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Abstract. Though acoustic perception is well established in literature, it seems to be 

insufficiently implemented in practice. Experimental results are excellent but a lot of 

issues arise when it comes to the application in real conditions. Using artificial neural 

networks makes acoustic signal processing very comfortable from the mathematical point 

of view. However, a great job has to be done in order to make it possible. The procedure 

includes data acquisition, filtering, feature extraction and selection. These techniques 

require much more resources than mere artificial neural networks and this represents a 

limiting factor for the implementation. The paper investigates the complete procedure of 

acoustic perception, in terms of time, in order to identify limitations. 
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1. INTRODUCTION 

Acoustic perception is a good alternative to the visual perception in engineering 

applications, with respect to simplicity, reliability and price. There are a lot of techniques of 

acoustic observation where each of them assumes specific preconditions to be implemented. 

In accordance with the preconditions the methods provide limited results. It is necessary to 

combine several methods of acoustic observation in order to overcome these limitations. 

Filtering is, for example, an inevitable method of signal processing in real conditions 

(presence of disturbances) [1]. The function of filter is to suppress the disturbances while the 

signal is left unchanged. In such a manner, the filter enhances discriminative capacity 

(amount of useful information) in the signal.  
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In order to act against acoustic object, it is necessary to identify it. The procedure is 

called acoustic recognition because it assumes that what is currently being received 

corresponds in some way to something that has already been processed in the past [2].The 

problem belongs to the general category of artificial intelligence problems, namely pattern 

recognition. In the experiment, artificial neural networks were chosen, as a proven pattern 

recognition tool, for processing acoustic signals [3]. Though neural networks can be trained 

to perform filtering [4], preprocessing, before the signal is presented to a neural network, is 

inevitable. Except filtering, the procedure includes normalization (scaling) [5], feature 

extraction and feature selection [6]. The last two of them decrease computational complexity 

by combining several features in a new one, with a higher discriminative capacity. 

Determination of object position, relative to some reference frame, based on acoustic 

signals is called acoustic localization. The procedure is implemented, in various forms, in 

science and practice [7-12]. From the mathematical point of view, acoustic localization 

belongs to two categories. Near field acoustic localization is performed if the sound source 

is in the surroundings of the microphones and far field localization when the source is far 

away from them. The second is much simpler (computationally) but it gives less information, 

only the direction of sound source. The first method provides spatial coordinates of the sound 

source using time difference of arrival (TDOA) between microphones [13] as a reference. 

Analytical solution requires solving system of hyperbolic equations, which is not a trivial 

problem even for a minimal configuration [14].  In the experiment, the problem is solved by 

processing TDOAs using feed-forward neural network. Again, the signals were previously 

processed using different techniques including obtaining TDOAs [15, 16]. 

2. ACOUSTIC PERCEPTION 

The experiment investigates two separate elementary processes of acoustic perception, 

namely acoustic recognition and acoustic localization, separately. But, in both, artificial 

neural network is employed as a signal processing tool because of its simplicity, universality 

and excellent performance. Neural networks are built of simple processing elements, called 

artificial neurons, which are inspired by biological nervous cells. Neurons are spatially 

organized in layers and different layers may perform different transformation on input 

signals. The neurons in a layer are not interconnected and, depending on the way they are 

connected between layers, there are several network topologies. Neural networks have ability 

to establish complex nonlinear relationship between input and output variables, by adjusting 

weights between neurons. The adjustment is done not by an explicit programming but 

through an adaptive method called learning algorithm, using training data set as a reference. 

Thanks to the massive parallelism in data processing, neural networks have excellent speed 

of performance, in the phase of exploitation. The use of neural networks spreads in modern 

engineering permitting us to investigate a wide range of problems [17], but it also 

demonstrates a superior accuracy with respect to alternative methods as evident in [18]. 

The most important temporal characteristic of the artificial neural network is temporal 

resolution. It is a measure of precision with respect to the operating time. Temporal 

resolution is limited by computational power available and number of calculations. The 

transfer of signals from the layer with i to the layer with j neurons is described by [19] 

 , ( )j ij i j jY W X X f Y   (1) 



 Artificial Neural Network Application for Temporal Properties of Acoustic Perception 311 

According to the matrix algebra, the computational complexity of the first equation is 

O(i×j) and computational complexity of the second is O(j), as element wise function. The 

total computational complexity of the transition between two layers is O(i×j). 

Both experiments of acoustic perception deal with corrupted signals. In order to cancel 

the negative effect of disturbances, a digital IIR filter of second order was employed [13]. 

The transfer function of the filter in general is  
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Computational complexity of the digital filter is equal to its order. On the whole 

length of the signal it is O(N × r) or simply O(N), because r << N, where N is the signal 

length and r is filter order. The experiment searches for an efficient procedure of filter 

design with the goal of improving the accuracy of acoustic perception. 

Duration of the training phase has no influence on the neural network performance, in 

the phase of exploitation, but it still requires some resources. Most of the literature about the 

neural networks deals with computing problems but when it comes to the practical 

implementation the crucial phase of training is acquiring training samples. Without accurate 

and properly sampled data, it is not possible to perform a correct training procedure. There 

is no general rule for data acquisition and feature selection because any implementation 

requires specific solutions and innovative approach. The experiment searches for efficient 

methods of acquiring data for the purpose of acoustic perception. The solutions were limited 

to the regular, simple and cheap equipment. 

2.1. Acoustic recognition 

Categorization (taxonomy) is essential for acoustic recognition, as for all cognitive 

processes. It provides generalization rules that are used for making decisions [20]. 

Categories (classes) are groups of objects that have similar characteristics in some frame of 

reference. A categorization, or division of objects into classes, enables the observer to make 

predictions of unobserved characteristic of the object based on previous experience. The 

process, where general rules are derived from specific examples, is called abstraction. 

Taxonomy of the phenomena is never unambiguous. Except from the object properties, it 

depends on the observer properties and his experience. 

Several clues of a sound can be used for acoustic categorization. In the living world, most 

of the acoustic sensations are attributed by pitch, timbre, loudness and duration. Engineering 

practice suggests different perceptual qualities of sound for different applications. For 

instance, temporal characteristics, like variance, zero-crossing rate and silence ratio, in 

combination with spectral properties, like harmonic ratio and sub-band energy, are used for 

discrimination between speech and music. The most important perceptual property of sound 

is surely frequency spectrum (envelope) and its derivates (power spectral density, spectral 

centroid, spectral irregularity, odd and even harmonics). It is perceived as timbre or tone 

color by living beings. The easiest way to obtain frequency spectrum of the sample, s[k] is to 

process it using fast Fourier transform [21] 
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The first half of the fast Fourier transform, for the case of real valued signals, is conjugate 

complex of the second half. That is why one of the halves can be neglected without loss of 

information. Eq. (3) is standard tool for digital signal processing because it provides 

frequency response with a lower computational complexity, O(NlogN), in comparison with 

the standard Fourier transform, O(N2). At the same time, the procedure provides satisfactory 

result. The obtained frequency spectrum was presented to a feed-forward neural network for 

pattern recognition. 

2.2. Near field acoustic localization 

People and animals are able to point to the horizontal direction that the sound is 

coming from using slightly different signals that arrive at each ear [13]. For the vertical 

direction, spectrum features, produced by a sound reflector (pinna), is used as the 

auditory cue. Artificial devices perform localization based on different acoustic clues. The 

working principle is strongly dependent on the number of microphones. Monoaural (by one 

microphone) localization, is performed based on energy drop or spectrum deformation, as the 

sound propagates through the medium. The localization ability of binaural systems can be 

established by the learning procedure through the repetition of movement. An alternative is 

employing head related transfer function (HRT), which captures transformations of a sound 

wave propagating from the source to the microphone. But the most frequent and most 

valuable clue for acoustic localization is a lag between the signals collected at different spatial 

positions (TDOA).  

The basic approach of estimating TDOA is using cross-correlation function [13] 
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as argument l that maximizes its value within the range of possible lags 
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where N is the signal length and is the range of expected lags. It has to be chosen in 

accordance with the measuring range of the experimental setup. Since the expression in the 

bracket has N2 multiplications, N-1 additions and one division, its computational complexity 

is O(N2). The sum has to be evaluated T+1 times plus searching for the maximum in the 

range of possible lags. The final estimation of computational complexity of cross-correlation 

procedure with maximum allowed lag is O(N2×T). A good approximation of cross-

correlation function can be obtained using inverse discrete Fourier transformation  
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where Rij(f) is cross-power spectral density (XPSD) 

 ( ) ( ) ( )ij i jR f S f S f  (7) 

Since frequency spectrum, S(f) is twice shorter than original signal, s[k], and the 

computational complexity of cross correlation procedure, O(N2×T) Eq. (6) can save a lot of 

computational effort. To be implemented it has to provide acceptable approximation error. 
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Function ψ(f) is called windowing function; its role is to highlight some of the spectrum 

features in order to improve its discriminativity. Different windowing functions (Table 1) are 

intended for different purposes but the choice among them is still ambiguous. 

Table 1 Windowing functions 

Window Window Function 

Cross correlation 1CC   

Roth window 1/ ( )Roth iiS f   

PHAT window 1/ ( )PHAT ijS f   

SCOT window 1/ ( ) ( )SCOT ii jjS f S f   

3. EXPERIMENTAL SETUP 

The experiment investigated two separate experiments. In both cases, the acoustic 

signals were processed using regular processor Intel (R) Celeron (R) CPU N3350 @ 1.10 

GHz. 

3.1. Acoustic recognition 

For the training of the feed-forward neural network in acoustic recognition 500 sound 

samples were recorded and collected from the Internet. The samples were processed by a 

human listener, using specially designed software with the possibilities of playing, visualizing 

and separating parts of interest from the rest of the content. At the end, each of the samples, 1 

s long at the frequency of 44.1 kHz, contained only consistent content that can be uniquely 

labeled with one label. To simulate different levels of abstraction, sound samples were 

chosen from three categories. The first category was made of 32 recorded sound samples, all 

produced by the same cricket. This category was most specific among three in the 

implemented category-abstraction space. The second category was consisted of 261 sound 

samples produced by different fly individuals that belong to several subgroups and families. 

This category represented the middle of category-abstraction space. And the last category 

was made of 392 acoustic samples of different backgrounds, starting from human voices, 

animals, natural phenomena up to the different engines, vehicles, machines, musical 

instruments and other technical devices. The samples were grouped in the category, simply 

named “Sound”, which represented the most abstract category in the category-abstraction 

space.  

Amplitude-frequency spectrum, as a recognition clue, was calculated by Eq. (3) and the 

recognition was performed using a feed-forward neural network with the sigmoid activation 

function and the back-propagation algorithm with momentum. The number of neurons in the 

input layer, for the constant sampling frequency, was determined by the signal length. The 

number of outputs was equal to 3, which is the number of signal categories. The rest of the 

network configuration and training parameters were obtained as a result of examination. The 

network was tested by 200 samples, not used in the training procedure. 
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3.2. Near field acoustic localization 

The acoustic source was driven along the training path hanged on three strings. The 

opposite end of each string was wrapped around a step motor driven pulley. Three of these 

pulleys were geometrically placed in vertices of horizontal, approximately 4.35 m edge long 

equilateral triangle, above the acoustic source, building a simple routing mechanism (Fig. 1). 

A meaningful winding and unwinding of the pulleys were used for achieving any specified 

location of the sound source within a selected range. The step motors were driven by Arduino 

CNC driver and the driver is governed using PC through USB connection and ATmega328P 

microcontroller. 

 

Fig. 1 Sketch of experimental setup for near field acoustic localization 

Random number generator was employed for selecting 500 spatial locations within a 1.6 

m edge long cubic space, below the three pulleys. The locations were intended for training 

feedforward neural network in near field acoustic localization. Before training was 

performed, the locations were ordered using genetic algorithm with the objective of 

minimizing training route. 

The source was stopped, at each of 500 spatial locations and the sound sample was 

recorded for a period of 3s. For this purpose, the array of 8, low cost, mini spy microphones, 

was designed and connected to a PC through 8 channel TerraTec EWS88 MT sound card. 

These microphones were spatially displaced at vertices of 2m edge length cube, 

symmetrically around the sound source moving zone, with purposely chosen tolerance of +/- 

20 mm. Parabolic reflector dishes were applied, on each microphone, as an audio signal 

mechanical amplifier. 

The first second, of each acoustic sample, was recorded before the sound source has 

been turned on as a representative of the noise that exists in the room independently of 

the sound source activity. The rest of each signal was recorded for a period of 2 s, after 

the emitter has been activated, as a representative of corrupted signal. The samples were 
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recorded by cheap equipment in a highly reverberant room full of interfering sound sources 

(fans and step motors) so they were expected to be corrupted with a high level of noise. To 

cancel the negative effect of disturbances on TDOA estimation accuracy, the signals were 

filtered by a suitable second order IIR filter. The filter was designed through the iterative 

steps of evolutionary strategy in order to minimize the mean absolute TDOA estimation error 

over the recorded collection of samples. The error was calculated as a difference between 

TDOA estimated using the preprocessed signal and the theoretical TDOA calculated based 

on the sound speed and geometrical relations between acoustic components. Except for filter 

coefficients, the chance was taken for the rest of preprocessing procedure to be configured. 

Finally, the genotype of the complete preprocessing consisted of 8 variables. The first five of 

them were digital filter coefficients while one real variable more was employed for 

determining optimal range of lags to be tested in cross-correlation procedure. Two integer 

variables were used to make choice among windowing functions and nonlinear operators. 

The algorithm was started with an initial population of 50 individuals each of them 

represented one preprocessing configuration. The genotype of the initial individuals was 

chosen randomly within the logical range of values. The termination condition was 

formulated as a maximum number of successive evolutions with no improvement in the mean 

absolute TDOA error. The best configuration was employed for preprocessing in the 

experiment of acoustic localization. 

TDOAs were processed using a feed-forward neural network. The number of neurons 

in the input layer was determined by the number of employed microphones. In order to 

achieve the best accuracy, all redundant pairs that correspond to the certain number of 

microphones were employed as inputs. 

 ( 1) / 2n M M   (8) 

where M is number of microphones. The number of outputs was always 3 because the 

spatial position was determined by 3 independent coordinates. The rest of the network 

configuration (number of hidden layers and artificial neurons in them) and training 

parameters were obtained as the result of examination. Network performance was tested 

along 126 spatial locations, from the same space, which were not used in the training 

procedure. 

4. EXPERIMENTAL RESULTS 

In both experiments, the processing time of neural network and of filtering duration 

was hard to notice in comparison to the time it takes for the preprocessing techniques. 

This is in accordance with the theoretical predictions about the computational complexity 

of these procedures. 

4.1. Acoustic recognition 

The best recognition accuracy was achieved using a feed-forward neural network with 

50 neurons in a single hidden layer. The network was trained using learning coefficient 

0.025, momentum factor 0.999 and 400 training epochs. The overall accuracy was around 

92% (Fig. 2). The result was estimated as satisfactory since it was achieved in the presence 

of disturbances.  
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Fig. 2 Confusion matrix as result of the acoustic recognition 

From the point of duration, the most important phase of preprocessing, for the acoustic 

recognition, was fast Fourier transform. Fig. 3. represents the duration of the fast Fourier 

transform procedure with respect to the signal length while Fig. 4. represents the 

recognition error with respect to the same parameter. 

 

Fig. 3 Fast Fourier transform duration with respect to the signal length 

 

Fig. 4 Mean squared error with respect to the signal length 
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4.2. Near field acoustic localization 

Geometrical relations between the experimental components and the realized spatial 

positions of the acoustic source were precisely measured using Total Station Sokkia 

SET630R. The instrument provides a laser measurement of distances with the accuracy of 

±3 mm, at the used range of lengths, memorization and automatic data transfer, through the 

RS-232 port, to PC. After the realized positions were compared to the given coordinates, the 

resulting mean absolute error, achieved by the routing mechanism over the whole collection 

of audio samples, was approximately 10 mm. The accuracy of the mechanism was 

evaluated as satisfactory regarding the near field acoustic localization because the sound 

source diameter was approximately 40 mm. Since the training positions were randomly 

chosen, the realized positions, precisely determined by total station, were adopted as 

reference for calculating theoretical (reference) TDOA-s.  

The path of the acoustic source, between training positions, was optimized using 

evolutionary algorithm. The procedure reduced the total length of the training path for 4-

5 times. The shorter training path did not only have an influence on a shorter time 

required for the routing mechanism to complete it but it also affected a better positioning 

accuracy. The reason for this is that the routing mechanism used in the experiment, 

governed by the winding strings, made a higher error with a longer movement. 

All the audio samples collected contained a part recorded before the sound source 

was activated and the part after it was started. The amplitude frequency spectrums of 

these are evaluated directly, using fast Fourier transform, and averaged over the whole 

collection of samples. Subtracting frequency spectrum of noise from the frequency 

spectrum of corrupted signal resulted in the frequency spectrum of a clear signal, without 

noise. The ratio estimated between the dominant frequencies of the clear signal and noise 

was around 0.1 which is equal to the SNR ratio of -20 dB, in the logarithmic scale. 

According to the literature [22], the minimum SNR ratio, which provides meaningful 

TDOA estimation, is in the range between -13 dB and -13.5 dB. The SNR evaluated 

suggested that the collected audio samples, in the experiment of acoustic localization, 

contained too much noise to be useful for TDOA estimation. The same conclusion was 

obtained based on the dependency of the mean absolute TDOA estimation error with 

respect to the sample length (Fig. 5). The diamonds represent the error obtained using 

raw signals, without any preprocessing, for 8 different lengths of acoustic sample. The 

TDOAs were calculated by cross-correlation in time domain. The approximation line, 

between them, was obtained using two terms exponential function. The curve shows 

increasing of the mean absolute TDOA error with the signal length, which is against 

logical assumption that more data should provide a better result. 

The influence of preprocessing, on the level of mean absolute TDOA estimating error, is 

demonstrated by the cyan curve marked with triangles. The approximation line was 

obtained in the same way as previous. The line constantly decreases with the length of 

acoustic samples. The results presented, in Fig. 5, proved the necessity of preprocessing in 

the acoustic localization procedure over employed collection of samples. 

According to the graph of processed signal, in Fig. 5, the length of 80ms was adopted 

as optimal for obtaining TDOAs in the experiment of acoustic localization. Further 

increasing of the signal length, despite higher computational complexity, gave no 

significant improvement of accuracy. The minimal TDOA estimation error achieved in 
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the experiment was approximately 0.13ms. For the sound velocity of 334.33 m/s, at the 

temperature of 5°C that ruled during the experiment. the mean absolute error 

corresponded to the length of 45 mm. This was estimated as satisfactory, regarding the 

acoustic source diameter too. The average duration of TDOA estimation, which assumed 

preprocessing (filtering) and calculating of lags between microphones, was just under 

0.1s per location. Fig. 8 represents TDOA processing time, for 8 microphones, with 

respect to the signal length while Fig. 6 presents TDOA processing time with respect to 

the number of microphones. Both graphs were obtained with the signal length of 0.8s. 

 

Fig. 6 TDOA processing time with respect to the signal length 

After testing different configurations, the artificial neural network was adopted with 

10 neurons in a single hidden layer. The network was trained using learning coefficient 

0.7, momentum factor 0.9 and 4000 training epochs. The final result is presented in Fig. 

 

Fig. 5 Average TDOA estimation error with respect to the sample length 
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7. Average deviation from the actual path was 35.7 mm which is even lower than the 

mean absolute error of input TDOAs. The accuracy was result of redundant microphones. 

 

Fig. 7 TDOA processing time with respect to the number of microphones 

 

 

Fig. 8 Actual path and estimated paths of acoustic source 

3. CONCLUSION 

The most demanding procedure of the acoustic recognition was fast Fourier transform. 

On the described processor, it lasted about 500 times shorter than signal itself which leaves 

the possibility to employ the rest of computational power for improving recognition 

accuracy. One of the techniques is overlapping audio signals that result in raising temporal 

resolution. The processing time of near field localization is conditioned with the complexity 

of cross-correlation (3). On the employed processor, it was at the limit of real time 

application. 



320 M. SIMONOVIĆ, M. KOVANDŽIĆ, V. NIKOLIĆ, M. STOJĈIĆ, D. KNEŽEVIĆ 

 

The experiment confirms theoretical assumption that the temporal resolution of acoustic 

perception, by artificial neural networks, strongly depends on the feature extraction 

procedure. The paper indicates crucial implementation problems of the acoustic perception, 

which are omitted in literature, and gives some solutions. 
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