections, a 

comparison with the models based on the some already existing digital orthogonal filters 

(generalized Legendre and generalized Malmquist filters) is performed. The criteria function is 

mean squared error again and the number of sections is six. The transfer functions of all the 

filters used in experiments are shown in Table 3 (αi-1 is assumed to have constant value equal to 

zero). 



 New Class of Digital Malmquist-Type Orthogonal Filters Based on Generalized Inner Product... 393 

Table 3 Transfer functions of digital orthogonal filters used in experiments 

Orthogonal filter type Transfer function 

Legendre (Müntz-Legendre) 
5

1

0 0

( )
( )

( )

k
i

k

k i i

z
W z b

z

 




 

 



   

Generalized Malmquist 
5

1

0 0

( )
k

i
k

k i i

b
z

W z b
z






 






   

Filter based on bilinear transformation 
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The outputs of the models based on these filters are calculated as 
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Table 4 Values for parameters of the adjustable orthogonal models based on new and 

existing types of digital orthogonal filters 

Criteria function value 

and orthogonal model 
i 0 1 2 3 4 5 

J=16.370∙10-3

 
orthogonal model with Legendre filter 

(λ=0.67) 

αi

 
0.1677 0.3162 0.4777 0.6164 0.7011 0.8168 

bi

 
0.7821 1.6234 0.9102 0.8648 0.5519 0.3271 

J=13.022∙10-3 

orthogonal model with generalized 

Malmquist filter  
(b=0.92) 

αi

 
0.2681 0.1155 -0.1733 0.3124 0.2178 0.1665 

bi

 
3.6410 -0.9131 2.1616 1.9872 0.8764 0.3558 

J=5.721∙10-3 

orthogonal model with a new filter 

based on bilinear transformation 

(a=0.2834, b=0.094, c=0.731) 

αi

 
0.9129 0.8755 0.7712 0.8210 -0.1565 0.7944 

bi

 
0.5671 0.5911 0.3260 0.6167 -0.2141 0.2505 

The structure of chromosome that is used in experiments is with 6 standard parameters 

coded by real numbers: α0, α1 ,..., α5, and one additional; for Legendre filter λ and for 

generalized Malmquist filter b. In Table 4 the obtained parameters for proposed and 

existing filters are given. 

From Table 4 it can be seen that the mean squared error is much bigger for the 

generalized Malmquist [12] and the Legendre digital orthogonal filters than for the filter 

presented in this paper. The excellent matching between the system output and the output 

of the adjustable model based on the proposed filter has shown the quality and need for 

new filters described in this paper. 

Of course, the model of the linear part of DPCM system can be derived by using other 

methods, but in this paper the authors used new orthogonal filter to verify its performances. 
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5. CONCLUSION AND FUTURE WORK 

In this paper the authors gave mathematical background, simulation and practical 

realization of new digital orthogonal filters based on bilinear transformation of poles to zeroes 

and vice versa. It is an extension of generalizations of traditional orthogonal filters starting with 

filters based on reciprocal transformation. All good performances of already existing filters are 

included in this class of filters.  

The great quality of this filter is parametric adaptivity, i.e., possibility of adjusting values of 

poles and parameters of bilinear transformation. Also, it is demonstrated that by setting specific 

values for parameters of bilinear transformation, most of the classes of realized filters can be 

obtained. In the case when c=0, these filters degenerate into classical orthogonal filters 

(Legendre, Laguerre, Jacobi), and when is a=0, they degenerate into classical Malmquist and 

generalized Malmquist filters. 

In the future work, the authors could try to derive appropriate classes of orthogonal filters 

with complex poles which in some practical cases could be even better. Further generalization 

could also be in the usage of more general symmetric transformations than the bilinear one. In 

this way, the study of generalized class of orthogonal analogue and digital filters will be 

concluded. 

APPENDIX 

Polynomials obtained by using bilinear transformation of poles to zeroes are orthogonal 

on the contour: 
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By development of Eq. (A2) in partial fraction it is obtained:  
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By using inverse z-transformation of φm(z) outputs in time-domain are obtained: 
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By applying linear transformation onto linear systems, orthogonality is held. 

When linear transformation z=Rz
*
+a/c is used, the region of orthogonality of filters 

based on bilinear transformation is mapped into the unit circle with the center at the origin, 

i.e. these polynomials are mapped into classical discrete-time orthogonal polynomials where 

orthogonality in the classical sense is valid: 
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By using inverse z-transformation it is obtained: 
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The norm for outputs of filters obtained by bilinear transformation is: 
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   . (A7) 

Therefore, a new inner product for outputs of the filter is obtained: 

 
2* * * *

, ,

1

( ( ), ( )) ( ( ), ( )) ( ) ( )n m n m n m n m n n m

K

J K K K K K K N      






    . (A8) 

Let the authors note that relations for the new inner product and norm Nn
2
 are used in 

mathematical analysis of these filters. In the case when the filters are practically realized 

(see Case Study), these relations are calculated thanks to their structure. 
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