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Abstract. The paper analyzes the transverse vibration of a Timoshenko beam with one-

step change in cross-section when subjected to an axial force. The axial force is equal in 

both of the beam portions. Three types of beam which occur commonly in engineering 

application are considered. The frequency equation of the Timoshenko beam with one-

step change in cross-section is expressed as the fourth order determinant equated to zero. 

The critical compressive axial force is expressed as a function of the critical load 

parameter which is tabulated for four classical boundary conditions. Apart from the 

results presented in Tables, the paper also provides calculated values of the critical load 

parameter for other values of system parameters along with the graphic representation of 

their dependence on the step position parameter. 

Key Words: Timoshenko Beam, Frequency Equation, Critical Axial Load, Critical 

Load Parameter, One-step Beam 

1. INTRODUCTION

Mechanical and other engineering structures often contain beams with step changes in 

cross-section. Stepped beams are increasingly used in many fields of engineering and 

practically always as structural elements. Due to the frequent application, they can be very 

different structures, subjected to various types of loads. For this reason, their dynamic 

properties have been investigated by many authors.  

Among the first ones are Jang and Bert [1-2] who have given the first exact results for 

natural frequencies of a stepped beam. In Jang and Bert‟s paper [1] the exact solution for 

fundamental natural frequencies is compared with the results obtained by the use of the finite 

element method. In the next paper by the same authors [2] higher mode frequencies of a 
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stepped beam are obtained, expressing the frequency equation as the fourth-order determinant 

equated to zero.  

The vibration of Euler-Bernoulli beam with step changes in cross-section and under axial 

forces is considered by Naguleswaran [2-7]. The author presents the first three frequencies 

and the first two critical axial forces for beams with several combinations of axial forces in 

two portions, and for 16 sets of boundary combinations and three types which occur 

commonly in engineering applications. Also, Naguleswaran [6] investigates the sensitivity of 

frequency parameters from the step location factor and the “active“ dimension factor. The 

sensitivity is presented for the selected system parameters. The vibration of an Euler-

Bernoulli beam with three step changes and elastic end supports is investigated in [7]. The 

first three frequency parameters are tabulated for the selected sets of system parameters and 

classical end support and 35 types of elastic end supports. Vibration and stability of Euler-

Bernoulli tie-bars are considered by Naguleswaran [3]. The first three frequency parameters 

and the first two buckling axial forces are tabulated for three type arrangements with 

different number of rings and various end supports. The frequencies, in graphical form, of a 

uniform Euler-Bernoulli beam under constant axial compressive and tensile force for the 

classical boundary conditions are presented by Bokaian [8-9]. 

By means of the Adomian decomposition method, Mao and Pietrzko [10] investigate the 

free vibrations of a stepped beam. The first four natural frequencies for classical end 

supports are tabulated.  Also, the authors obtain the frequencies for the stepped beam with a 

translational and rotational spring at one and both ends. Their results are compared with 

those obtained in [7]. Mao [11] has extended the study in [10] to multiple-stepped beams 

and compared them with those obtained in [3].  

By using the continuous-mass transfer matrix method, Wu and Chang [12] have 

investigated free vibration of the axial loaded multi-step Timoshenko non-uniform beam 

carrying any number of concentrated elements. In this paper the authors take into 

consideration the effects of shear deformation, rotary inertia and their joint action term, and 

thus determine the exact natural frequencies. Zhang at al. [13] have developed an analytic 

method to study transverse vibrations of double-beam systems, in which two parallel 

Timoshenko beams are connected by discrete springs and coupled with various discontinuities. 

By dividing the entire structure into a series of distinct components, and then systematically 

organizing compatibility and boundary conditions with matrix formulations, closed-form 

expressions for the exact natural frequencies, mode shapes and frequency response functions 

can be determined. Parametric studies are performed for a practical example to illustrate the 

influences of the parametric variabilities on the dynamic behaviors. 

In the present paper, the emphasis is on the critical axial force and natural frequencies of 

a Timoshenko stepped beam. The three types of frequent use in engineering applications are 

considered. The frequency equations for four combinations of the classical boundary 

conditions are expressed as the second order determinants equated to zero. The critical axial 

force is presented in the function of the dimensionless parameter. The influence of a flexural 

rigidity ratio, slenderness ratio and type of beam are considered. The obtained results are 

displayed graphically for a set of combinations of dimension factors and location parameters. 
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2. PROBLEM FORMULATION  

The basic differential equations of motion for the analysis will be reduced by considering 

the Timoshenko-beam of length L, subjected to axial compressive force F. This will be 

applied on the basis of the following assumptions: 

 The behavior of the beam material is linear elastic, 

 The cross-section is rigid and constant throughout the length of the beam and has 

one plane of symmetry, 

 Shear deformations of the cross-section of the beam are taken into account while 

the elastic axial deformations are ignored, 

 The equations are derived bearing in mind the geometric axial deformations,  and, 

 Axial forces F acting on the ends of the beam do not change with time. 

 

Fig. 1 The coordinate system and notation for the beam: a) Timoshenko-beam subjected 

to an axial compressive force F ; b) Deflected differential beam element of length dx 

A beams element of length dx between two cross-sections taken normal to the 

deflected axis of the beam is shown in Fig. 1b. Since the slope of the beam is small, the 

normal forces acting on the sides of the element can be taken as equal to axial 

compressive force F. Shearing force FT is related to the following relationship:  

 




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kGAFT  (1) 

where v = v(x,t) is the displacement of the cross-section in y-direction, v/x is the global 

rotation of the cross section,  =  (x,t) is the bending rotation, G is the shear modulus, A is 

the area of the beam cross-section, and k is the shear correction factor of cross-section. 

Analogously, the relationship between bending moment M and bending angles   is given 

by: 
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where E is the Young‟s modulus and Iz is the second moment of the area of the cross-

section. Finally, forces and moments of inertia are given by:  
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respectively, where  is the mass density. The dynamic-forces equilibrium conditions of 

these forces are given by the following equations: 
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where m = A is the mass per unit length and K = EIz is the flexural rigidity. The equations 

on motion (4-5), which are coupled together, are reduced by standard procedure, eliminating 

 , to the following fourth-order partial differential equation:  
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3. THE FREQUENCY EQUATION OF THE STEPPED BEAM 

In this section of the paper a general theory for the determination of the natural frequencies 

and the critical buckling load of a beam with step change in cross-section is given. Ends A and 

B are on classical clamped (cl), pinned (pn) and free (fr) supports. Each beam portion is made 

of some material with Young‟s modulus E and mass density , and has a cross-section with a 

uniform cross-section of area Ai and moment inertia Ii. The flexural rigidity, mass per unit 

length and the length of the beam portion are Ki, mi and Li. The axial force in beam portion is 

Fi. The coordinate systems with origin at A and B are in opposite directions.  

 

Fig. 2 The coordinate system and notation for the stepped beam 

The dynamics of each beam portion are treated separately. If we apply the above-

mentioned procedure to a differential element of each beam portion, the following set of 

coupled differential equations will be obtained: 
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The standard approach to solving Eqs. (7, 8) is by separating the variables, and the same 

procedure may be applied here. Thus, assuming that:  
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 ( , ) ( ) ( ), 1,2,
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where yi(xi), are the known mode shape functions which will be determined on the basis of 

the type of beam supports. Assuming time harmonic motion, the unknown time function 

can be assumed to have the following form:   

 ( ) , 1 ,j tT t e j    (10) 

where  denotes the circular natural frequency of the system. To express the set of Eqs. 

(7-8) in the dimensionless form one defines dimensionless abscissas Xi, amplitude Yi and 

step position parameter Ri as follows: 
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Also, adopt the “reference beam” with the following characteristics: area of the beam 

cross-section AR, length L, mass per unit mR and  flexural rigidity EIR. Then we can define 

dimensionless flexural rigidity ratio i, mass per unit ratio i and dimensionless axial 

force  in the form:  
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Introducing the general solutions (9) into Eqs. (7-8), considering dimensionless values, 

one gets the system of dimensionless differential equations: 
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where 6.2
G

E
.  

In Eq. (13) R is the natural frequency parameter and R is the slenderness ratio of the 

beam:   
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where iR is the radius of gyration of the reference beam.  

The solutions of Eq. (13) are assumed to be:  
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For the non-trivial solution, we can determine ui as the solution of the characteristic 

equation in the form: 
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where: 
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With the use of Euler‟s formula, solution (15) can be written as: 
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where Cj,i (i = 1,2, j = 1,2,3,4) are eight constants to be determined from the initial 

conditions and: 
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The need for Eq. (18) to satisfy the boundary conditions at A and B may be used to 

eliminate four of the constants.  The mode shape of the beam portions may be expressed as:  
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where Ai1 and Ai2 are unknown constants and functions Ui1(Xi) and Ui2(Xi) for the classical 
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Taking into account the opposite direction coordinate axes at A and B, the need to 

satisfy the continuity of deflection and the slope and compatibility of bending moment 

and shearing force at C will result in the following equations: 
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Substituting the solution (20) into Eq. (22) and rewriting in the matrix form, one 

obtains the following homogenous set of four algebraic equations:  
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where:  
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For the non-trivial solution, the coefficient matrix must be singular, one gets the 

frequency equation: 
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4. CRITICAL AXIAL FORCE, CRITICAL LOAD PARAMETER 

Of all the modes of failure, buckling is probably the most common and most 

catastrophic one. For this reason, the critical buckling load is an important characteristic 

of a mechanical structure. As it is known, the critical buckling load for uniform beam is: 

 ,

2

, 








 
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r

ucr
k

 (26) 

where kr depends on the boundary conditions and one has  

 kr = 1 for pinned/pinned beam 

 kr = 1/2 for clamped/clamped beam 

 kr = 2 for clamped/free beam 

 kr = 0.69915566 for clamped/pinned beam. 

In order to verify the proposed method for the analysis of the vibration of the stepped 

beam, several numerical examples with different boundary conditions, step positions, 

slenderness ratio and moment of inertia parameter will be discussed in this section. 

Assuming that the stepped beam has a uniform Young‟s modulus E and density , the 

present paper considers three of the types which occur commonly in engineering application. 

The first two are beams of a rectangular cross-section with step changes in breadth and depth 

and constant depth and breadth, respectively. The third type of beam has a circular cross-

section with the step change in diameter.  
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Fig. 3 Three types of beam 

Three representative types are shown in Fig. 3, where „active‟ dimensions for Type 1, 

2 and 3 are breadth, depth and diameter, so that: 
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Without the loss of generality, the beam with length L and the characteristic of the first 

beam portion, i.e., EIR = EI1 and mR = m1, is chosen as the „reference‟ beam. This means 

that in all the examples 1 = 1, 1 = 1 and 1 = 1. Taking the above into account and the 

fact that R2 = 1  R1, the system dimensionless parameters are 2,  and R1.   

Clearly, the critical load is a function of this parameter. Our analysis shows that the 

critical force can be represented in the form: 

 
, 2

,
k

cr cr u

    (28) 

where k = k (type of beam, 2,  , R1) is a dimensionless critical load parameter (CLP). 

For the selected set of 2,  and R1, to calculate k  one writes R = 0 in the frequency 

equation (25).  

The roots of the frequency equation (25) are determined by an iterative procedure based 

on linear interpolation and proposed in [4]. This procedure is used to calculate k  for 

2 = 0.6, 0.7 & 0.8 R1 = 0.1, 0.2,...,1and  = 1/20 & 1/100. Also, for the sake of comparison, 

we have calculated the CLP force values for  = 0 which correspond to the case of Euler-

Bernoulli beam. The CLT is tabulated in Table 1 for pinned-pinned beam.  

It can be observed that the values of CLP for the uniform Euler-Bernoulli beam 0 or 1, 

i.e. the critical force is: 

 
1 2 , 1 ,

( 0) , ( 1)
cr cr u cr cr u

R R         , (29) 

The previous expression applies to all the types of supports. The CLP values for 

Timoshenko-beam are higher which means that the critical force has less value. In order 

to show the trend of the change in the CLP value depending on step position R1, the CLT 

values for other values of R1 with the step of 0.001 are calculated and graphically displayed.  
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The Fig. 4 shows the CLP dependence on changes R1 for values 2 = 0.8 and  = 1/20 & 

1/100 considering the influence of the beam type. It can be noticed that the CLP values are 

maximal for beam type 3, while for beam type 1 are minimal. For larger values of δ (greater 

influence of shear) in the case when the step position is near the supports, the CLP values are 

maximal for type 1 and minimal for type 3. The CLP dependence on changes R1 for types 1 

and 3 and value  = 1/20, considering the influence of relations 2, is shown in Fig. 5. For 

smaller values 2, the CLP has higher values except in the case when the step position is near 

the supports; then the CLP has higher values for greater values 2.  

 Table 1 CLP for pn-pn beam Table 2 CLP for cl-cl beam 

 1R  type     
 2   

 1R  type     
 2  

0.6 0.7 0.8  0.8 0.7 0.8 

0 

1 

20 1.0125184 1.0179287 1.0286575  

0 

1 

20 1.0496005 1.0710373 1.1135468 

100 1.0005022 1.0007193 1.0011497  100 1.0020083 1.0028763 1.0045974 

EB 1 1 1  EB 1 1 1 

2 

20 1.0015053 1.0029331 1.0061206  

2 

20 1.0060004 1.0116777 1.0243335 

100 1.0000603 1.0001175 1.0002453  100 1.0002411 1.0004699 1.000981 

EB 1 1 1  EB 1 1 1 

3 

20 1.0007843 1.0015284 1.0031898  

3 

20 1.0031296 1.0060937 1.0127052 

100 1.0000314 1.0000612 1.0001277  100 1.0001256 1.0002448 1.000511 

EB 1 1 1  EB 1 1 1 

0.3 

1 

20 0.9004332 0.8963132 0.8978066  

0.3 

1 

20 0.790734 0.817013 0.8632652 

100 0.8881282 0.8788707 0.8701333  100 0.7347316 0.7407416 0.7464902 

EB 0.887614 0.8781417 0.8689767  EB 0.7323622 0.7375177 0.7415579 

2 

20 0.931096 0.9173096 0.9027403  

2 

20 0.7203619 0.7308869 0.7564571 

100 0.9295037 0.9142647 0.8965305  100 0.7112445 0.7154073 0.7280566 

EB 0.9294372 0.9141376 0.8962712  EB 0.7108618 0.7147567 0.7268615 

3 

20 0.942686 0.9280114 0.910252  

3 

20 0.7310421 0.7198191 0.736254 

100 0.9418468 0.9264071 0.9069895  100 0.7257155 0.7107592 0.7202147 

EB 0.9418118 0.9263402 0.9068534  EB 0.7254923 0.7103792 0.7195413 

0.5 

1 

20 0.6063826 0.5844888 0.570687  

0.5 

1 

20 0.6444095 0.6400219 0.6578166 

100 0.5934776 0.5666266 0.5427583  100 0.5907593 0.5673238 0.5458978 

EB 0.5929383 0.5658802 0.541591  EB 0.5884946 0.5642562 0.5411757 

2 

20 0.7353931 0.6824913 0.6268342  

2 

20 0.6820122 0.6666843 0.6408012 

100 0.7333133 0.6787341 0.6196697  100 0.6724187 0.650626 0.6114626 

EB 0.7332265 0.6785773 0.6193705  EB 0.6720159 0.649951 0.6102279 

3 

20 0.7803152 0.7240699 0.6577481  

3 

20 0.6807354 0.6787212 0.6520273 

100 0.7791806 0.7220238 0.6539021  100 0.6746779 0.6692922 0.635663 

EB 0.7791332 0.7219384 0.6537418  EB 0.6744238 0.6688966 0.6349761 

0.7 

1 

20 0.2156296 0.202338 0.198505  

0.7 

1 

20 0.2989858 0.3163953 0.3576915 

100 0.2028625 0.1846704 0.1707437  100 0.2562517 0.2540968 0.2552395 

EB 0.2023291 0.1839321 0.1695835  EB 0.2544512 0.2514707 0.2509195 

2 

20 0.3712844 0.2909344 0.2322638  

2 

20 0.3812923 0.3147333 0.2932055 

100 0.3680207 0.2858599 0.22374  100 0.368565 0.2960827 0.2620313 

EB 0.3678844 0.2856479 0.2233838  EB 0.3680302 0.2952983 0.2607184 

3 

20 0.4593584 0.3517904 0.2614351  

3 

20 0.4648444 0.3611526 0.2934004 

100 0.4573784 0.3488207 0.2567818  100 0.4566664 0.3498693 0.2770316 

EB 0.4572958 0.3486968 0.2565878  EB 0.4563232 0.3493967 0.276345 

1 

1 

20 0.0125184 0.0179287 0.0286575  

1 

1 

20 0.0496005 0.0710373 0.1135468 

100 0.0005022 0.0007193 0.0011497  100 0.0020083 0.0028763 0.0045974 

EB 0 0 0  EB 0 0 0 

2 

20 0.0041728 0.0059762 0.0095525  

2 

20 0.0165335 0.0236791 0.0378489 

100 0.0001674 0.0002398 0.0003832  100 0.0006694 0.0009588 0.0015325 

EB 0 0 0  EB 0 0 0 

3 

20 0.0021755 0.0031157 0.0049801  

3 

20 0.0086444 0.0123804 0.019789 

100 0.000087 0.0001249 0.0001996  100 0.0003487 0.0004994 0.0007983 

EB 0 0 0  EB 0 0 0 
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Fig 4 Variation of CLP with R1 for pn-pn beam and 
2

0.8  : a) 
1

20
  , b) 

1

100
   

  

Fig 5 Variation of CLP with R1 for pn-pn beam and 
1

20
  : a) type 1, b) type 3 

  
Fig. 6 Variation of CLP with R1 for pn-pn beam and 

2
0.8  : a) type 1, b) type 3 

The CLP dependence on changes R1 for types 1 and 3 and value 2 = 0.8 with influence 

of change values  are shown in Fig. 6. It can be noticed that the CLP value is higher for 

greater values of . The influence of δ is higher for type 1 than for type 3. 
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Fig. 7 Variation of CLP with R1 for cl-cl beam and 
2

0.8  : a) 
1

20
  , b) 

1

100
   

  

Fig. 8 Variation of CLP with R1 for cl-cl beam and 
1

20
  : a) type 1, b) type 3 

  

Fig. 9 Variation of CLP with R1 for cl-cl beam and 
2

0.8  : a) type 1, b) type 3 

The CLT is tabulated as shown in Table 2 for clamped-clamped beam. In Figs.7-9, the 

CLP dependence on change R1 is presented while the beam type influence, dimension 

ratio 2 and slenderness ratio  are taken into consideration. The influence of the beam 

type is higher for lower values , as well as that of dimension ratio 2 for beam type 1 in 

relation to beam type 3. An especially large influence of slenderness ratio  is observed 

for beam type 1, while for beam type 3 is considerably smaller. 
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Table 3 CLP for cl-fr beam  Table 4 CLP for cl-pn beam 

 1R  type     
 2   

 1R  type     
 2  

0.6 0.7 0.8  0.6 0.7 0.8 

0 

1 

20 0.999139839 0.998768088 0.998030899  

0 

1 

20 1.025524562 1.036555975 1.058431446 

100 0.999965631 0.999950777 0.999921322  100 1.001027398 1.001471427 1.002351944 

EB 1 1 1  EB 1 1 1 

2 

20 0.999896942 0.999799043 0.999580305  

2 

20 1.003075743 1.005990663 1.012494595 

100 0.999995865 0.999991949 0.999983202  100 1.000123308 1.000240365 1.000501796 

EB 1 1 1  EB 1 1 1 

3 

20 0.999946335 0.99989537 0.999781511  

3 

20 1.001603102 1.00312319 1.006515908 

100 0.999997843 0.999995801 0.999991243  100 1.000064225 1.000125195 1.000261365 

EB 1 1 1  EB 1 1 1 

0.3 

1 

20 0.516563665 0.493505096 0.47300968  

0.3 

1 

20 0.746833293 0.762347877 0.788574418 

100 0.51772272 0.495023672 0.475235116  100 0.717997588 0.723030128 0.728359103 

EB 0.517770844 0.49508674 0.475327561  EB 0.716786788 0.721379896 0.72583265 

2 

20 0.652268724 0.595615643 0.5401181  

2 

20 0.719999623 0.716830331 0.728191711 

100 0.652459409 0.595956048 0.540735108  100 0.715396893 0.708900445 0.713536209 

EB 0.652467341 0.595970201 0.540760754  EB 0.71520442 0.708568591 0.712922479 

3 

20 0.704485327 0.640117804 0.571758088  

3 

20 0.737832143 0.71734048 0.717983769 

100 0.704588851 0.640308298 0.57210797  100 0.735173101 0.712769566 0.709764639 

EB 0.704593159 0.640316223 0.572122522  EB 0.735062002 0.712578473 0.709420883 

0.5 

1 

20 0.231981741 0.214571151 0.200117438  

0.5 

1 

20 0.704941873 0.707837666 0.720463214 

100 0.233370034 0.216264853 0.202474946  100 0.676340365 0.6689679 0.660927761 

EB 0.233427646 0.216335175 0.202572866  EB 0.675139695 0.667336845 0.658430238 

2 

20 0.373238269 0.305011992 0.251479256  

2 

20 0.681825858 0.69320834 0.696071668 

100 0.373617013 0.305577286 0.25231405  100 0.676884599 0.685081612 0.681244199 

EB 0.373632747 0.305600765 0.252348727  EB 0.676677903 0.684741481 0.680623243 

3 

20 0.44925751 0.357372974 0.280582333  

3 

20 0.663081249 0.684467961 0.693158972 

100 0.449483015 0.357736179 0.281108551  100 0.659887918 0.679616675 0.684818598 

EB 0.449492388 0.357751272 0.281130422  EB 0.659754399 0.679413805 0.684469755 

0.7 

1 

20 0.055186907 0.050063457 0.045640544  

0.7 

1 

20 0.379309729 0.361963181 0.360261413 

100 0.056450765 0.051615789 0.047851137  100 0.35135486 0.324284617 0.302297179 

EB 0.056503226 0.051680255 0.047942968  EB 0.350182851 0.322704721 0.29986644 

2 

20 0.108655097 0.079229345 0.061213511  

2 

20 0.524759271 0.460060425 0.396540649 

100 0.109305745 0.079925259 0.062080655  100 0.518851854 0.450425138 0.379786092 

EB 0.109332728 0.079954145 0.062116669  EB 0.518604613 0.450021642 0.37908408 

3 

20 0.156066172 0.101028811 0.07073479  

3 

20 0.57511257 0.510509096 0.429191083 

100 0.156648268 0.1015835 0.071306225  100 0.571486178 0.504829574 0.419799388 

EB 0.156672393 0.101606523 0.071329969  EB 0.57133452 0.504592024 0.419406539 

1 

1 

20 -0.00086016 -0.00123191 -0.00196910  

1 

1 

20 0.025524562 0.036555975 0.058431446 

100 -0.00003 -0.00005 -0.00008  100 0.001027398 0.001471427 0.002351944 

EB 0 0 0  EB 0 0 0 

2 

20 -0.00028672 -0.00041063 -0.00065636  

2 

20 0.008508185 0.012185324 0.019477148 

100 -0.00001 -0.00002 -0.00003  100 0.000342464 0.000490475 0.000783981 

EB 0 0 0  EB 0 0 0 

3 

20 -0.00014906 -0.00021370 -0.00034159  

3 

20 0.004440154 0.006359143 0.010164521 

100 -0.000006 -0.000009 -0.000014  100 0.000178377 0.000255475 0.000408356 

EB 0 0 0  EB 0 0 0 

The CLT is tabulated as shown in Table 3 for clamped-free beam. Figs. 10-12 show the 

CLP dependence on changes R1 while the beam type influence, dimension ratio 2 and 

slenderness ratio  are taken into consideration. Here, the influences of parameters on the 

CLP values are totally clear: in the above Figs. it can be noticed that the CLP values are 

higher for lower values of dimension ratio 2, maximum for beam type 3, less for beam type 

2 and minimum for beam type 1. The influence of slenderness ratio  on the CLP values is 

insignificant, since the influence of shear in this manner is very small.  
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Fig. 10 Variation of CLP with R1 for cl-fr beam and 
2

0.8  : a) 
1
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  , b) 

1

100
   

  

Fig. 11 Variation of CLP with R1 for cl-fr beam and 
1

20
  : a) type 1, b) type 3 

  

Fig. 12 Variation of CLP with R1 for cl-fr beam and 
2

0.8  : a) type 1, b) type 3 
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Fig. 13 Variation of CLP with R1 for cl-pn beam and 
2

0.8  : a) 
1
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   

  

Fig. 14 Variation of CLP with R1 for cl-pn beam and 
1

20
  : a) type 1, b) type 3 

  

Fig. 15 Variation of CLP with R1 for cl-pn beam and 
2

0.8  : a) type 1, b) type 3 

The CLP is tabulated as shown in Table 4 for clamped-pinned beam. In Figs.13-15, CLP 

dependence on change R1 is presented while the beam type influence, dimension ratio 2 and 

slenderness ratio  are taken into consideration.  The conclusions presented in the previous 

cases are here confirmed, especially in the part when the step position is near the supports. 
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5. CONCLUSIONS 

The frequency equations of one-step Timoshenko beams under compressive axial forces 

and four combinations of classical boundary conditions are expressed as the fourth order 

determinant equated to zero. The critical axial forces are expressed as a function of the 

critical load parameter and the critical load for uniform beam. The critical load parameters 

are tabulated for the beams with the classical boundary conditions. To determine the trend of 

change and sensibility, the dependence of the critical load parameter is displayed graphically 

for three types of beam in the function of step position, flexural rigidity ratio and slenderness 

ratio. Less sensitive are the beams with a rectangular cross-section (type 1 and type 2), while 

the most sensitive is the beam with a circular cross-section (type 3). Sensitivity is minor for 

small values of slenderness ratio due to the small influence of shear. Influence of slenderness 

ratio is almost nonexistent for a clamped-free beam. As far as the type of end support is 

concerned, there are fields with very small changes of CLP in the beams in which one of the 

support is clamped. Regarding a near-supports position, sensitivity is minor for pinned and 

free end supports and larger for a clamped end support. Also, in the beams where one of the 

supports is clamped there exists a field where sensitivity is very small. The method is 

applicable for any type of the boundary conditions and other system parameters.  
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KRITIĈNA OPTEREĆENJE TIMOŠENKOVE STEPENASTE 

GREDE SA JEDNOM PROMENOM POPREĈNOG PRESEKA 

U radu se analiziraju transferzalne oscilacije Timošenkove grede sa jednom promenom poprečnog 

preseka i pritisnute aksijalnim silama koje su konstantne duž grede. Razmatrane su tri tipa grede koje 

se često koriste u inžinjerskoj praksi. Frekventna jednačina Timošenkove grede je prikazana u obliku 

determinante četvrtog reda. Kritično opterećenje je izraženo uvodjenjem parametra kritičnog opterećenja 

čije su vrednost iza gredu sa standardnim graničnim uslovima  prikazane u tabelama. Na osnovu tih 

rezultata i drugih vrednosti koje su sračunate za odredjene parametre sistema, zavisnost parametra 

kritičnog opterećenja je prikazana grafički u funkciji  položaja promene poprečnog preseka. 

 

Ključne reči: Timošenkova greda, frekventna jednačina, kritična sila, parametar kritičnog 

opterećenja, stepenasta greda. 


