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CONTACT OF MULTI-LEVEL PERIODIC SYSTEM OF 

INDENTERS WITH COATED ELASTIC HALF-SPACE 

 

Irina G. Goryacheva, Elena V. Torskaya 

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Russia  

Abstract. The contact of a periodic system of spherical indenters of different heights 

and radii of curvature with two-layered elastic half-space is considered. Numerical-

analytical method is developed to determine contact pressure distribution and internal 

stresses taking into account mutual effect of contact spots. The results for relatively 

hard and soft coatings are analyzed for different values of input parameters: nominal 

pressure, contact density, coating thickness. 
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1. INTRODUCTION 

The widespread use of coatings in different mechanisms actualizes the study of contact 

and internal stresses and contact fatigue damage accumulation inside the coated bodies. 

Surface roughness of counterbody is one of the parameters which influence  contact 

characteristics (the pressure distribution and the real contact area) and stresses inside the 

coating and the base. For the case of cycling loading stress concentration near contact spots 

leads to the different types of the coating failure. 

Roughness in contact problems is often modeled by periodic system of indenters to 

analyze mutual effect for different model geometry and to study real contact area and the 

depth of penetration as a function of average load applied to the period. 2-D periodic contact 

problems were studied mostly by analytical methods; the methods and results are reviewed 

in different books and papers, for example in [1]. The mutual effect for uncoated elastic 

solids was studied in [2] both for one-level and multi-level 3-D periodic systems of indenters 

penetrating into elastic half-space. The most recent studies of periodic contact problems 

for homogeneous and transversely isotropic elastic half-space [3-5] consider saturation 
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effect in contact of periodic wavy surface [3] or adhesive contact for a system of indenters 

of different shape and transversely isotropic half-space [4]. 

The discrete contact problems for the coated elastic bodies were studied both for 

normal and sliding contacts in [6-9]. The coating thickness related to geometrical 

parameters of roughness is specific characteristic, which influences contact and internal 

stress distributions. Two approaches to model the discrete contact taking into account the 

mutual contact effect were developed almost at the same time. Periodic one-level system 

of spherical indenters penetrating into the two-layered elastic half-space was considered 

in [6]; 2-D contact problem for a measured profile of counterbody was solved in [7]. The 

same models of discrete contact were used to take into account roughness in 3D macro 

contact problem solution [8, 9]; in both studies friction is also considered. For thick 

coatings some results from [2], which are mostly analytical, can be used for verification of 

semi analytical and numerical solutions of the similar counter body microgeometry. 

In this study a multi-level periodic contact problem for a two-layered elastic half-

space is considered. Each level has particular geometry of indenters which are uniformly 

space distributed. The mutual effect of contact spots is taken into account. The model is 

used to calculate contact and internal stresses for relatively hard and soft coatings and to 

analyze the effect of microgeometry parameters (space distribution of asperities and their 

microshapes) on contact characteristics and internal stress distributions. 

2. PROBLEM FORMULATION AND THE METHOD OF SOLUTION  

2.1. Problem formulation 

Two-layered elastic half-space is considered in contact with a periodic system of rigid 

indenters (asperities) uniformly distributed at k height levels. In the cylindrical coordinate 

system related to each indenter, the shape of the indenter is described by the following 

function: 

 ( ) , 1...m mz f r h m k    (1)  

Here functions fm(r) and hm describe the shape and the height of the asperity of the m-th 

level respectively, r  is the radial coordinate of the polar system coordinates with the center 

at the point of initial contact of the asperity. 

In contact interaction the areas of contact regions im are different for the contact spots of 

various levels (index i indicates the fixed asperity of the m-th level), and the asperities come 

into contact at definite penetrations of the whole  system corresponding to their space 

location. The example of the contact spots distribution at the surface is presented in Fig.1 for 

the case k=3. In this case the indenters are located at the nodes of the hexagonal lattice, and l 

is the lattice period.  

At the first step we introduce the polar system of coordinates at the layer surface with the 

center at the point of initial contact of the fixed highest asperity (see Fig.1). The centers of 

the other contact spots im have radius-vectors imr . The axis Oz is perpendicular to the layer 

surface and directed inside two-layered half-space. Under the assumption that the shear 

stresses within the contact spots are negligibly small, the boundary conditions at the surface 

of the layer (z = 0) are the following: 
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where  is the system penetration.  

 

Fig. 1 Scheme of the contact for the system of indenters located at 3 height levels 

Boundary conditions at the layer - half-space interface (z=h) correspond to the case of 

perfect coating-substrate adhesion: 
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In Eqs. (2) and (3) ( ) ( ) ( )
, ,j

z

j j

rz z    are normal and shear stresses, and ( ) ( ) ( ), ,j j j

rw u u  are 

normal and tangential displacements (j=1 for the coating, j=2 for the substrate). Contact 

zones im  under the asperities are initially unknown. Note, that instead of the conditions 

of perfect adhesion at the interface, the conditions of complete or incomplete sliding can 

be considered using the approach developed in [10, 11]. 

Using the localization principle [2], we take into account the real pressure distribution 

only at the fixed number of asperities inside the circle of radius R1 ( 1r R ), which includes 

a definite number of asperities of all k levels. For known densities cQ  of the asperities 

distributions for each level (c=1,2…,k) radius R1 is calculated from the relation (for k=1) 
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Here cQ is the density of indenters of level n, c is the number of indenters of level c 

inside the circle. Action of indenters outside the circle is replaced by constant average 

pressure p . Inside the circle unknown contact pressure distributions pc(r,) act within the 
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contact spots under each indenter (here (r,) are the polar coordinates related to the center 

of the c-th indenter). To satisfy the equilibrium condition we use the following relation: 
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Note that due to the mutual effect the asymmetric contact pressure distribution under 

the axisymmetric indenter occurs, and we take into account this effect in contact problem 

formulation and solution. 

The boundary element method together with the iterative procedure is used to solve 

the contact problem with unknown contact regions. Contact pressure is presented as a 

stepwise function being constant inside each element. We choose the size of a square element 

so that their number inside a contact region is large enough to provide convergence of the 

iterative procedure. 

2.2. Calculation of influence coefficients for the boundary element method 

To use the boundary element method, the displacement of the two-layered elastic half-

space surface loaded by a pressure q, uniformly distributed inside a square 2a2a, must 

be calculated from the following boundary conditions at the layer surface (z=0): 
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In the case of two-layered elastic half-space stresses and displacements of the layer surface 

can be calculated by using the method based on double Fourier transforms. In particular, 

normal displacements of the surface are determined by the following relation [11]:  
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Here x, y and w are dimensionless coordinates and normal displacement, respectively, G1 

is the shear modulus of the layer, =E1(1+2)/E2(1+1) is the relation of the elastic modules 

of the layer and the substrate, ,   are the internal coordinates in the space of double Fourier 

transforms, =h/a is dimensionless layer thickness. Function ( , , , )     represents normal 

displacements in the space of double Fourier transforms. It is obtained from the boundary 

conditions (3) and (6) using representations of stresses and displacements by a biharmonic 

function and double Fourier transforms of constant pressure q. It makes possible to reduce 

the problem to linear system of functional equations [11]. The solution of the system 

provides particularly the analytical representation of ( , , , )    . As the dependence of 

normal displacements on the value of the constant pressure in Eq. (7) is linear, it can be used 

to find influence coefficients in the boundary element method. 
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2.3. Calculation of contact characteristics 

The boundary element method for a contact problem solution is described in many 

papers. In [6] it was developed to study the discrete contact problem with mutual effect of 

contact spots.  

To solve the contact problem formulated in Eqs. (2) and (3), we used the following 

steps. At the first step, we place the center of the circle, in which we are looking for a real 

distribution of pressures, in the center of the highest indenter and calculate the surface 

shape g(x,y) inside the circle with radius R1, Eq. (4)), due to constant nominal pressure p  

outside the circle. The value of p  at this step is small enough to provide only the contact 

of the indenters of the first level. Function g(x,y) is used then in formulation of the contact 

conditions to  calculate the pressure distribution under the indenters of the first level and 

the normal displacements outside the contact spots. Then we increase nominal (average) 

pressure controlling the displacements under indenters of the next level.  

For pressures 2 1p p p   the indenters of the second level come into contact. Then 

we take the origin of coordinates under the center of indenter of the second level. For 

calculation of the contact pressure under the indenters of the second level, we take into 

account the real contact pressure distributions at the contact spots of the first and second 

levels, and the nominal pressure outside the circle of radius R2, Eq. (4), and use the 

iteration method. Using similar procedure for each i-th level we calculate the contact 

pressure distribution for each level of indenters, normal forces acted at indenters of each 

level and their redistribution if the nominal pressure increases.  

Additional displacement wa of the periodical system of indenters is also calculated. 

This value indicates the displacement due to surface microgeometry, and it is calculated 

from the relationship [2]: 

    
1

( , )
im i

k

a i R
i

w F p r F p 


   (8) 

Here function 
im

F  indicates the surface displacement under the highest indenter due to 

real contact pressures distribution under asperities located inside the circle of radius R1, 

iRF  is related to the displacement caused by average pressure p  distributed within the 

circle of radius R1. 

The dependence of the additional displacement of the periodical system of indenters 

on its geometrical characteristics is also analyzed. 

3. RESULTS AND DISCUSSION  

Calculations have been completed for the three levels periodic system of spherical 

indenters with the given heights. The indenters were located at the points of the hexagonal 

lattice with distance l. The indenter’s shape at the i-th height level was spherical (ri is the 

radius of curvature of the indenter near the point of initial contact). Note that the model 

under consideration is valid only for small deformations, so the saturation effect cannot be 

analyzed within the framework of this study. 
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The dependence of the contact characteristics on the following model parameters has 

been analyzed: 

 coating thickness h; 

 Young modulus Ej and Poisson ratio j  

for coating (j=1) and substrate (j=2) materials; 

 lattice period for the system of indenters, l; 

 radius of indenters (for each level), ri; 

 heights of indenters  of each level hi. 

The following dimensionless parameters have been introduced: 

 dimensionless radius of indenters for i-th level (i=1,2,3),  

 ' /i ir r l  (9) 

 dimensionless contact pressure distribution for i-th level  

 2'( , ) ( , ) /i ip x y p x y E  (10) 

 dimensionless average pressure 

 
2' /p p E  (11) 

All internal stresses are also related to E2. Dimensionless parameter , which 

characterizes relative compliance of the coating, was introduced in the previous chapter. 

We do not use special letter symbols for the dimensionless thickness of the coating and 

the difference in height, but they are related to the lattice period.  

The contact characteristics calculations for the system of indenters with three height 

levels contacting with the relatively hard coating bonded to the elastic base have been 

performed. In step-by-step solution with the increase of the average pressure first we have 

only one level of indenters in contact with the coating surface. For the chosen space 

distribution of indenters: (h1-h2)/l=(h2-h3)/l=0.01 mutual effect for the first level was 

negligible, the pressure under each indenter was axisymmetric. For relatively large 

average pressure three levels are in contact, the mutual effect becomes stronger. Fig.2 

illustrates the contact pressure distribution (Fig. 2a) and the contact spot configuration 

(curve 1 in Fig. 2b) for this case. We have got not circular contact zone, especially for the 

indenters of the lowest level. Mutual effect can be evaluated by comparison of curves 1 

and 2 in Fig. 2b; the last one was calculated for the same input parameters, but  neglecting 

the surface deformation due to the penetration of nearby indenters of the first and second 

levels. Maximum value of the contact pressure in Fig. 2a is (p3)max=0.07.  

Fig. 3 illustrates the contact pressure distributions calculated for relatively soft coatings 

characterized by the different Poisson ratio. The chosen cross section provides the maximum 

size of the contact spot. The difference of maximal and minimal distance from the center 

of the contact zone to the boundary, which characterizes asymmetry due to the mutual 

effect, is 12 percent for the third level (curve 3); the difference is smaller for the first and 

the second levels. Contact spots for the first level hereinafter are almost axisymmetric. 

Comparison with pressure distributions obtained for isolated indenters loaded by the same 

forces (dashed lines in Fig. 3a,b) leads to conclusion that for the case of relatively soft 

low-compressive coatings (1=0.45) mutual effect is strong (see also Table 1), but for 

1=0.2 it is negligible. 
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a)          b)  

Fig. 2 Contact pressure distribution (a) and contact spot (b) for the 3
rd

 level of indenters: 

=2, h/l=0.5, (h1h2)/l=(h2h3)/l=0.01, 
3

' 0.06p  ), 1=0.2, 2=0.3, r1= r2= r3=0.8 

a )        b )  

Fig. 3 Pressure distribution under indenters of levels 13 (curves 1-3 respectively) for 

relatively soft coatings =0.5, h/l=0.5 with 1=0.45 (a), 1=0.2 (b): 2=0.3,  

(h1h2)/l=(h2h3)/l=0.01, r1= r2= r3=0.8, 
3

' 0.008p    

Table 1 Maximal values of contact pressure related to E2 (results from Fig. 3a) 

 1=0.45 1=0.2 

 Calculation with 

mutual effect 

Isolated indenters Calculation with 

mutual effect 

Isolated 

indenters 

Level 1 0.356 0.312 0.320 0.311 

Level 2 0.298 0.289 0.288 0.287 

Level 3 0.191 0.232 0.213 0.230 
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Fig. 4a illustrates the results of calculation of the additional displacement function (8) for 

relatively hard coating of various thicknesses: h/l=0.12 (curves 1,1’) and h/l=0.24 (curves 

2,2’)  in the cases of  three level model (curves 1 and 2) and one-level model (curves 1’ and 2’).  

The results indicate that in the case of hard coatings at the softer substrate the 

additional displacement for three level asperities distribution is higher than for the one 

level model under the same nominal pressure. Decreasing the coating thickness leads to 

increasing of the additional displacements. 

It is interesting to note that for the case of relatively thick coatings the difference between 

curves 2 and 2' (representing different models) is greater than for thinner coatings (curves 1 and 

1' respectively).  

To analyze the mutual effect we calculated the additional displacement function ignoring 

the surface displacements outside the contact regions (neglecting mutual effect), but taking into 

account equilibrium conditions. The results of calculations are presented in Fig. 4b (solid 

curves 1 and 2 are the same as in Fig. 4a, dashed curves are calculated neglecting mutual 

effect). There is an essential difference between the curves. The penetration calculated without 

mutual effect is greater. So neglecting the mutual effect gives the overestimate of additional 

displacement due to roughness. 

a)   b)  

Fig. 4 Dependence of the additional normal displacements on nominal pressures for  

one-level and three-level models (a) and comparison of the dependences for three 

level model with ones (curves 1’ and 2’) calculated neglecting mutual effect  

(b): h/l=0.12 (curves 1, 3), h/l=0.24 (curves 2, 4), (h1h2)/l=(h2h3)/l=0.01 (curves 1, 2), 

(h1h2)/l=(h2h3)/l=0 (curves 3,4), =02, 1=0.22, 2=0.3, r1= r2= r3=0.8 

The results presented in Fig. 5 give a possibility to analyze the influence of nominal 

pressure on contact characteristics (maximal contact pressure and contact size) for two 

types of microgeometry models: one-level model with period 3l  (curves 1), three-level 

model with the same period 3l  for each level (curves 2). The results indicate that the 

radius of contact spot and maximal contact pressure increases with increasing the nominal 

pressure. No difference exists between the curves 1 and 2 for small values of average 

pressure, when the second and third levels are not in contact.  
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Curve 3 in Fig. 5b illustrates the principal shear stress maximal value. The maximum 

is localized at the layer-substrate interface for the chosen model parameters. 

 Figs. 6 and 7 illustrate the influence of the contact density on the distribution of 

tensile-compressive and principal shear stresses under an indenter of the first level for the 

value of the nominal pressure p , which provides three-level contact. All geometrical 

parameters are related here to the radius of first-level indenter, which allows us to use 

different value of l associated with the contact density.  

a) b)  

Fig. 5 Dimensionless maximal contact radius am (a), maximal contact pressure (p1)max  

(b, curves 1-2) and maximal values of the principal shear stress in the coating 

(1)max (b, curve 3)  under first-level indenter as functions of nominal pressure;                               

(h1h2)/l=(h2h3)/l=0.06, r1=1.67, r2=1.25, r3=0.83 (curves 1, 3), one-level model 

with period 3l  and r1=1.67 (curves 2); h/l=0.087,=3, 1=0.22, 2=0.4 

We chose these stresses for analysis, because due to their concentration the coating 

delamination due to brittle fracture (large tension) or contact fatigue (high amplitude 

values of the principal shear stress) occurs. Since the space distribution of indenters 

influences essentially on the contact spot radius and the maximal contact pressure (see 

Fig. 5), the internal stress distribution depends also on the density and height distribution 

of asperities. The stress distributions presented in Figs. 6 and 7 are typical for relatively 

hard coatings: tension occurs at the surface near the boundary of contact, and at the 

coating-substrate interface for thicker coating; principal shear stresses concentrate at the 

surface-substrate interface, which is often initially damaged.  

Fig. 7 illustrates the results of stress calculation for the same input parameters as used in 

Fig. 6. The values of tensile-compressive stresses (curves 1-3) are very different for the cases 

of high (b) and low (a) contact densities as at the surface and as at the interface. For the case 

of high contact density positive tensile stresses occur at the surface under the boundary of 

the contact zone (curve 1), in coating material at the interface under the center of the contact 

(curve 2), and only compression realizes in substrate material (curve 3). For the case of low 
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density both for the surface and for the interface the curves have the same features, which are 

compression under the center and tension under the boundary of the contact zone. Principal 

shear stresses for both cases have interface maxima. 

a)  b)  

Fig. 6 Tensile-compressive and principal shear stresses under first-level indenter: =3, 

' 0.002p  , 1=0.22, h/r1=0.023 2=0.4; r2/r1=0.75, r3/r1=0.5, (h1h2)/r1=(h2h3)/ 

r1=0.036, l/r1=0.067 (a) l/r1=0.6 (b) 

a) b)  

Fig. 7 Tensile-compressive r (curves 1, 2, 3) and principal shear 1 (curves 1', 2', 3') 

stresses under first-level indenter: =3, ' 0.002p  , 1=0.22, h/r1=0.023, 2=0.4; , 

r2/r1=0.75, r3/r1=0.5, (h1h2)/r1=(h2h3)/ r1=0.036, l/r1=0.067 (a) l/r1=0.6 (b) at 

the surface (curves 1, 1'), at the coating-substrate interface in coating (curves 2, 2') 

and substrate (curves 3, 3')  

4. CONCLUSIONS  

The numerical-analytical method of contact problem solution for multi-level periodic 

system of indenters and two-layered elastic half-space is developed. Contact pressure 

distributions under the indenters of different levels, internal stresses, and additional 

displacements as a function of average pressure are determined for different values of 
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input parameters: nominal pressure, space distribution of indenters, their contact density, 

coating thickness and its relative to the base mechanical properties. 

The mutual effect is analyzed for the case of relatively hard and soft coatings. The 

results indicate that for the case of thin soft coatings this effect is stronger for materials 

with relatively high value of Poisson ratio. For relatively hard thin coatings due to the 

coating bending the real contact pressure distribution and the real contact area strongly 

depend on the contact density and height distribution of indenters, which can be 

considered as the model of the asperities of the rough surface with regular roughness.  

It follows from the results that the internal stresses in relatively hard coatings also depend 

essentially on the contact density and space distribution of asperities. Tensile-compressive 

and principal shear stresses are very different for the cases of low and high density both for 

the surface and for the interface. For the case of high contact spot density the tension of 

coating occurs at the layer-substrate interface, but for low density there is the compression. 

For small contact density, interface tension is realized not under but between indenters. 

Based on the results it may be concluded that the mutual effect is stronger for hard 

coatings, than for the soft ones. The similar conclusion was made from the problem solution 

for the one-level asperity model in contact with the two-layered elastic half-space [6]. 
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