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Abstract. The stability of a two-degree-of-freedom (2DOF) sliding system with the 

velocity-weakening friction was examined by the eigenvalue analysis, where the in-

plane anisotropy and the in-plane asymmetry were considered. The obtained 

eigenvalues were organized by using the minimum modal damping ratio as the stability 

maps. Selecting a stable point in the stability map corresponds automatically to 

embedding the Yaw-Angle-Misalignment (YAM) method in the mechanical structure 

design to avoid the instability. If we accept the mechanical structure design of sliding 

systems with the in-plane anisotropy and the in-plane asymmetry, we can find new 

stable conditions spread widely in the two-dimensional space, which are invisible from 

the conventional point of view.  
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1. INTRODUCTION 

Friction-induced instabilities are important problems to be solved since they result in 

vibration and noise of mechanical products (e.g., brakes, transmissions, wipers, belts, and 

tyres for automobiles). One of the most famous mechanisms of friction-induced instabilities 

is the velocity-weakening friction. It has been known that mechanical systems tend to 

become unstable when the frictional force decreases with decrease in the velocity [1] (e.g., 

the frictional force of lubricated sliding systems operating under mixed lubrication 

conditions). 
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When engineers have to solve the instability caused by the velocity-weakening 

friction, they always have two types of options. One is “improving frictional properties” 

and the other is “improving mechanical structures”. Usually, they tend to choose the 

former since the former probably seems to be the lower-cost solution than the latter. 

However, in reality, a great deal of effort is required to find proper materials that show 

proper frictional properties. If they had some guidelines for mechanical structure design 

to avoid the instability in advance, the situations of the engineers would be improved. 

Recently, as a promising method to stabilize mechanical systems suffering from the 

velocity-weakening friction, the “Yaw-Angle-Misalignment (YAM) method” has been 

proposed by the authors. The fundamental theory was first shown with an extended one-

degree-of-freedom (1DOF) sliding system in the context of friction measurements [2]. In the 

fundamental theory, by observing the two velocities of the sliding surfaces in the “top view”, 

their angular misalignment about the “yaw axis” was considered. After confirming the 

validity of the fundamental theory experimentally [2] and numerically [3], based on the 

structure of disc brakes, it was applied to a pad-on-disc-type sliding system numerically [4] 

and experimentally [5]. Besides, as another application format for rotational machines, the 

stabilizing effect of parallel misalignment in circular contacts was also shown [6]. 

From the viewpoint of guidelines for mechanical structure design, to examine the 

stabilizing effect in more practical sliding systems, the above fundamental theory was 

extended to a two-degree-of-freedom (2DOF) sliding system [7]. First, the stabilizing 

effect of the YAM method in the 2DOF sliding system was confirmed by numerical 

simulations. Then, the stability limit was examined by the eigenvalue analysis in a 

dimensionless form, which clarified the importance of the two quantities: the anisotropy 

of the in-plane stiffness (termed simply as the “in-plane anisotropy”) and the asymmetry 

of the in-plane structure (termed simply as the “in-plane asymmetry”). However, as a 

price of using the dimensionless form, the final format did not become user friendly as a 

guideline for mechanical structure design. 

In light of the above situation, in this study, the results of the eigenvalue analysis for 

the 2DOF sliding system are organized in a user-friendly format by focusing on the two 

most important quantities (i.e., the stiffness quantifying the “in-plane anisotropy” and the 

misalignment angle quantifying the “in-plane asymmetry”) to embed the YAM method in 

mechanical structure design. By introducing the minimum modal damping ratio, the 

degree of stability is quantified and shown as the stability maps, which would be helpful 

for selecting the two quantities in the mechanical structure design of sliding systems. 

2. THEORY 

2.1. Model  

Fig. 1 shows the analytical model, which is the 2DOF sliding system in the top view. 

A “ball” with mass m is in contact with a “plate” parallel to the xy plane at constant 

normal load Fz. The ball is supported elastically in the xy plane by two springs with no 

damping. The stiffnesses in the x and y directions are kx and ky, respectively. When kx ≠ ky, 

they represent the “in-plane anisotropy” of the sliding system. The plate is driven at  

constant velocity VA parallel to the xy plane. Misalignment angle of VA from the x axis is 
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φ. When φ ≠ 0, it represents the “in-plane asymmetry” of the sliding system. Note that 

according to the above definition, the x and y axes are the principal axes of stiffness. 

 

Fig. 1 Analytical model: 2DOF sliding system considering with “in-plane anisotropy”  

(kx ≠ ky) and “in-plane asymmetry” (φ ≠ 0) 

2.2. Velocities 

Let x and y be the position of the ball (or the elongations of the two springs) as a 

function of the time t, i.e., x = x(t) and y = y(t). Relative velocity VAB of the plate to the 

ball is given by 

 
AB A B V V V , (1) 

where VB is the instantaneous velocity of the ball. The magnitudes of VA and VB are given 

by 

 
A A constantV  V , (2) 

 2 2

B BV x y  V , (3) 

where (
•
) is the derivative with respect to t. From the velocity triangle made by VA, VB, 

and VAB, we obtain 

 2 2

AB AB A A( cos ) ( sin )V V x yV    V , (4) 
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
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where θ is the direction of VAB, which is defined as the angle from the x-axis. Note that as 

shown in Fig. 1, θ is not necessarily equal to φ. 
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2.3. Equation of motion 

Let F = F(VAB) and F = F(VAB) be the frictional force vector and its magnitude, 

respectively. Focusing on the ball, we obtain the following equation of motion: 

  Mx Kx F , (7) 

where 
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Note that the direction of F is θ since it corresponds to the direction of VAB. In steady 

sliding (i.e., VB = 0), the ball remains at rest at the equilibrium position x = xeq: 

 

A
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A
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( )sin

x

y

F

V

k

k

V
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
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 
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This is because VAB = VA when VB = 0, which leads to VAB = VA and θ = φ. 

2.4 Linearization 

Let x  be the displacement disturbance from xeq, that is: 

 eq x x x . (13) 

Substituting Eq. (13) into Eq. (7) and linearizing it around x 0  and x 0  under the 

assumption that 
Ax V , we obtain the following linearized equation: 

   Mx Cx Kx 0 , (14) 

where 

 
xx xy

yx yy

c c

c c

 
  
 

C . (15) 

The elements of C are given by 

 
2 2

1 2cos sinxxc D D  , (16) 
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 1 2( )sin cosxy yxc c D D     , (17) 

 2 2

1 2sin cosyyc D D  , (18) 

where 

 1 A( )D F V , (19) 

 A
2

A

( )F V
D

V
 . (20) 

Note that (' ) in Eq. (19) is the derivative with respect to VAB. Therefore, D1 means the 

slope of the frictional force against the relative velocity at VAB = VA, which acts as a 

damper for the sliding system, although there are no dampers in the sliding system. 

2.5 Eigenvalue equation 

Using state vector X defined as 

 
 

  
 

x
X

x
, (21) 

Eq. (14) is described as 

 X AX , (22) 

where, by using zero matrix O and identity matrix I, A is given by 

 
1 1 

 
  

  

O I
A

M K M C
. (23) 

Hence, by solving the following eigenvalue equation: 

 det( ) 0s A I  (24) 

for s: 

 s j   , (25) 

the complex eigenvalues are obtained, where j is the imaginary unit. If the real part σ of 

every eigenvalue s is negative, the equilibrium point is stable, which leads to steady sliding. 

Otherwise, the equilibrium point is unstable, which leads to friction-induced vibrations in the 

sliding system. 

3. METHOD 

The eigenvalue equation (Eq. (24)) was solved numerically under the assumption that 

 kAB AB( ) ( ) zF V V F , (26) 

where μk = μk(VAB) is the kinetic friction coefficient: 
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where μk0 and μk∞ are the dimensionless constants, and Vf is the velocity constant. In this 

study, the values of the three constants were μk0 = 2, μk∞ = 1, and Vf = 10
–2

 m/s. Note that 

since μk0 > μk∞, the magnitude of frictional force F(VAB) shows the negative dependence 

on relative velocity VAB, which means the velocity-weakening friction. 

4. RESULTS AND DISCUSSION 

4.1 Typical results 

Fig. 2 shows the real part σ (upper) and imaginary part ω (lower) of every eigenvalue 

as functions of drive velocity VA. The left column (a) is for the “isotropic” stiffness  

(kx = ky) and the “symmetric” structure (φ = 0). The middle column (b) is for the 

“anisotropic” stiffness (kx ≠ ky) and the “symmetric” structure (φ = 0). The right column 

(c) is for the “anisotropic” stiffness (kx ≠ ky) and the “asymmetric” structure (φ ≠ 0). 

 

Fig. 2 Real part σ (upper) and imaginary part ω (lower) of complex eigenvalue for  

m = 1 kg, kx = 10
6
 N/m, μk0 = 2, μk∞ = 1, Vf = 10

–2
 m/s, and Fz = 10

1
 N; (a) isotropic 

and symmetric (ky = 10
6
 N/m and φ = 0°); (b) anisotropic and symmetric 

(ky = 10
7
 N/m and φ = 0°); (c) anisotropic and asymmetric (ky = 10

7
 N/m and φ = 45°) 

Four eigenvalues were obtained from the eigenvalue equation since the analyzed 

model was 2DOF. Some of them were conjugate: for example, the red curves of (a), the 

red curves of (b), and the blue curves of (c). Besides, for higher VA (e.g., VA > 10
–2

 m/s), 

the blue curves of (a), the blue curves of (b), and red curves of (c) were also conjugate. 

Focusing on the upper graph of (a), the red curve locates above the zero line for any 

VA, which means that due to the velocity-weakening friction, the sliding system is always 

unstable. As shown in the upper graph of (b), this situation does not change even if the 
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sliding system is anisotropic. However, as shown in the upper graph of (c), if the sliding 

system is not only anisotropic but also asymmetric, the blue curve changes from positive 

to negative with increase in VA. Considering that the sliding system cannot be asymmetric 

when it is isotropic, we can say that the combination of the in-plane anisotropy (kx ≠ ky) 

and the in-plane asymmetry (φ ≠ 0) is necessary to stabilize the sliding system. On the 

other hand, focusing on the lower graphs of (a) to (c), every curve is vertically symmetric 

about ω = 0. Note that the non-zero broken lines in the lower graphs show the natural 

frequencies defined as 

 
n

x

x

k

m
  , (28) 

 n

y

y

k

m
  . (29) 

 

Fig. 3 Modal frequency ratio ω
*
 (upper) and modal damping ratio ζ 

*
 (lower) for m = 1 kg, 

kx = 10
6
 N/m, μk0 = 2, μk∞ = 1, Vf = 10

–2
 m/s, and Fz = 10

1
 N; (a) isotropic and 

symmetric (ky = 10
6
 N/m and φ = 0°); (b) anisotropic and symmetric (ky = 10

7
 N/m 

and φ = 0°); (c) anisotropic and asymmetric (ky = 10
7
 N/m and φ = 45°) 

Fig. 3 shows the same complex eigenvalues as Fig. 2, which are shown by using the 

modal frequency ratio ω
*
 and the modal damping ratio ζ 

*
 defined as 
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respectively. Note that by using ω
*
 and ζ 

*
, four eigenvalues are found to be reduced to 

two values (i.e., red and blue). For the sliding system to be stable, every ζ 
*
 needs to be 

positive, where ζ 
*
 takes a value in the range of –1 ≤ ζ 

*
 ≤ 1. 

Fig. 4 shows the effect of the misalignment angle φ on ω
*
 and ζ 

*
. Note that the ω

*
- 

and ζ 
*
-values at φ = 45° in Fig. 4 correspond to those values at VA = 10

–2
 m/s in Fig. 3(c). 

When φ < φcr1 ~ 27°, the sliding system is unstable due to the negative ζ 
*
 denoted by the 

red curve. On the other hand, when φ > φcr2 ~ 60°, the sliding system is also unstable due 

to the negative ζ 
*
 denoted by the blue curve. However, only when φcr1 < φ < φcr2, the both 

ζ 
*
-values are positive, which means the sliding system is stable. As stated above, the 

combination of the in-plane anisotropy (kx ≠ ky) and the in-plane asymmetry (φ ≠ 0) is 

necessary to stabilizes the sliding system. However, it is not sufficient. 

 

Fig. 4 Effect of in-plane angular misalignment φ on modal frequency ratio ω
*
 (upper) and 

modal damping ratio ζ 
*
 (lower) for m = 1 kg, kx = 10

6
 N/m, ky = 10

7
 N/m, μk0 = 2, 

μk∞ = 1, Vf = 10
–2

 m/s, Fz = 10
1
 N, and VA = 10

–2
 m/s 

Note that the strongest asymmetry does not necessarily mean φ = 45°. As shown in the 

lower graph of Fig. 4, the red curve crosses with the blue curve at φ = φopt ~ 36°. By 

considering that the stability of the sliding system is governed by the minimum modal 

damping ratio: 

 
* *

min min( )i  . (32) 

φ = φopt is believed to be a favorable choice for the mechanical structure design since  

ζ 
*
min takes the maximum at φ = φopt. In light of the above discussion, in the next section, 

the results of the eigenvalue analysis are shown by using ζ 
*
min as the stability maps. 
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4.2 Stability maps 

Fig. 5 shows the stability maps in the ky-VA plane. The value of ζ 
*

min from –1 to 1 is 

shown by the color from red (unstable) to blue (stable), respectively. The horizontal 

broken line in each graph shows the “isotropic” condition (i.e., kx = ky). The left and right 

graphs are for the “symmetric” conditions (i.e., φ = 0° and 90°, respectively), while the 

middle graph is for the “asymmetric” condition (i.e., φ = 45°). 

 

Fig. 5 Stability maps in ky-VA plane with minimum modal damping ratio ζ 
*
min; m = 1 kg, 

kx = 10
6
 N/m, μk0 = 2, μk∞ = 1, Vf = 10

–2
 m/s, and Fz = 10

1
 N; red: unstable  

(ζ 
*
min < 0) and blue: stable (ζ 

*
min > 0) 

The blue color (ζ 
*

min > 0: stable) can be seen only in the middle graph, which locates 

above (ky > kx) and below (ky < kx) the horizontal broken line. This means that if the 

sliding system is asymmetric, not only increasing the stiffness but also decreasing the 

stiffness is effective for stabilization. However, comparing the upper blue portion with the 

lower blue portion, the stability limit of the former is wider than the latter. The stability 

limit for the upper blue portion seems to have a slope of –1 for lower VA, while the 

stability limit for the lower blue portion seems to be determined by VA = Vf = 10
–2

 m/s. 

This indicates that increasing the higher stiffness (ky > kx) is better than decreasing the 

lower stiffness (ky < kx) although both these changes strengthen the in-plane anisotropy. 

Note that the red color (ζ 
*

min < 0: unstable) locating for lower VA is caused by the 

provided frictional property (see Eq. (27)). The velocity-weakening friction (μk0 > μk∞) 

makes the damping coefficient D1 negative (see Eq. (19)), the value of which is decreased 

by decreasing VA, which enhances the instability for lower VA. The other damping 

coefficient D2 is the essence of the YAM method, which is always positive (see Eq. (20)). 

When the sliding system is symmetric (φ = 0), the damping term of D2 dissapears because 

sin
2
φ = 0 (see Eq. (16)). However, when the sliding system is asymmetric (φ ≠ 0), the 

positive D2 becomes the competitor of the negative D1 (see Eq. (16)). This is the fundamental 

mechanism of the YAM method to stabilize the sliding system, which is strongly related to 

the in-plane rotation of the frictional force vector [8, 9]. 

Fig. 6 shows the stability maps in the ky-φ plane, which consists of nine graphs. The 

bottom, middle, and top rows are for the normal load Fz = 10
–1

, 10
1
, and 10

3
 N, respectively. 
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The left, middle, and right columns are for the drive velocity VA = 10
–4

, 10
–2

, and 10
0
 m/s, 

respectively. The ordinate of each graph is stiffness ky representing the in-plane 

anisotropy of the sliding system, while the abscissa of each graph is misalignment angle φ 

representing the in-plane asymmetry of the sliding system. The value of ζ 
*

min is shown by 

the color in the same manner as the previous figure. 

 

Fig. 6 Stability maps in ky-φ plane with minimum modal damping ratio ζ 
*
min; m = 1 kg, 

kx = 10
6
 N/m, μk0 = 2, μk∞ = 1, and Vf = 10

–2
 m/s; red: unstable (ζ 

*
min < 0) and blue: 

stable (ζ 
*
min > 0) 

Only the red color (ζ 
*

min < 0: unstable) can be seen in the top-left, top-middle, and 

middle-left graphs, which means that any combination of ky and φ within the graph cannot 

stabilize the sliding system. However, in the rest six graphs, the blue color (ζ 
*
min > 0: 

stable) can be seen. Especially, in every graph located on the diagonal from the bottom-
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left to the top-right, two deep blue portions surrounded by dense contour lines can be seen 

above and below the horizontal broken lines. By considering the positions of the deep 

blue portions, for example, a combination “ky ~ 10
7
 N/m and φ ~ 40°” or another combination 

“ky ~ 10
4
 N/m and φ ~ 50°” seems to be favorable for stabilizing the sliding system. 

Note that the sliding system is unstable on the horizontal line (kx = ky: isotropic) and 

the two vertical lines (φ = 0° and φ = 90°: symmetric), although the bottom-right graph 

seems to be filled with the blue color. For example, the “H-shaped” red area observed in 

the bottom-left graph is the area spread from the three unstable lines. 

Friction-induced instabilities have been often discussed with the conventional 1DOF 

sliding model [10]. It is a picture when we see the 2DOF sliding system of φ = 0 in the 

“front view” (i.e., in the y direction). In other words, it is implicitly assumed that the 

sliding model is isotropic and symmetric. However, based on the stability maps proposed 

in this study, we realize that the conventional 1DOF sliding model just have provided the 

discussion on the horizontal broken line of the left graph in Fig. 5 or the discussion on the 

vertical line φ = 90° of the graphs in Fig. 6. Now we can discuss the instabilities caused 

by the velocity-weakening friction based on the stability maps. If we accept the mechanical 

structure design of sliding systems with the in-plane anisotropy (kx ≠ ky) and the in-plane 

asymmetry (φ ≠ 0), we can find new stable conditions spread widely in the two-dimensional 

space, which are invisible from the conventional point of view. 

5. CONCLUSION 

The stability of the 2DOF sliding system (Fig. 1) was examined by the eigenvalue 

analysis, with considering the in-plane anisotropy (kx ≠ ky) and the in-plane asymmetry (φ ≠ 

0). The results were organized by using the minimum modal damping ratio ζ 
*
min (Eq. (32)) 

as the stability maps (Figs. 5 and 6). Especially for the stability maps in the ky-φ plane (Fig. 

6), selecting a combination of the two quantities (ky and φ) from the deeper blue portions 

corresponds automatically to embedding the YAM method in the mechanical structure 

design to avoid instabilities caused by the velocity-weakening friction.  

Again, when engineers have to solve friction-induced instability problems, we must 

not forget that they always have two types of options. As a guideline for “improving 

mechanical structures”, the authors believe that the stability maps considering the in-plane 

anisotropy and the in-plane asymmetry can be powerful tools, which would at least reduce 

the effort for “improving frictional properties” involving the trial-and-error processes. If 

we accept the mechanical structure design of sliding systems with the in-plane anisotropy 

and the in-plane asymmetry, we can find new stable conditions spread widely in the two-

dimensional space, which are invisible from the conventional point of view. 
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