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Abstract. With continuous automation of the manufacturing industries and the 

development of advanced data acquisition systems, a huge volume of manufacturing-

related data is now available which can be effectively mined to extract valuable 

knowledge and unfold the hidden patterns. In this paper, a data mining tool, in the form 

of the rough sets theory, is applied to a grinding process to investigate the effects of its 

various input parameters on the responses. Rotational speed of the grinding wheel, 

depth of cut and type of the cutting fluid are grinding parameters, and average surface 

roughness, amplitude of vibration and grinding ratio are the responses. The best 

parametric settings of the grinding parameters are also derived to control the quality 

characteristics of the ground components. The developed decision rules are quite easy 

to understand and can truly predict the response values at varying combinations of the 

considered grinding parameters. 
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1. INTRODUCTION 

With the rapid advancements of various data analysis tools and network technology, 

data mining has now become an emerging area in computational intelligence which 

offers new concepts and methods to analyze voluminous data. Availability of a large 

volume of data in different forms has significantly accelerated the applications of data 

mining. Data mining, also known as „knowledge discovery from databases‟, thus deals 

with the application of various competent tools and techniques to refine the extracted 

knowledge from a large database so as to envisage, categorize and characterize the mined 

data [1, 2]. It can identify interesting patterns in data to aid in valuable decision-making 
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where the applications of the popular statistical and predictive models fail. Understanding 

the patterns inherent in the data sometimes becomes important when the data sources are 

heterogeneous and differently distributed. Data mining mainly consists of the applications 

of various mathematical tools for machine learning, cluster analysis, regression analysis 

and neural networks. Using a predetermined set of features and a training dataset, regression 

analysis and neural networks develop a single model. On the other hand, a machine learning 

algorithm develops a number of models in the form of decision rules while providing the 

interrelationships between various input features and the final decision. Cluster analysis can 

also create the same decision rules when the set of features included in each rule is 

independent of all other rules. The rules developed by the data mining tools are always 

expected to be explicit [3, 4].   

Rough sets theory (RST), developed by Pawlak in 1982 [5], falls under the broad 

category of machine learning. Based on extraction of knowledge from the datasets, it can 

also provide valuable tools for data analysis and generation of independent decision rules 

for effective data classification. Having a strong mathematical foundation, it is well suited to 

efficiently solve various decision-making problems. Although it has some similarities with 

the fuzzy set theory, today it has evolved out as a separate discipline in data mining. Its 

main advantage is that it does not require any additional information about the dataset to be 

mined, like the probability theory in statistical approaches, membership functions in the 

fuzzy set theory, etc. As a non-statistical approach in data analysis, it thus classifies and 

analyses imprecise, uncertain or incomplete information and knowledge to generate minimal 

and non-redundant rule sets [6, 7]. 

In the contemporary automated manufacturing industries, a huge volume of data related 

to product design, bill of materials, production planning and control, production processes 

and systems, monitoring and diagnosis, etc. is being regularly captured and stored using 

various data acquisition tools. Valuable information in the form of rules, patterns, clusters, 

associations and dependencies are always expected to be hidden in the dataset collected from 

the manufacturing organizations. Thus, it becomes the responsibility of the production 

engineers to augment effective data mining tools to analyze this huge manufacturing-related 

dataset to identify potential patterns in various input parameters that control a manufacturing 

process or quality of the output products. It is observed that the RST has already been 

successfully applied in various domains of engineering and management decision-making, 

like manufacturing process control [8], quality assurance [9], supplier selection [10, 11], 

automotive warranty data analysis [12], operations of security forces [13], forecasting [14], 

etc.  

In the present day manufacturing industries, grinding has been successfully applied as 

an efficient material removal process to almost all types of materials providing an 

extremely high material removal rate (MRR) (more than 2000 mm3/s) and ultra-precision 

surface finish (up to nanometer level). The precision and surface finish attained through 

grinding can be up to ten times better than the other machining processes, like turning 

and milling. Due to high hardness of the abrasives used as the cutting medium in grinding, it 

has now become the first choice for removing materials from the workpieces. Grinding 

process requires least pressure which makes it easy to hold the work material even during 

automated process using simple devices. It has been found out that application of grinding 

includes more than a quarter of total machining processes and is still showing an upward 

trend. Thus, in order to study the material removal mechanism in a grinding process, 
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while examining the possible interactions between different grinding parameters and 

responses, it has become critical to provide guidance for further improving the grinding 

quality and productivity through the identification of appropriate settings of the considered 

grinding parameters. On the other hand, the RST has several advantages over the other data 

mining tools, like it does not require any preliminary or additional information about the 

data to be analyzed, it provides efficient algorithms for searching out the hidden patterns in 

the data, it is able to find out minimal sets of data for effective pattern generation, it evaluates 

significance of the data, it generates sets of decision rules from the data automatically, it is 

easy to comprehend, it is capable to provide straightforward interpretation of the derived 

rules, it is suited for parallel processing, etc. Thus, in this paper, a maiden endeavor is put 

forward to apply the concepts of the RST to a grinding process so as study the effects of 

various grinding parameters on different measured responses and predict the optimal settings 

of those parameters. 

2. LITERATURE REVIEW 

Chadha and Lee [15] developed a new optimization tool in the form of a variable length 

evolution strategy for a cylindrical traverse grinding process. While considering dressing 

feed, grinding feed, dwell time and cycle time as the grinding parameters, Siddiquee et al. 

[16] presented an approach combining grey relational analysis (GRA) and principal 

component analysis to attain the most preferred values of surface roughness (SR), cylindricity 

error and diametric tolerance in a centerless cylindrical grinding process. Lee et al. [17] 

applied the Taguchi-sliding-based differential evolution algorithm for optimizing wheel 

speed, workpiece speed, depth of dressing and lead of dressing for a surface grinding process. 

Based on experimental studies on rough-grinding and finish-grinding processes, it was 

concluded that the proposed approach would provide better solutions as compared to the 

already adopted methods. Asiltürk et al. [18] proposed the application of an adaptive 

network-based fuzzy inference system for effectively predicting SR and vibration in 

cylindrical grinding, while taking into account workpiece speed, feed rate and depth of cut as 

the input parameters. Khan et al. [19] presented the application of GRA technique for 

optimizing an in-feed centerless cylindrical grinding process. The considered grinding 

parameters were dressing feed, grinding feed, dwell time and cycle time, whereas, SR and 

cylindricity error were the responses. Neşeli et al. [20] combined response surface 

methodology (RSM) and Taguchi method to find out the optimal settings of workpiece 

revolution, feed rate and depth of cut so as to minimize SR and vibration in an external 

cylindrical grinding process. Rudrapati et al. [21] applied the RSM technique to study the 

relationships between three grinding parameters (in-feed, longitudinal feed and work speed) 

and SR in a cylindrical grinding process. It was observed that the considered grinding 

parameters had no significant influence on SR. Using the grey-based Taguchi methodology, 

Köklü [22] investigated the influences of workpiece speed, depth of cut and number of slots 

on SR and roundness error in a grinding process. The optimal parametric mix and the most 

important grinding parameter were also identified. Using RSM technique, Pai et al. [23] 

developed regression models correlating three grinding parameters with two responses, i.e. 

MRR and SR, during grinding of Al6061-SiC composites. Elitist non-dominated sorting 

genetic algorithm (enhanced NSGA-II) was later employed to determine the optimal grinding 
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conditions. Pawar and Rai-Kalal [24] adopted NSGA-II technique for determining the 

optimal operating levels of wheel speed, workpiece speed, depth of dressing and lead of 

dressing to minimize production cost, production rate and SR in a grinding process. Winter et 

al. [25] applied geometric programming and a weighted max-min model for single as well as 

multi-objective optimization of an internal cylindrical grinding process. The corresponding 

Pareto optimal solutions were also identified to enhance the eco-efficiency of the considered 

grinding operation. Khare and Agarwal [26] developed an analytical model representing the 

relationship between SR and chip thickness for surface grinding of AISI 4340 steel material. 

Aleksandrova [27] applied generalized utility function for parametric optimization of 

different dressing parameters in a cylindrical grinding operation. Deng et al. [28] applied 

genetic algorithm (GA) technique to solve a multi-objective optimization model having 

minimum processing time and optimal carbon efficiency as the two objectives. The optimal 

parametric combination of different grinding parameters was also identified. Rudrapati et al. 

[29] considered three input parameters, i.e. in-feed, longitudinal feed and workpiece speed, 

and later applied multi-objective GA to minimize SR and vibration in traverse cut cylindrical 

grinding operation of stainless steel material.  aydaş and  el  k [30] combined  SM and    

techniques to optimize speed of the workpiece, depth of cut and number of grooves in 

cylindrical surface grinding operation of AISI 1050 steel material. The effects of those 

grinding parameters on SR of the machined components were also investigated. Chang et al. 

[31] conducted an orthogonal test to investigate the influences of wheel speed, workpiece 

speed and grinding depth on surface integrity of a bearing raceway. Based on the 

experimental data, two support vector machine models were proposed in order to 

significantly reduce the optimization time and derive the global optimal solution. Kuo et al. 

[32] proposed a multi-criteria model to obtain the optimal parametric setting of a grinding 

process while taking into consideration SR and MRR as the responses. The effects of 

minimum quantity lubrication on MRR, surface integrity and temperature while grinding Ti-

6Al-4V workpiece material were also studied. Considering the stochastic nature of a grinding 

process and based on orthogonal experiment method, Ming et al. [33] optimized different 

input parameters for a five-axis blade grinding setup. Liu et al. [34] integrated signal-to-noise 

analysis with GRA technique to optimize different grinding parameters for attaining the most 

desired values of MRR and grinding efficiency. 

It can be observed from the exhaustive review of the past research that the investigation 

of the influences of different grinding parameters, like grinding wheel speed, workpiece 

rotational speed, depth of cut, cutting speed etc. on various responses, such as MRR, SR, 

vibration, cylindricity error, grinding efficiency etc., and determination of the optimal 

combinations of those grinding parameters have been the main topics of interest amongst 

the researchers. Several optimization tools in the form of GA, NSGA-II, GRA, utility 

theory, etc. have been implemented to fulfill the above-cited objectives. The applications of 

those tools and techniques often lead to sub-optimal or near-optimal solutions, and identify 

the optimal parametric settings of the considered grinding processes which are sometimes 

difficult to set and maintain in the existing machining systems. Thus, in this paper, the 

application of a data mining tool, in the form of the RST, is proposed to analyze the 

experimental dataset of a grinding process and generate the corresponding „If-Then‟ 

decision rules to visualize the effects of different grinding parameters on three important 

responses and guide the concerned production engineers to identify the most appropriate 

parametric mix for the said grinding process for attaining the desired quality characteristics 
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of the ground components. These decision rules follow a general structure, i.e. if the 

machining conditions are met then certain response values can be attained or predicted. 

They are probably the most interpretable prediction models, semantically resembling the 

natural language and human thinking process. The developed rules aid in solving complex 

machining problems, providing explanations of how the final decisions have been arrived at 

and why a particular decision has been made. This rule generation process has been proved 

to have high speed and scalability. The developed rules for the considered grinding process 

can also act a repository and executable knowledge base to facilitate the decision-making 

process in the domain of grinding technology. 

3. ROUGH SETS THEORY 

In the present day automated manufacturing industries, it has now become quite 

essential to analyze the huge dataset to correctly estimate the real nature of knowledge 

inherent in it. For this purpose, „If...Then‟ rules have emerged as a reliable tool for 

decision-making while effectively representing information or bits of knowledge. The 

expression of „If...Then‟ rule attains a form, like „If condition Then conclusion‟. In order 

to demonstrate the importance of „If...Then‟ rules in data mining, the data presented in 

Table 1 can be cited. In this data matrix, there are three input parameters, each having 

two different levels and three responses with three varying levels. For example, in the 

first experimental run, when all the three input parameters are set at „0‟ (minimum) level, 

all the responses would have „low‟ observations. 

Table 1 Illustrative dataset 

Experiment run Input parameter Response 

a1 a2 a3 r1 r2 r3 

1 0 0 0 Low Low Low 

2 0 1 1 Low Low Low 

3 0 0 0 Medium High High 

4 1 1 1 High High High 

5 1 0 0 High Low Low 

In the initial dataset containing a large number of observations, it has been sometimes 

noticed that many attributes and responses are duplicative in nature which may be 

responsible for unwanted bulkiness of the dataset. Hence, it has become mandatory to 

reduce the numbers of attributes and responses in the original dataset to enable extraction 

of explicit knowledge with framing of simple rules. The RST technique helps in reduction of 

number of attributes or responses while estimating the dependency between two or more of 

them. The attributes/responses having higher dependency indexes as compared to the 

predefined threshold value are removed from the initial dataset. When the dependency index 

is greater than the threshold value, either the first or second attribute/response of a common 

pair is excluded from the dataset without losing any valuable information. The dependency 

index can be calculated using the following equation [8]: 
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where ai
* and aj

* are the equivalence classes of attributes ai and aj respectively (the 

equivalence class is the set of objects having the same value for attributes ai and aj), L is the 

equivalence class of aj, Y is the equivalence class of ai, N is the total number of objects in the 

dataset, || is the cardinality of a set (number of elements in the set) and ia (L)
 
is the lower 

approximation of set L over attribute ai. 

In RST, a dependency index of K(ai,aj) = 0 signifies that the attributes ai and aj are 

independent to each other, whereas, K(ai,aj) = 100 implies that they are totally dependent 

to each other. Thus, elimination of any one of them would not affect extraction of the 

knowledge from the dataset. But, the attributes cannot be eliminated only by observing 

the value of K(ai,aj), the value of K(aj,ai) also needs to be checked. Elimination of the 

attributes can only be possible if min{K(ai,aj), K(aj,ai)} is greater than the predefined 

threshold value. Thus, determination of the corresponding threshold value plays an 

important role in generation of the decision rules. If the threshold value is estimated to be 

high, a greater number of incompetent attributes exists in the dataset, making formation 

of the rules highly complicated. On the other hand, if its value is low, there remains a high 

chance of many useful attributes getting eliminated with loss of valuable information. 

Hence, it is always recommended to set the threshold value based on the prevailing situation 

and experts‟ opinions. Traditionally, the threshold value is set as 85-90%. 

Based on the dataset of Table 1, and using Eqs. (1) and (2), the corresponding 

dependency level matrix for the considered attributes is developed, as shown in Table 2. 

From this table, it can be noticed that K(a2,a3) = K(a3,a2) = 100,  and K(r2,r3) = K(r3,r2) = 

100, i.e. input parameters a2 and a3, and responses r2 and r3 are dependent on each other 

(threshold value is taken as 90). Thus, either a2 or a3 and r2 or r3 can be eliminated from 

the initial dataset, while keeping other attributes remain intact as earlier. In this 

illustrative example, a3 and r3 are eliminated, and a new dataset is formed in Table 3. 

Table 2 Calculated values of dependency level 

Attribute 
Input parameter Response 

a1 a2 a3 r1 r2 r3 

a1 - 0 0 100 0 0 

a2 0 - 100 20 0 0 

a3 0 100 - 20 0 0 

r1 40 0 0 - 0 0 

r2 0 0 0 60 - 100 

r3 0 0 0 60 100 - 
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Table 3 Reduced dataset 

Experiment run Input parameter Response 

a1 a2 r1 r2 

1 0 0 Low Low 

2 0 1 Low Low 

3 0 0 Medium High 

4 1 1 High High 

5 1 0 High Low 

From the reduced dataset, with the help of k-means or any other clustering algorithm, 

the considered attributes are now discretized with continuous numeric values. It helps the 

attributes to be well organized themselves in different clusters/groups to provide the rules 

more proficiency. Now, a decision rule generation algorithm is applied to extract 

„If…Then‟ rules from the reduced set of the attributes categorized into appropriate 

number of clusters. The decision rule generation algorithm is presented as follows [8]:  

Step 1:  Initialize: A = {a1,a2,…,an}; R = {r1,r2,…,rm} 

Step 2:  Evaluate  jiij RAX   for i = 1,2,…,p; j = 1,2,…,q  

Step 3:  For each Xij ≠ ,  a rule is assigned as 

If a1 = V(Ai,a1) and...and an = V(Ai,an) Then r1 = V(Rj,r1) and...and rm = V(Rj,rm)  

[P, Q, C, QTY] [T] 

where 

i

ij

A

X
P ; 

j

ij

R

X
Q ;

N

X ij
C ; ijXQTY ; CQPT   

In the above algorithm, the “If” statement contains the input or independent parameters, 

whereas, the “Then” statement consists of the dependent parameters or responses. Here, T 

signifies the total weight (relative importance) assigned to a rule for effective decision-

making. The higher the value of T, the greater the weight of a particular rule is. The 

maximum value of T identifies a rule to be the optimal one among all the generated rules, and 

it has the highest chance of occurrence when the whole system is repeated again and again. 

Using the reduced dataset of Table 3, two sets A = {a1,a2} and R = {r1,r2} are initially 

generated, and based on the steps as presented for the rule generation algorithm, the 

following rules are formulated.  

a) Rules for single response: 

For response (r1): 

Rule 1:  If a1 = 0 Then r1 is Low. 

[P = 66.67%, Q = 100%, C = 40%, QTY = 2][T = 206.67%]  

Rule 2:  If a1 = 1 Then r1 is High. 

[P = 100%, Q = 100%, C = 40%, QTY = 2][T = 240%] 

Rule 3:  If a1 = 0 and a2 = 0 Then r1 is Medium. 

[P = 50%, Q = 100%, C = 20%, QTY = 1][T = 170%] 

From the above-generated rules, it can be concluded that a value of P = 100% in Rule 2 

indicates that all the elements present in the dataset with condition a1 = 1 satisfy this rule. 

On the other hand, a value of Q = 100% in Rules 1, 2 and 3 implies that all the elements 

present in the dataset, having response r1 as low, high and medium, satisfy Rules 1, 2 and 3, 
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respectively. It can also be observed that for Rules 1 and 2, 40% of the observations in the 

dataset (C = 40%) are covered by these rules. For Rule 1, a value of QTY = 2 represents the 

total number of elements (cases) that follow this rule. Amongst the three generated rules, 

Rule 2 with the maximum T value of 240% is supposed to be the strongest rule. Although 

Rule 3 encompasses both the input parameters, it has poor strength (T = 170%). 

For response (r2): 

Rule 1:  If a2 = 0 Then r2 is Low. 

[P = 66.67%, Q = 66.67%, C = 40%, QTY = 2][T = 173.34%]  

Rule 2:  If a1 = 0 and a2 = 1 Then r2 is Low. 

[P = 100%, Q = 33.33%, C = 20%, QTY = 1][T = 153.33%] 

Rule 3:  If a1 = 1 and a2 = 1 Then r2 is High. 

[P = 100%, Q = 50%, C = 20%, QTY = 1][T = 170%] 

Rule 4:  If a1 = 0 and a2 = 0 Then r2 is High. 

[P = 50%, Q = 50%, C = 20%, QTY = 1][T = 120%] 

For response r2, the value of T is maximum for Rule 1, identifying it as the strongest rule. 

b) Rules for two responses: 

Rule 1:  If a1 = 0 Then r1 is Low and r2 is Low. 

[P = 66.67%, Q = 100%, C = 40%, QTY = 2][T = 206.67%] 

Rule 2:  If a1 = 0 and a2 = 0 Then r1 is Medium and r2 is High. 

[P = 50%, Q = 100%, C = 20%, QTY = 1][T = 170%] 

Rule 3:  If a1 = 1 and a2 = 1 Then r1 is High and r2 is High. 

[P = 100%, Q = 100%, C = 20%, QTY = 1][T = 220%] 

Rule 4:  If a1 = 1 and a2 = 0 Then r1 is High and r2 is Low. 

[P = 100%, Q = 100%, C = 20%, QTY = 2][T = 220%] 

These rules as developed taking into consideration two responses simultaneously are 

supposed to be more reliable and useful as compared to those generated for only one 

response. For two responses, the value of T for Rules 3 and 4 is the maximum which 

implies that both these rules can collectively extract the optimal information from the 

considered dataset. 

4. ROUGH SETS THEORY IN A GRINDING PROCESS 

Grinding is a machining process where a high volume of unwanted material is rapidly 

removed from the workpiece surface with the help of the abrasive grinding wheel or the 

grinder used as a cutting tool [35]. It is principally used as a fine finishing process which 

results in achievement of high surface quality and dimensional accuracy of the machined 

parts/components. In this process, each grain of abrasive on the grinding wheel removes 

material from the workpiece in the form of small chips through shear deformation. A 

grinding setup usually consists of a bed with a fixture to guide and hold the workpiece, and 

a power-driven grinding wheel with hard abrasives revolving with the required rotational 

speed. In order to cool the workpiece during the grinding operation, coolants (e.g. water, 

light duty oil, wax, heavy duty emulsifiable oil etc.) are also applied. The abrasives 

commonly used in the grinding wheels are aluminum oxide, silicon carbide, ceramics, 

diamond and cubic boron nitride. On the other hand, the workpiece materials include 
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aluminum, brass, plastics, cast iron, mild steel and stainless steel. In manufacturing 

industries, there are huge applications of grinding operation, e.g. surface finishing, slitting 

and parting, descaling, deburring, finishing of flat as well as cylindrical surface, and 

grinding and resharpening of tools and cutters. 

Keeping in mind the large applicability of grinding operations, in this paper, a dataset 

is chosen where nine experiments have been conducted on low alloy steel workpiece 

samples (60 × 40 × 8 mm size) using a vitrified bonded alumina grinding wheel.  Spindle 

speed (SS) (in rpm), depth of cut (DOC) (in mm) and type of the cutting fluid (TCF) 

have been considered as the input grinding parameters. On the other hand, SR (Ra) (in 

µm), amplitude of vibration (V) (in µm) and grinding ratio (G-ratio) have been treated as 

the process outputs (responses). Spindle speed is the rotational speed of the grinding 

wheel and depth of cut is the thickness of material being removed during the grinding 

operation. Higher depth of cut provides more MRR while enhancing productivity of a 

grinding process. During the grinding operation, material removal takes place by 

abrasion, resulting in generation of substantial amount of heat. To cool the workpiece, 

the coolant is used to avoid overheating and meet the dimensional tolerances. The Ra 

(arithmetic mean roughness or centre line average roughness) symbolizes surface quality 

of the machined components. It is one of the most important parameters for measuring 

SR. If there are large form deviations in the machined surface, the corresponding Ra 

value would be high; otherwise for smooth surface, lower values of Ra are obtained. 

During the grinding operation, the maximum distance to which the grinding wheel goes 

from its central position is termed as the amplitude of vibration. The G-ratio indicates the 

efficiency of the grinding operation and can be defined as the ratio of MRR to wheel 

wear rate.  For each of the grinding parameters, three different operating levels have been 

considered. The detailed experimental plan along with the measured values of the three 

responses is provided in Table 4. In this table, the numbers enclosed inside the parentheses 

show the respective operating levels of the considered grinding parameters. Now, this 

experimental dataset for the grinding operation is analyzed using the principle of the RST so 

as to identify those input parameters which are responsible for controlling the output 

characteristics of the ground parts/components. At first, data preprocessing in the form of 

attribute reduction and clustering of the considered attributes are performed. Table 5 

exhibits the dependency indexes as computed for each pair of the attributes and smaller 

values of those indexes (all the values are less than the threshold limit of 90%) prove the 

independency of all the attributes as considered in this grinding process. It is worthwhile 

to mention that in Table 5, the values of two dependency indexes R(SS, G-ratio) and 

R(G-ratio, SS) are obtained as 33.33% and 100%, respectively. But, as the minimum of 

them, i.e. 33.33% is less than the predetermined threshold value of 90%, both of them 

can be treated as entirely independent attributes. Along with the data reduction, the 

measured responses are also grouped into appropriate number of clusters using k-means 

algorithm to convert their continuous values into separate distinguishable ranges. 
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Table 4 Experimental dataset for the grinding process 

Exp. No. 
Grinding parameter Response 

SS DOC TCF Ra V G-ratio 

1 2430 (1) 0.02 (1) Coolant (1) 0.48 18.22 0.0253 

2 2430 (1) 0.03 (2) Water (2) 0.56 21.32 0.0262 

3 2430 (1) 0.04 (3) Coolant+Water (3) 0.57 26.23 0.0232 

4 2560 (2) 0.02 (1) Water (2) 0.61 22.32 0.0356 

5 2560 (2) 0.03 (2) Coolant+Water (3) 0.65 31.22 0.0323 

6 2560 (2) 0.04 (3) Coolant (1) 0.77 29.57 0.0476 

7 2850 (3) 0.02 (1) Coolant+Water (3) 0.72 26.45 0.0643 

8 2850 (3) 0.03 (2) Coolant (1) 0.8 31.56 0.0656 

9 2850 (3) 0.04 (3) Water (2) 0.65 34.78 0.0781 

Table 5 Dependency indexes for various grinding attributes 

Attribute SS DOC TCF Ra V G-ratio 

SS - 0 0 0 0 33.33 

DOC 0 - 0 0 0 0 

TCF 0 0 - 0 0 0 

Ra 66.67 0 0 - 33.33 33.33 

V 33.33 33.33 33.33 55.56 - 33.33 

G-ratio 100 0 0 44.44 33.33 - 

In Fig. 1, the values of all the considered responses for this grinding process are 

clustered into two separate groups. For Ra and amplitude of vibration (both are non-

beneficial characteristics requiring their lower values), the two formed clusters for them are 

respectively designated as „Low‟ and „High‟. Here, lower values of  a and amplitude of 

vibration are always preferred. On the other, for G-ratio (being a beneficial characteristic 

requiring only higher value), the corresponding clusters are also respectively termed as 

„Low‟ and „High‟. But, for  -ratio, higher values are always desired. The number of classes 

in which the responses are to be segregated also plays an important role in subsequent 

generation of the decision rules. If the number of clusters is high, each generated rule would 

encompass a small number of elements. On the other hand, when the number of clusters is 

too small, interpretation of the rules would then become complicated. Thus, it is always 

recommended to choose the number of clusters in such a way so as to make a compromise 

between simplicity of the rules and the level of knowledge extraction. The details of the 

cluster analysis results for the three responses of the grinding process are provided in Table 

6.  In this table, the third and fourth columns respectively denote the mean and range values 

for each of the clusters formed for the considered responses. On the other hand, the column 

five represents the specific objects (experimental runs) and the last column denotes the total 

number of objects in each of the formed clusters. 
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Fig. 1 Clustering of the considered responses 

Table 6 Details of the formed clusters for the responses 

Response 
Cluster 

number 
Mean 

Range of each 

cluster 

Objects in 

each cluster 

Total number of 

objects in each cluster 

Ra 
Cluster 1 0.56 0.40-0.60 1,2,3,4 4 

Cluster 2 0.72 0.60-0.85 5,6,7,8,9 5 

Amplitude of 

vibration 

Cluster 1 20.62 17.00-23.00 1,2,4 3 

Cluster 2 29.97 23.00-35.50 3,5,6,7,8,9 6 

G-ratio 
Cluster 1 0.0317 0.02-0.06 1,2,3,4,5,6 6 

Cluster 2 0.0693 0.06-0.085 7,8,9 3 

Now, after performing all the required data preprocessing and clustering tasks, the 

decision rule generation algorithm is adopted to explore valuable information from the 

experimental dataset in the form of developed rules. These rules simply depict the 

relationships between various grinding parameters and responses to effectively control 

the said grinding operation. The first three sets of rules relate one or more grinding 

parameters to a single response. In contrast, the last set of rules relates multiple grinding 

parameters to all the three responses. 
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Rules for Ra: 

Rule 1:  If SS = 2430 Then Ra is 0.56 [0.40-0.60]. 

[P = 100%, Q = 75%, C = 33.33%, QTY = 3] [T = 208.33] 

Rule 2:  If SS = 2560 and DOC = 0.2 Then Ra is 0.56 [0.40-0.60]. 

[P = 100%, Q = 25.00%, C = 11.11%, QTY = 1] [T = 136.11] 

Rule 3:  If SS = 2850 Then Ra is 0.72 [0.60-0.85].  

[P = 100%, Q = 60.00%, C = 33.33%, QTY = 3] [T = 193.33] 

Rule 4:  If SS = 2560 and DOC = 0.3 Then Ra is 0.72 [0.60-0.85].  

[P = 100%, Q = 20.00%, C = 11.11%, QTY = 1] [T = 131.11] 

Rule 5:  If SS = 2560 and DOC = 0.4 Then Ra is 0.72 [0.60-0.85]. 

[P = 100%, Q = 20.00%, C = 11.11%, QTY = 1] [T = 131.11] 

Rules for amplitude of vibration (V): 

Rule 1:  If SS = 2430 and DOC = 0.2 Then V is 20.62 [17.00-23.00]. 

[P = 100%, Q = 33.33%, C = 11.11%, QTY = 1] [T = 144.44] 

Rule 2:  If SS = 2430 and TCF = Water Then V is 20.62 [17.00-23.00]. 

[P = 100%, Q = 33.33%, C = 11.11%, QTY = 1] [T = 144.44] 

Rule 3:  If SS = 2560 and DOC = 0.2 Then V is 20.62 [17.00-23.00]. 

[P = 100%, Q = 33.33%, C = 11.11%, QTY = 1] [T = 144.44] 

Rule 4:  If SS = 2850 Then V is 29.97 [23.00-35.50]. 

[P = 100%, Q = 50.00%, C = 33.33%, QTY= 3] [T = 183.33] 

Rule 5:  If DOC = 0.4 Then V is 29.97 [23.00-35.50]. 

[P = 100%, Q = 50.00%, C = 33.33%, QTY = 3] [T = 183.33] 

Rule 6:  If SS = 2560 and DOC = 0.3 Then V is 29.97 [23.00-35.50]. 

[P = 100%, Q = 16.67%, C = 11.11%, QTY = 1] [T = 127.78] 

Rule for G-ratio: 

Rule 1:  If SS = 2430 Then G-ratio is 0.0317 [0.02-0.06]. 

[P = 100%, Q = 50.00%, C = 33.33%, QTY = 3] [T = 183.33] 

Rule 2:  If SS = 2560 Then G-ratio is 0.0317 [0.02-0.06]. 

[P = 100%, Q = 50.00%, C = 33.33%, QTY = 3] [T = 183.33]. 

Rule 3:  If SS = 2850 Then G-ratio is 0.0691 [0.06-0.085]. 

[P = 100%, Q = 100.00%, C = 33.33%, QTY = 3] [T = 233.33] 

Rules for all the three responses: 

Rule 1: If SS = 2850 Then Ra is 0.72 [0.60-0.85] and V is 29.97 [23.00-35.50] and G-

ratio is 0.0693 [0.06-0.085].  

 [P = 100.00%, Q = 100.00%, C = 33.33%, QTY = 3] [T = 233.33] 

Rule 2: If SS = 2430 Then Ra is 0.56 [0.40-0.60] and V is 20.62 [17.00-23.00] and G-

ratio is 0.0317 [0.02-0.06]. 

 [P = 66.67%, Q = 66.67%, C = 22.22%, QTY = 2] [T = 155.56] 

Rule 3: If SS = 2560 Then Ra is 0.72 [0.60-0.85] and V is 29.97 [23.00-35.50] and G-

ratio is 0.0317 [0.02-0.06]. 

 [P = 66.67%, Q = 100.00%, C = 22.22%, QTY = 2] [T = 188.89] 

Rule 4: If SS = 2430 and DOC = 0.04 and TCF = Coolant + Water Then Ra is 0.56 

 [0.40-0.60] and V is 29.97 [23.00-35.50] and G-ratio is 0.0317 [0.02-0.06]. 

[P = 100.00%, Q = 100.00%, C = 11.11%, QTY = 1] [T = 211.11] 



 Parametric Analysis of a Grinding Process Using the Rough Sets Theory 103 

Rule 5: If SS = 2560 and DOC = 0.02 and TCF = Water Then Ra is 0.56 [0.40-0.60] and 

V is 20.62 [17.00-23.00] and G-ratio is 0.0317 [0.02-0.06]. 

[P = 100.00%, Q = 33.33%, C = 11.11%, QTY = 1] [T = 144.44] 

From the developed rules, it can be propounded that for response Ra (a smaller-the-

better type of quality characteristic), Rule 1 emerges out as the strongest rule with a T value 

of 208.33%. Based on this rule, it can be concluded that when the spindle speed is 2430 

rpm, all the measured  a values are expected to be „Low‟ ranging between 0.40 µm and 

0.60 µm with a rule confidence of P = 100%. Similarly, 75% of all  the trials (Q = 75%) 

having Ra values between 0.40 µm and 0.60 µm have been experimented while setting the 

corresponding spindle speed at 2430 rpm, and 33.33% of the experimental trials (C = 

33.33%) are covered by this rule (i.e. three trials have Ra values between 0.40 µm and 

0.60 µm). Amongst all the nine experimental trials, there are three runs that satisfy this rule 

(QTY = 3). Similarly, for Rule 3, when the spindle speed is 2850 rpm, the measured Ra 

values are expected to be „High‟ falling within the range of 0.60-0.85 µm. For Ra response, 

all the remaining rules have less strength with not so much importance in controlling this 

grinding operation. Rules 4 and 5 showing the combined influences of two separate 

grinding parameters on Ra appear to be interesting to the production engineers, but they 

have also low total strength. These rules state that moderate value of spindle speed and 

moderate/high value of depth of cut lead to higher Ra values causing generation of poor 

surface finish of the machined components. Spindle speed appears in all the developed rules 

signifying its maximum importance in this grinding operation, followed by depth of cut. It 

is quite interesting to notice that type of the cutting fluid does not appear in any of the 

generated rules, revealing the fact that it has no role in controlling the surface characteristics 

of the ground workpiece samples.   

For amplitude of vibration, six rules are similarly generated. Among them, Rules 4 and 

5 are observed to be the most decisive ones with the total strength of 183.33% each. They 

signify that when spindle speed is 2850 rpm or depth of cut is 0.04 mm, amplitude of 

vibration is high, falling within the range of 23.00-35.50 µm. Experiment trial number 9 

follows both these rules/conditions (i.e. Rules 4 and 5), requiring attention of the concerned 

production engineers. Some of the developed rules also exhibit the conjoint influences of 

two grinding parameters on amplitude of vibration, but they have low strength with smaller 

T values. Among these rules, Rule 2 is supposed to be the interesting one, i.e. it reveals that 

low spindle speed and water as the cutting fluid lead to reduced amplitude of vibration 

during the grinding operation. Similarly, low/moderate spindle speed and low depth of cut 

also cause reduced vibration. For G-ratio, three decision rules are also formulated. Spindle 

speed only appears in all these rules. It can be thus stated that when the spindle speed is 

equal to 2560 rpm or less than it, the corresponding values of G-ratio are low, falling 

between 0.02 and 0.06. In Rule 3, having strength of 233.33%, a spindle speed value of 

2850 rpm leads to higher G-ratio, in the range of 0.06-0.085. It is also interestingly 

observed that depth of cut and cutting fluid type do not affect G-ratio.        

When all the three responses are taken into consideration while formulating the 

corresponding decision rules, they become more complicated. Amongst the five generated 

rules, Rule 1 has the maximum strength of 233.33%, followed by Rule 4 (211.11%). It 

states that when the rotational speed of the grinding wheel (spindle speed) is set at its 

highest operating level of 3 (i.e. 2850 rpm), higher values for all the considered responses 
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are simultaneously achieved. Higher grinding wheel speed thus leads to poor machined 

surface with higher Ra values, higher amplitudes of vibration and higher G-ratios. But, Rule 

4 with the second maximum strength is supposed to be the most interesting one for the 

concerned production engineers, because it encompasses all the grinding parameters and 

responses. Based on this rule, it can be concluded that when the spindle speed is 2430 rpm, 

depth of cut is 0.04 mm, and a mixture of coolant and water is applied as the cutting fluid, 

low values of Ra and G-ratio along with high value of amplitude of vibration are observed. 

Thus, higher rotational speed of the grinding wheel always leads to higher G-ratio (grinding 

efficiency) with poor surface qualities of the machined components. Similarly, higher depth 

of cut causes higher vibration during the grinding operation. The application of coolant and 

water or ordinary water causes enhanced performance of the grinding operation. But, 

keeping in mind the additional cost of special purpose coolant, it may be advised to apply 

simple water as the cutting fluid while grinding low alloy steel work materials. Spindle 

speed plays the most significant role in controlling all the quality characteristics of the 

considered grinding process, followed by depth of cut and type of the cutting fluid. 

5. CONCLUSIONS 

In this paper, the RST, a machining learning algorithm of data mining, is employed to 

analyze the experimental data of a grinding process. Based on the generated rules, the 

effects of three grinding parameters, i.e. spindle speed, depth of cut and type of the 

cutting fluid on three different responses, i.e. average surface roughness value, amplitude 

of vibration and grinding ratio are studied. Using the calculated dependency indexes, the 

possibility of reduction of the initial experimental dataset is also explored. Depending on 

the type of the responses, they are subsequently grouped into two different clusters, i.e. 

„Low‟ and „High. It is observed from the decision rules developed for average surface 

roughness that low spindle speed leads to better surface roughness of the ground workpiece 

samples. On the contrary, higher spindle speed or depth of cut causes increased amplitude 

of vibration. Similarly, higher spindle speed leads to higher grinding ratio (grinding 

efficiency). The rules formulated while taking into consideration all the three responses 

demonstrate that at higher rotational speed of the grinding wheel, higher values for all the 

considered responses are achieved. Type of the cutting fluid does not influence attainment 

of low surface roughness and higher grinding efficiency; it only affects the vibration 

generated during the grinding operation. These rules developed based on the application of 

the RST are easy to comprehend and would guide the concerned production engineers in 

setting the input parameters of a grinding process so as achieve the desired quality 

characteristics of the ground components. 

It is observed that the classical RST approach can only process discrete data. However, 

in real time machining applications, most of the measured data are continuous. Hence, for 

its successful application, there is always an additional task to discretize the continuous 

response values with the help of a suitable clustering technique. On the other hand, the 

generalization ability of rough sets needs to be improved and the probability distribution of 

sample data requires to be further considered for its effective deployment. Moreover, in the 

RST approach, during data pre-processing, attribute reduction may often lead to over-fitting 

of a problem. 
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 With automation of manufacturing industries and availability of high speed data 

acquisition systems, the manufacturing domain is now flooded with huge volumes of 

experimental data which if mined, can lead to effective and efficient control of different 

machining processes. The „If-Then‟ decision rules generated using the  ST approach can 

be applied to any of the conventional and non-conventional machining processes to 

visualize the influences of their input parameters on the responses under consideration. As 

these rules are quite easy to apprehend, even by a non-technical end user, they can lead to 

manufacturing process control and optimization with the fulfillment of the primary 

objective of enhanced productivity with better quality of final products. 
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