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Abstract. A development of a robot control system is a highly complex task due to 

nonlinear dynamic coupling between the robot links. Advanced robot control strategies 

often entail difficulties in implementation, and prospective benefits of their application 

need to be analyzed using simulation techniques. Computed torque control (CTC) is a 

feedforward control method used for tracking of robot’s time-varying trajectories in the 

presence of varying loads. For the implementation of CTC, the inverse dynamics model 

of the robot manipulator has to be developed. In this paper, the addition of CTC 

compensator to the feedback controller is considered for a Spatial disorientation 

trainer (SDT). This pilot training system is modeled as a 4DoF robot manipulator with 

revolute joints. For the designed mechanical structure, chosen actuators and 

considered motion of the SDT, CTC-based control system performance is compared 

with the traditional speed PI controller using the realistic simulation model. The 

simulation results, which showed significant improvement in the trajectory tracking for 

the designed SDT, can be used for the control system design purpose as well as within 

mechanical design verification. 
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1. INTRODUCTION 

The challenge of robot control stems from nonlinear and time-variable coupling 

effects in the dynamic model. Different advanced control strategies based on adaptive 

control [1], intelligent control [2], soft computing schemes [3, 4], optimization techniques 
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[5], etc. have been used to overcome nonlinearities and uncertainties in robot dynamics. To 

select a proper control method, different factors have to be taken into account. Application 

for which the robot is designed defines motion (range of velocities, accelerations) and 

performance requirements. Characteristics of the mechanical design, applied actuators and 

implementation requirements [6] have a great practical value for making a choice of the 

potential control strategy. 

Robot modeling and control methods can be applied to various multibody systems 

that are not necessarily flexible in their application. Herein, a control strategy for the 

Spatial disorientation trainer (SDT), Fig. 1, a flight simulation training device designed to 

train pilots to avoid and cope with in-flight illusions, is considered. The SDT is modeled 

as a 4DoF robot manipulator with revolute joints [7]. 

Modern combat aircraft are capable of unconventional flight with unusual orientations. 

Spatial disorientation (SD) is one of the major threats to the pilots of combat aircraft [8-10]. 

According to the most widely used definition, SD refers to: “a failure to sense correctly the 

position, motion or attitude of the aircraft or of him/her within the fixed coordinate system 

provided by the surface of the earth and the gravitational vertical” [11]. Training within SD 

simulators of different levels of complexity is considered the most effective countermeasure 

to spatial disorientation [10]. The SDT considered herein is a robot manipulator specifically 

designed to examine the pilot's ability to recognize unusual flight orientations, to train the 

pilot to adapt to them and to persuade the pilot to believe in the aircraft instruments for 

orientation, and not into his senses [7].  

The simplest approach in robot control design is to adopt an LTI-model of the process 

and to consider variable nonlinear robot dynamics as a disturbance. The traditional control 

method is PID control. This approach can be justified for highly geared manipulators, as the 

influence of a nonlinear variable dynamics decreases significantly with high gear ratio [12], 

and also for stiff manipulators realizing slow trajectories, as the stiffer mechanical design 

enables the adoption of the larger controller gains. In the case of the SDT, direct drive 

motors are used for three axes, but the device typically does not achieve high values of 

speed [7].  

Within a choice of a control strategy for the SDT, the influence of nonlinear coupling 

effects in the dynamic model on the tracking capability of the considered controllers has 

to be investigated. The feedforward computed torque control (CTC) method [13] implies 

the cancelation of nonlinear coupled terms in a robot dynamic model. The use of 

feedforward control is considered as a solution capable of suppressing the speed error in 

cases with known disturbances [14]. However, besides the complexity of dynamic 

modeling for multiple DoFs robots [15], the CTC method suffers from drawbacks related 

to 1) errors due to structured and unstructured uncertainties in a dynamic model; 2) 

possible difficulties in implementation.  

The purpose of this study is to compare, using appropriate simulation techniques, the 

performances of the traditional PI controller and the controller with CTC compensation 

added to feedback for the case of the SDT. Motivation is not only to determine a proper 

control strategy but also to verify the mechanical structure design of the device. 
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2. TRAJECTORY PLANNER DEVELOPMENT 

In the previous work [7], kinematic and dynamic models of the SDT are derived and 

implemented into the trajectory planner. For the SDT, the discrete control system is 

developed with a trajectory planner that calculates joint trajectories in the offline regime. 

At the path update rate defined by interpolation period Δt, reference joint trajectories 

calculated in trajectory planner are sent to motor controllers. 

 

Fig. 1 SDT with 4 DoF [7, 16] 

Joint trajectories qk,   k,   k, k=1, 2,..4, Fig. 2, that are used as reference values in this 

study are obtained by the trajectory planner presented in [7]. Joint accelerations of the 

trajectories previously studied in [7], obtained after applying limitations of angular 

accelerations according to maximum torques that chosen actuators can achieve [7] are used 

herein, and numerical integration is performed to obtain reference speeds and positions of 

joints. 
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Fig. 2 Reference trajectories of the SDT joints 

3. CONTROL SYSTEM DESIGN FOR THE SDT 

In this section, the design of the PI speed controller and the CTC-based controller are 

presented. The model of the motor’s mechanical subsystem is based on inertia reflected 

on the rotor’s shaft (effective inertia), obtained from the inverse dynamic (ID) model of 

the SDT. The load torque calculation from the ID model is presented. 

3.1. Model of the Motor’s Mechanical Subsystem 

From the equation of motion of rigid body rotation about an axis, the nonlinear time-

variant model of the motor’s mechanical subsystem in robot’s joint k can be given in the 

form: 

 eff m M L .k k k kI q   
 (1) 

where qmk= qmk (t) is the angular position of the rotor; Ieffk= Ieffk(q) is effective inertia 

(resulting from the coupling of motor with inertial load, as seen from the side of the rotor 

shaft) which is a function of the instantaneous manipulator configuration q=q(t)=(q1(t), 

q2(t),.., qn(t)); n is the number of degrees of freedom; τMk= τMk(t) is the driving torque 

generated by the motor; τLk=τLk(t) is the load torque, t is time. When the motor in joint k is 

coupled with the inertial load using gear train with gear ratio rk, the relation with the 

angular position of joint k is qmk= rk qk. In Eq. (1), the bounded nonlinear friction terms 
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are neglected and treated as disturbances [17]. The deterministic part of load torque τLk, 

τLDk, 
and effective inertia Ieffk are calculated from the ID model. 

Herein, the robot ID model is given in the form of a set of n coupled nonlinear 

differential equations: 

 
1 1 1

( ) ( ) ( )

n n n

kj j kji j i k k

j j i

d q h q q g .
  

   q q q  (2) 

Each equation (for every joint k) in the presented set of n differential equations contains 

the torque or force terms classified into four groups: 1) inertial- dkk(q)  k, 2) reaction terms 

generated by accelerations of other joints- dkj(q)  j, j≠k, 3) reaction-velocity generated 

(centrifugal and Coriolis) terms-hkji(q)  j  i, 4) force or torque generated at the joint by 

gravity in the current manipulator configuration-gk(q). In Eq. (2), τk is the actuating torque 

for joint k. The ID model of the SDT obtained by the recursive Newton–Euler method was 

presented in [7]. 

The effective inertia for the motor’s mechanical subsystem in joint k, Eq. (1) can be 

calculated for every interpolation period in the form of Eq. (3), [13]: 

 2

eff m( ) ( ( ) / ).k k kk kI I d r q q  (3) 

where Imk is the inertia of motor and gearbox, and dkk(q) is calculated from the ID model, 

Eq. (2). 

In this study, the model parameters for motors’ mechanical subsystems are chosen 

based on motors selected in [7]. It should be noted that the algorithm that calculates the 

achievable joint trajectories based on maximum torques that motors can achieve 

presented in [7] is implemented into the trajectory planner. 

3.2. Decoupling of Robot Dynamics and its Implementation 

 in the Simulation Models 

With the decoupling of a robot dynamics, a single joint control that takes into account 

a dynamic model through the deterministic part of the motor load torque τLk, Eq. (1), 

denoted herein as τLDk, can be considered. Herein, the method for decoupling of robot 

dynamics given in [13] is extended to include the case when the motion of other links 

(actuated by their motors) alleviates the load of the motor in the observed joint. Within 

this method, load torque τLDk is calculated for every interpolation period from the ID 

model, Eq. (2), rewritten in the following form: 
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coupled

1, 1 1
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 (4) 

Torque τcoupledk =τcoupledk (t) in Eq. (4) consists of load torque τLDk= τLDk (t), and torque 

τalleviatek = τalleviatek (t) produced by the motion of other links actuated by other motors, 

which contributes to the motion of link k (it acts in the direction of desired angular 

acceleration   k) and reduces the driving torque that the motor in joint k has to generate to 
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achieve the desired link motion. τLDk and τalleviatek are calculated for every interpolation 

period from the ID model, Eq. 4, as given in Algorithm 1: 

Algorithm 1: 

If sign (  k)=sign(τcoupledk), then τLDk=τcoupledk / rk, τalleviatek=0; 

Else if abs(dkk(q)q k)> abs(τcoupledk), then τLDk=0, τalleviatek= -τcoupledk / rk; 

Else τLDk= -τk / rk, τalleviatek= (τk -τcoupledk ) / rk; 

In Algorithm 1, abs stands for absolute value. The application of the proposed algorithm 

in the simulation models used in this study is given below in Fig. 3. 

 

Fig. 3 Decoupling of the inverse dynamic model 

The dynamic saturation is implemented in the following way: if sign (  k(t))>0 then 

the upper motor saturation limit is increased by value of τalleviatek(t), and if sign (  k(t))<0 

then τalleviatek(t) is added to the lower motor saturation limit (τalleviatek(t) and   k are always 

the same in sign). In this way, the motor saturation in the simulation model does not 

influence τalleviatek, nor does it with the real device. 

3.3. Design of the PI Speed Controller for Simulation Models 

PI controller is the most commonly used control algorithm in the process control 

industry [18]. Herein, PI controller is selected to obtain a second-order closed-loop system 

with a characteristic polynomial in a form s2+2ζkωnks+ωnk
2, (ζk is damping factor), for 

comparison of the natural frequency of closed-loop system ωnk with lowest natural 

frequency ωr of the mechanical structure. The characteristic polynomial of the closed-loop 

system is equal to the denominator den(s) of the closed-loop transfer function and for the PI 

speed controller, it is given in Eq. (5): 

 2

PS eff IS effden(s) K / K / ,k k k ks s I I    (5) 

where KPSk and KISk are proportional and integral gains, respectively. For joint k, k=1, 

2..4, the load torque due to the motion of the chain of other interconnected links, τLDk, is 

treated as a disturbance. 

As said before, Ieffk in Eq. (5) depends on robot configuration. Herein, tuning is 

performed for the LTI-model with the highest load [19], i.e. for the maximum value of 

effective inertia. Given that the structural flexibilities of the system are not modeled, 

special attention must be paid not to excite structural resonances. A rule of thumb is that 

the maximal natural frequency of closed-loop system ωnk is at least two times smaller 

than the lowest natural frequency of mechanical structure ωr (ωnkmax=0.5ωr) [20]. 

However, if we consider a request that the motion of the robot link is never underdamped 
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[12], the value of damping factor ζk=1 for the maximum value of effective inertia Ieffkmax, 

Eq. (6), achieves the fastest response without oscillations for all values of Ieffk [6]. 

  PS eff ISK / 2 ( )Kk k k kI  q  (6) 

Considering that the SDT is not flexible in application, Ieffkmax can be determined 

beforehand, in the offline regime. Here, Ieffkmax, for which it applies ζk=1, is obtained from 

ID model simulation using Eq. (3), for the motion given in Fig. 2. For realistic simulation 

purposes, to take into account possibilities for a higher value of Ieffkmax for different SDT 

trajectories, choice of PI speed controller gains takes into account the lowest structural 

natural frequency, with integral gain KISk chosen to be KISk = 0.25ωr
2 Ieffkmax. 

If a basic structure of the PI speed controller is used, overshoots are present for the 

values ζ>1 [14]. In Fig.4 step response for the SDT first axis’ closed-loop system with the 

LTI model process in which Ieff1= Ieff1max, obtained using the basic structure of PI speed 

controller with KISk set as 0.25 ωr
2 Ieff1max and for the damping factor ζ1=1, is given in red 

line. The rise time is 0.022, the settling time is 0.16, and the overshoot is 13.53%. In an 

attempt to achieve smaller overshoot, (in many practical servo control applications, the 

overshoot for the speed step response is usually limited below 10% of the step level [21]), a 

different structure of PI controller is used here, Fig. 5. Proportional gain relocated in the 

feedback path avoids the overshoot for the values of ζ≥1 due to the closed-loop zero 

removal, while at the same time keeps the denominator unchanged [14]. The response is 

now slower and, to obtain a faster response, values of damping factor ζk are chosen to be 

slightly lesser than 1 for Ieffkmax. In Fig. 4, step response for the SDT first axis’ closed-loop 

system, with the applied PI speed controller structure shown in Fig. 5 [14] is given in blue 

line. For the LTI model process with Ieff1max, with KISk set as 0.25 ωr
2 Ieff1max, and for 

damping factor ζ1=0.95, the rise time is 0.094, the settling time is 0.159, and the overshoot 

is zero. This type of PI speed controller is adopted for all four axes of the SDT in simulation 

models. 

 

Fig. 4 Step responses for the SDT’s first axis with PI speed controllers 
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Fig. 5 The PI speed controller with proportional gain in the feedback path [14],   mrk is the 

reference speed for joint k 

It should be noted that in simulation models that use only PI speed control, load 

torque τLk=τLDk and torque contribution of other links’ motion τalleviatek, Eq. (4) and 

Algorithm 1, are simulated, and the dynamic saturation is included as presented in Fig. 3. 

3.4. Feedforward Computed Torque Method 

In the single joint computed torque control method, the load torque due to the motion 

of the chain of robot’s interconnected links, τLDk= τLDk(q), calculated from the ID model 

for every interpolation period, Eq. (4) and Algorithm 1, is canceled with a feedforward 

signal. The feedback controller is added to improve the reference-tracking capability (to 

suppress the errors in dynamic modeling, as well as the effects of stochastic 

disturbances). For achieving of realistic comparison in a simulation model, to account for 

modeling errors and stochastic disturbances, the load torque is simulated as τLk= 

τLDk(q)(1+ AsinωDkt) where A and ωDk are the amplitude and frequency of the simulated 

disturbances [6], Fig. 6. τLDk and τalleviatek, Eq. (4) and Algorithm 1, are simulated, and the 

dynamic saturation is included as presented in Fig. 3. 

 

Fig. 6 Simulation model for single joint CTC method 
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4. SIMULATION RESULTS 

In this section, simulation results for the two single-joint control methods presented in 

Section 3 are given. The performance of the PI speed controller is compared to the same 

feedback controller with added CTC compensation. 

From Catia software, the lowest structural natural frequency of the SDT is obtained to 

be ωr =10.5028 Hz. For axis 1, an AC motor is chosen with a maximum torque of 203.2 Nm 

and a gearbox ratio 67.2, moment inertia of the motor is Im1=1291.10-4 kgm2 [7, 22]. Axes 2, 

3 and 4 are actuated by torque motors. The motor for axis 2 achieves a maximum torque of 

3950 Nm and has a moment of inertia Im2=173.10-2 kgm2. The motors for axes 3 and 4 

achieve maximum torques of 2150 Nm and have moments of inertia Im3,4=53.1.10-2 kgm2 [7, 

23]. The simulated gondola payload is 180 kg [7]. 

Simulink models are designed for all 4 axes of the SDT for processes with maximum 

loads (maximum effective inertias). The reference speeds are simulated as a series of discrete 

values obtained from the trajectory planner, Fig. 2. In the models with PI speed feedback 

only, Fig. 5, load torque τLDk and torque contribution of other links’ motion τalleviatek, Eq. (4) 

and Algorithm 1, Fig. 3, are simulated for every interpolation period Δt=5 ms. In models with 

PI speed feedback plus CTC compensators, load torque τLDk is compensated in every 

interpolation period, while load torque τLk is simulated as τLk= τLDk(q)(1+ AsinωDkt), A is 

chosen to be 0.05 (meaning that the load torque estimation error is about 5 %); τLDk and 

τalleviatek are calculated from Eq. (4) and Algorithm 1, Fig. 6. Dynamic saturation presented in 

Section 3.2 is applied at the outputs of controllers for all simulation models. 

Process and controller parameters for PI speed control are given in Table 1. Variation 

of the effective inertia in percent is given, and the variation of damping factor ζk for the 

motion given in Fig 2. is presented for the minimum, the median and the maximum value 

of effective inertia. It should be noted that the oscillation frequency of the closed-loop 

system time response is smaller than the natural frequency of the closed-loop system 
2

O n 1k k k    . For ζk=0.95 for Ieffkmax, the oscillation frequency of the closed-loop system 

time response with the adopted gains is ωOk=0.32ωnk=0.16ωr. 

Table 1 Process and controller parameters, variation of effective inertia and variation of 

damping factor ζk for the motion given in Fig. 2 

Joint 
Ieffkmax 

[kgm2] 

Gain Variation of 

eff. inertia [%] 

ζk   

KPSk KISk Ieffkmax Ieffkmed Ieffkmin 

1 4.26 267.1 4.64.103 39.95 0.95 1.06 1.23 

2 98.01 6. 34.103 1.07.105 31.82 0.98 1.07 1.18 

3 796.3 5.2.104 8.67.105 7.29 0.99 1.009 1.03 

4 250.28 1.57.104 2.73.105 25.4 0.95 1.017 1.099 

In Fig. 7, trajectory tracking for axes k=1, 2.. 4 with two considered types of controllers 

are presented. The reference value (a series of discrete values obtained from the trajectory 

planner, Fig. 2) is given in blue color, the outputs obtained by the PI speed controller are 

given in red, while the outputs obtained by the PI speed controller with added CTC are 

given in green color. The errors ek=   k -   rk, k=1, 2.. 4 in obtained speeds are given in Fig. 8. 
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Fig. 7 The obtained trajectory tracking results: reference value is in the blue line, tracking 

obtained by the PI speed controller is in the red line, tracking obtained by CTC 

compensation added to the PI speed controller is in the green line 

As can be seen, there is an improvement in trajectory tracking when CTC compensation 

is added to PI speed feedback for the desired SDT motion. The constant reference speed is 

simulated in segments for the joints 2 and 4 (denoted in Fig. 8), and it can be seen that the 

small steady-state error is present with the PI speed control as a result of varying 

disturbance and limited controller gains. The CTC addition achieves zero error in steady-

state. The short-lasting high values of error in PI speed control for joint 2 at certain time 

instants are caused by sudden and large changes in load torque τLD2 in those instants. 

The gains for PI speed controllers are selected for the maximum values of effective 

inertia Ieffk, and control system performance is expected to deteriorate to a certain extent for 

smaller values of Ieffk. To examine the performance decay, the simulation models with the 

same PI controllers (designed for Ieffkmax) and processes with the minimum value of Ieffk are 

developed. The performance deterioration is not significant except for joint 2. For example, 

the maximum error for joint 2 with the PI speed controller for the process with Ieff2max 

(circled in Fig 8.) is 1.08 rad/s, and for the process with Ieff2min this error is 1.204 rad/s. 

When CTC is added, the difference in these errors (for Ieff2max and Ieff2min) is insignificant. 

Simulation results showed that for the designed SDT the influence of the nonlinear 

dynamic model on the control system performance is not negligible for relatively small 

values of joint speeds. With the reduction of inertia/mass of the mechanical structure, the 

significance of improvements in trajectory tracking achieved by the addition of CTC 

compensation may be higher (due to gains limitation of general PID controller to avoid 

unwanted resonant effects). Considering that weight reduction is performed to reduce the 
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motors’ size (power) (to achieve the design and usage cost reduction), this possibility should 

be tested by control system performance simulation for the chosen smaller motors and 

selected PID controller structure with the adopted tuning method. The benefits of the 

achieved improvements should be weighted with the complexity of practical implementation. 

5. CONCLUSION 

In this paper, the application of the computed torque method for the motion control of 

the Spatial disorientation trainer is investigated using realistic simulation. The SDT device 

is modeled as a 4DoF robot manipulator with revolute joints. Models for the motors’ 

mechanical subsystems used in simulation examples account for robot dynamic model 

through inertia reflected on the rotor shaft. Gains of the applied PI speed controllers are 

limited taking into account the lowest natural frequency of the mechanical structure 

obtained from CAE software. The dynamic saturation based on the maximum torques for 

the selected actuators is applied at the outputs of controllers. Within CTC compensation, the 

reasonable error in load torque calculation from the dynamic model is assumed. The 

addition of CTC compensator to the PI speed feedback controller achieved considerable 

improvement in trajectory tracking in simulation example. The simulation results are 

significant regarding the choice of the control method for the SDT, and also in reference to 

the design of the mechanical structure of the manipulator and the appropriate choice of 

motors. 

 

Fig. 8 Errors in speed: obtained by the PI speed controller in the red line, obtained by 

CTC compensation added to the PI speed controller in the green line 
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