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Abstract. In this paper, the Lyapunov exponent and moment Lyapunov exponents of two 

degrees-of-freedom linear systems subjected to white noise parametric excitation are 

investigated. The method of regular perturbation is used to determine the explicit asymptotic 

expressions for these exponents in the presence of small intensity noises. The Lyapunov 

exponent and moment Lyapunov exponents are important characteristics for determining 

both the almost-sure and the moment stability of a stochastic dynamic system. As an 

example, we study the almost-sure and moment stability of a thin-walled beam subjected to 

stochastic axial load and stochastically fluctuating end moments.  The validity of the 

approximate results for moment Lyapunov exponents is checked by numerical Monte Carlo 

simulation method for this stochastic system. 
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1. INTRODUCTION 

In recent years there has been considerable interest in the study of the dynamic 

stability of non-gyroscopic conservative elastic systems whose parameters fluctuate in a 

stochastic manner. To have a complete picture of the dynamic stability of a dynamic 

system, it is important to study both the almost-sure and the moment stability and to 

determine both the maximal Lyapunov exponent and the pth moment Lyapunov exponent. 

The maximal Lyapunov exponent is defined by 

 0

1
lim log ( ; )q
t

t q
t→

 = q  (1) 
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where 0( ; )t qq  is the solution process of a linear dynamic system. The almost-sure stability 

depends upon the sign of the maximal Lyapunov exponent which is an exponential growth 

rate of the solution of the randomly perturbed dynamic system. A negative sign of the 

maximal Lyapunov exponent implies the almost-sure stability whereas a non-negative value 

indicates instability. The exponential growth rate E [||q(t;q0, 0q ||
p
]  is provided by the moment 

Lyapunov exponent defined as 

 0

1
( ) lim log [ ( ; ) ]

p

q
t

p E t q
t→

 = q  (2) 

where E [ ] denotes the expectation. If q(p) < 0 then, by definition E [||q(t;q0, 0q ||
p
] → 0)  as 

t →  and this is referred to as the pth moment stability. Although the moment Lyapunov 

exponents are important in the study of the dynamic stability of the stochastic systems, the 

actual evaluations of the moment Lyapunov exponents are very difficult. 

Arnold et al. [1] constructed an approximation for the moment Lyapunov exponents, 

the asymptotic growth rate of the moments of the response of a two-dimensional linear 

system driven by real or white noise. A perturbation approach was used to obtain explicit 

expressions for these exponents in the presence of small intensity noises. Khasminskii 

and Moshchuk [2] obtained an asymptotic expansion of the moment Lyapunov exponents 

of a two-dimensional system under white noise parametric excitation in terms of the small 

fluctuation parameter , from which the stability index was obtained. Sri Namachchivaya et al. 

[3] used a perturbation approach to calculate the asymptotic growth rate of a stochastically 

coupled two-degrees-of-freedom system. The noise was assumed to be white and of small 

intensity in order to calculate the explicit asymptotic formulas for the maximum Lyapunov 

exponent. Sri Namachchivaya and Van Roessel [4] used a perturbation approach to obtain an 

approximation for the moment Lyapunov exponents of two coupled oscillators with 

commensurable frequencies driven by small intensity real noise with dissipation. The 

generator for the eigenvalue problem associated with the moment Lyapunov exponents was 

derived without any restriction on the size of pth moment. Kozić et al. [5] investigated the 

Lyapunov exponent and moment Lyapunov exponents of a dynamic system that could be 

described by Hill’s equation with frequency and damping coefficient fluctuated by white 

noise. The procedure employed in Khasminskii and Moshchuk [2] was applied to obtain an 

asymptotic expansion of the Lyapunov exponent and moment Lyapunov exponents of an 

oscillatory system under two white-noise parametric excitations in terms of the small 

fluctuation parameter. These results were used to obtain explicit expressions of an 

asymptotic expansion of the moment and almost sure stability boundaries of the simply 

supported beam which was subjected to the axial compressions and varying damping which 

were two random processes. In [6, 7], Kozić et al. investigated the Lyapunov exponent and 

moment Lyapunov exponents of two degrees-of-freedom linear systems subjected to white 

noise parametric excitation. In [6], almost-sure and moment stability of the flexural-torsion 

stability of a thin elastic beam subjected to a stochastically fluctuating follower force were 

studied. In [7], moment Lyapunov exponents and stability boundary of the double-beam 

system under stochastic compressive axial loading were obtained. In [9], Pavlović et al. 

investigated the dynamic stability of thin-walled beams subjected to combined action of 

stochastic axial loads and stochastically fluctuating end moments. By using the direct 

Lyapunov method, the authors obtained the almost-sure stochastic boundary and uniform 
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stochastic stability boundary as the function of characteristics of stochastic process and 

geometric and physical parameters.  

Deng et al. [12] investigated the Lyapunov exponent and moment Lyapunov exponents 

of flexural-torsional viscoelastic beam, under parametric excitation of white noise. The 

system of stochastic differential equations of motion is first decoupled by using the method 

of stochastic averaging for dynamic systems with small damping and weak excitations. The 

moment and almost-sure stability boundaries and critical excitation are obtained analytically 

which are confirmed by numerical simulation. Also, Deng in [13] studied the moment 

stochastic stability and almost-sure stochastic stability through the moment Lyapunov 

exponents and the largest Lyapunov exponent of flexural-torsional viscoelastic beam, under 

the parametric excitation of a real noise. 

Stochastic stability of a viscoelastic plate in supersonic flow as well typical example 

of a coupled non-gyroscopic system through Lyapunov exponent and moment Lyapunov 

exponents and are investigated by Deng et al. [14]. The excitation is modelled as a 

bounded noise process. By using the method of stochastic averaging, the equations of 

motion are decoupled into Itô differential equations, from which moment Lyapunov 

exponents are readily obtained. The Lyapunov exponents are obtained from the relation 

with moment Lyapunov exponents.  

The aim of this paper is to determine a weak noise expansion for the moment Lyapunov 

exponents of the four-dimensional stochastic system. The noise is assumed to be white noise 

of such small intensity that an asymptotic growth rate can be obtained. We apply the 

perturbation theoretical approach given in Khasminskii and Moshchuk [2] to obtain second-

order weak noise expansions of the moment Lyapunov exponents. The Lyapunov exponent is 

then obtained using the relationship between the moment Lyapunov exponents and the 

Lyapunov exponent. These results are applied to study the pth moment stability and almost-

sure stability of a thin-walled beam subjected to stochastic axial loads and stochastically 

fluctuating end moments. The motion of such an elastic system is governed by the partial 

differential equations in [9] by Pavlović et al. The approximate analytical results of the 

moment Lyapunov exponents are compared with the numerical values obtained by the Monte 

Carlo simulation approach for these exponents of a four-dimensional stochastic system. 

2. THEORETICAL FORMULATION 

Consider linear oscillatory systems described by equations of motion of the form 

 

2

1 1 1 1 1 11 1 1 12 2 2

2

2 2 2 2 2 21 1 1 22 2 2

2 ( ) ( ) 0,

2 ( ) ( ) 0,

q q q K t q K t q

q q q K t q K t q

+ +  −   −   =

+ +  −   −   =
 (3) 

where q1, q2 are generalized coordinates, 1, 2 are natural frequencies and 21, 22 

represent small viscous damping coefficients. The stochastic terms 
1( )t  and 

2 ( )t  

are white-noise processes with small intensity with zero mean and autocorrelation functions 

 
1 1

2 2

2

1 2 1 1 1 2 1 2 1

2

1 2 2 1 2 2 2 2 1

( , ) [ ( ) ( )] ( ),

( , ) [ ( ) ( )] ( ),

R t t E t t t t

R t t E t t t t

 

 

=   =   −

=   =   −
 (4) 



212 G. JANEVSKI, P. KOZIĆ, R. PAVLOVIĆ, S. POSAVLJAK  

 

where 1, 2 are the intensity of the random process 1(t) and 2(t), and ( ) is the Dirac 

delta.  

Using the transformation  

 1 1 1 1 2 2 3 2 2 4, , ,q x q x q x q x= =  = =   (5) 

and denoting 

 ij ij jp K=  , (i, j=1,2), (6) 

the above Eqs. (3) can be represented in the first-order form by a set of Stratonovich 

differential equations 

 
1 2 ( )  ( )d dt dt dw t dw t= + +  + 0 1 2X A X AX B X B X ,  (7) 

where X = (x1   x2    x3    x4)T is the state vector of the system, w1(t) and w2(t) are the 

standard Weiner processes and A0, A, B1 and B2 are constant 44 matrices  given by 

 

1

1 1

2

2 2

11 12

1

22 21

0 0 0 0 0 0 0

0 0 0 0 2 0 0
,     ,    

0 0 0 0 0 0 0

0 0 0 0 0 0 2

0 0 0 0 0 0 0 0

0 0 0 0 0 0
,    .

0 0 0 0 0 0 0 0

0 0 0 0 0 0

p p

p p

   
   
− − 
   = =
   
   

− −    

   
   
   = =
   
   
   

0

2

A A

B B

,  (8) 

Applying the transformation 

 

1 1 2 1 3 2 4 2

2 2 2 2 2

1 2 3 4

1 2

cos cos , cos sin , sin cos , sin sin ,

( ) ,

0 2 , 0 2 , 0 2,     ,

p p

x a x a x a x a

P a x x x x

p

=   = −   =   = −  

= = + + +

            −  

 (9) 

and employing Itô’s differential rule, yields the following set of Itô equations for the pth 

power of the norm of the response and phase variables 1 2,   ,      : 

  

* * *

1 11 1 12 2

* * *

2 21 1 22 2

* * *

1 1 3 31 1 32 2

* * *

2 2 4 41 1 42 2

( ) ( ),

( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ).

p
d a dt dw t dw t

d dt dw t dw t

d dt dw t dw t

d dt dw t dw t

=  +  + 

 =  +  + 

 =  +  +  + 

 =  +  +  + 

 (10) 

In the previous transformations, a represents the norm of the response, 1 and 2 are 

the angles of the first and second oscillators, respectively, and  describes the coupling or 

exchange of energy between the first and second oscillator 
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In the previous equation we have introduced the following markings 

 * 2 2 2 2

1 1 1 2 22 ( sin cos sin sin )pP = −   +   ,  * 2 2

2 1 1 2 2( sin sin )sin2 =   −     

 *

3 1 1sin 2 = −  ,  *

4 2 2sin2 = −  , * 2 2

11 11 1 22 2[ sin 2 cos sin 2 sin ]
2

pP
p p = −  +     

 *

21 11 1 22 2

1
[ sin 2 sin 2 ]sin 2

4
p p =  −   , * 2

31 11 1cosp = −  , * 2

41 22 2cosp = −  , (11) 

*

12 12 1 2 21 1 2[ sin cos cos sin ]sin 2
2

pP
p p = −   +    , 

* 2 2

22 12 1 2 21 1 2

1
[ sin cos sin cos sin cos ]

2
p p =   −    , 

*

32 12 1 2cos cosp tg = −   
, 

*

42 21 1 2cos cos cotp = −   
. 

The Itô version of Eqs.(10) have the following form 

 

1 11 1 12 2

2 21 1 22 2

1 1 3 31 1 32 2

2 2 4 41 1 42 2

( ) ( ),

( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ),

p
d a dt dw t dw t

d dt dw t dw t

d dt dw t dw t

d dt dw t dw t

=  +  + 

 =  +  + 

 =  +  +  + 

 =  +  +  + 

, (12) 

where i  are given in Appendix 1 and  *

ij ij =  , (i, j=1, 2, 3, 4).  

Following Wedig [11], we perform the linear stochastic transformation 

 1

1 2 1 2( , , ) , ( , , )S T P P T S−=    =    , (13) 

introducing the new norm process S by means of the scalar function T(,1,2) which is 

defined on the stationary phase processes 1, 2 and   

 

1 2 1 2

1 2 1 1 1 2 2 2

1 2

1 2

1 2 1 0 1 2

00 01 02 11 12 22

11 21 31 41 1

12 22 32 42 2

( ) (

) 

( ) ( )

( ) ( ) ,

dS P T T dt P T m T m T m T

m T m T m T m T m T m T dt

P T T T T dw t

P T T T T dw t

    

        

  

  

    =  + +   + + + +

     + + + + + + +

  +   +  +  +  +

  +   +  +  + 

, (14) 

where   

 

0 2 11 21 12 22 1 3 11 31 12 32 2 4 11 41 12 42

2 2

00 21 22 01 21 31 22 32 02 21 41 22 42

2 2 2 2

11 31 32 12 31 41 32 42 22 41 42

,   ,   ,

1
( ),   m ,   m ,   

2

1 1
( ),  m ,   m ( )  . 

2 2

m m m

m

m

=  +   +   =  +   +   =  +   +  

=  +  =   +   =   +  

=  +  =   +   =  + 

 (15) 
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If the transformation function T(,1,2) is bounded and non-singular, both processes 

P and S possess the same stability behavior. Therefore, transformation function T(,1,2) 

is chosen so that the drift term, of the Itô differential Eq. (15), does not depend on the 

phase processes 1, 2 and , so that 

 
1 2

1 2

1

11 21 31 41 1

1

12 22 32 42 2

( ) ( )

( )

( )

( ) .

dS p S dt S T T T T T dw t

S T T T T T dw t

−

  

−

  

  = +  +  +  +  +

  +  +  +  + 
 (16) 

By comparing Eqs. (14) and (16), it can be seen that such a transformation function 

1 2( , , )T     is given by the following equation 

 0 1 1 2 1 2[ ] ( , , ) ( ) ( , , ).L L pT T+    =      (17) 

In (17) L0 and L1  are the following first and second-order differential operators 

 

0 1 2

1 2

2 2 2 2 2 2

1 1 2 3 4 5 62 2 2

1 2 1 21 2

1 2 3

1 2

,

,

L

L a a a a a a

b b b c

 
=  +

 

     
= + + + + + + +

     

  
+ + + +

  

 (18) 

where 1a , 2a , 3a , 4a , 5a , 6a , 1b , 2b , 3b  and c  are given in Appendix 2. 

Eq. (17) defines an eigenvalue problem for a second-order differential operator of three 

independent variables, in which (p) is the eigenvalue and T(,1,2) the associated 

eigenfunction. From Eq. (16), the eigenvalue (p) is seen to be the Lyapunov exponent of the 

pth moment of system (7), i. e., (p) = x(t)(p). This approach was first applied by Wedig [11] to 

derive the eigenvalue problem for the moment Lyapunov exponent of a two-dimensional linear 

Itô stochastic system. In the following section, the method of regular perturbation is applied to 

the eigenvalue problem (17) to obtain a weak noise expansion of the moment Lyapunov 

exponent of a four-dimensional stochastic linear system. 

3. WEAK NOISE EXPANSION OF THE MOMENT LYAPUNOV EXPONENT 

Applying the method of regular perturbation, both the moment Lyapunov exponent 

(p) and the eigenfunction T(,1,2) are expanded in power series of ε as: 

 

2

0 1 2

2

1 2 0 1 2 1 1 2 2 1 2 1 2

( ) ( ) ( ) ( ) ( ) ,

( , , ) ( , , ) ( , , ) ( , , ) ( , , ) .

n

n

n

n

p p p p p

T T T T T

 =  +  +   + +   +

   =    +     +     + +     +
 (19) 

Substituting the perturbation series (19) into the eigenvalue problem (17) and equating 

terms of the equal powers of ε leads to the following equations 
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0

0 0 0 0

1

0 1 1 0 0 1 1 0

2

0 2 1 1 0 2 1 1 2 0

3

0 3 1 2 0 3 1 2 2 1 3 0

0 1 1 0 1 1 2 2 1 1 0

( ) ,

( ) ( ) ,

( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( )n

n n n n n n n

L T p T

L T L T p T p T

L T L T p T p T p T

L T L T p T p T p T p T

L T L T p T p T p T p T p T









 − − − −

→ = 

→ + =  +

→ + =  + +

→ + =  + + +

      

→ + =  + + + +  + ,

  (20) 

where each function 1 2( , , ) ,  0,1,2,i iT T i=    =  must be positive and periodic in the 

range 0 2    , 10 2     and 20 2    . 

3.1. Zeroth order perturbation 

The zeroth order perturbation equation is 0 0 0 0( )L T p T=   or 

 0 0
1 2 0 0

1 2

( )
T T

p T
 

 + = 
 

. (21) 

From the property of the moment Lyapunov exponent, it is known that 

 2

0 1 2(0) (0) (0) (0) (0) 0n

n =  + +  + +  = , (22) 

which results in (0) 0n =  for 0,  1,  2,  3,....n =  Since the eigenvalue problem (21) does 

not contain p, the eigenvalue 0 ( )p is independent of p. Hence, 0 (0) 0 =  leads to  

 0 ( ) 0p = .   (23) 

Now, partial differential Eqs. (21) have the form 

 0 0
1 2

1 2

0
T T 

 + =
 

. (24) 

Solution of Eq.(24) may be taken as   

  0 1 2 0( , , ) ( )T    =   ,  (25) 

where 0 ( )  is an unknown function of  which has yet to be determined.   

3.2. First order perturbation 

The first order perturbation equation is 

 0 1 1 0 1 0( )L T p T LT=  − .  (26) 

Since the homogeneous Eq. (24) has a non-trivial solution given by Eq. (25), for Eq. (26) 

to have a solution it is required, from the Fredholm alternative, that following is satisfied: 

 * *

0 1 0 1 0 1 0 0( , ) ( ( ) , ) 0L T T p T L T T=  − = . (27) 

In the previous equation, *

0 0 ( )T =  is an unknown solution of the associated adjoint 

differential equation of (24), and (f,g) denotes the inner product of functions f (,1,2) 

and g(,1,2) defined by 
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2 2 2

1 2 1 2 1 2

0 0 0

( , )    f( , , )g( , , )d d df g

  

=            . (28) 

Taking onto account (25), (26) and (28), the expression (27) has the form  

 

2 2 2

1 0 1 0 0 1 2

0 0 0

   ( ( ) ) ( ) d d d 0p L

  

  −       =   , (29) 

and will be satisfied if and only if 

 
2 2

1 0 1 0 1 2

0 0

  ( ( ) ) d d 0p L
 

  −    =  . (30) 

After the integration of the previous expression we have that 

 
2

0 0
0 1 1 1 0 1 02

( ) ( ) ( ) ( ) ( ) 0
d d

L A B C p
dd

 
 =  +  +   −  =


, (31) 

where  

 ( ) ( )
2 2 2 2

1 1 1 2 1 2 1 1 1 2 1 2

0 0 0 0

  ( , , ) d d ,    b ( , , ) d d  ,A a B
   

 =       =          

 
2 2

1 1 2 1 2

0 0

( )   ( , , ) d d .C c
 

 =        (32) 

Finally, 1A , 1B  and 1C  are 

 

2 2 2 2

1 11 22 12 21

2 2
2 212 21
1 2

2 2 2 2
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 (33) 
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Since the coefficients (33) of the Eq.(31) are periodic functions of , a series 

expansion of the function 
0
() may be taken in the form  

 
0

0

( ) cos2
N

k
k

K k
=

  =  . (34) 

Substituting (34) in (31), multiplying the resulting equation by cos 2k (k = 0, 1, 2 ...) and 

integrating with respect  from 0 to /2 leads to a set of 2N+1 homogenuos linear 

equations for the unknown coefficients K0, K1, K2...   

 
k1

N

0j

jjk K)p(KA =
=

,  (35)
 

where 

  ( )
2

0

cos(2 ) cos(2 )jkA L j k d



=    ,  k=0, 1, 2, 3, ....N. (36) 

When N tends to infinity, the solution (34) tends to the exact solution. The condition 

for system homogeneous linear equations (35) to have nontrivial solutions is that the 

determinant of system homogeneous linear equations (35) is equal to zero. The 

coefficients Ajk to order N=4 are presented in Appendix 3.  

In the case when N=0, we assume a solution (34) in the form 0() = K0. From conditions 

that A00 = 0, the moment Lyapunov exponent in the first perturbation is defined as  

 
2 2 2 2

1 1 2 11 22 12 21

(10 3 ) (6 )
( ) ( ) ( ) ( ).

2 128 64

p p p p p
p p p p p

+ +
 = −  + + + + +  (37) 

In the case when N=1, the solution (34) has the form 0 0 1( ) cos2K K  = +  , then 

moment Lyapunov exponent in the first perturbation is the solution of the equation 
2 (1) (1)

1 1 1 0 0d d +  + =  where coefficients (1)

0d and (1)

1d  are presented in Appendix 4. In 

the case when N=2, the solution (34) has the form 0 0 1 2( ) cos2 cos4K K K  = + +  , 

the moment Lyapunov exponent in the first perturbation is the solution of the equation 
3 (2) 2 (2) (2)

1 2 1 1 1 0 0d d d +  +  + =  where coefficients (2)

0d , (2)

1d and (2)

2d  are presented in 

Appendix 5. However, for N > 2, it is impossible to obtain the explicit expressions of  

1 ( )p  and the numerical results must be given, for N = 3 and 4.  

4. APPLICATION TO A THIN-WALLED BEAM SUBJECTED TO AXIAL LOADS AND END MOMENTS 

The purpose of this section is to present the general results of the above sections in 

the context of real engineering applications and show how these results can be applied to 

physical problems. To this end, we consider the flexural-torsional vibration stability of a 

homogeneous, isotropic, thin walled beam with two planes of symmetry. The beam is 

assumed to be loaded in the plane of greater bending rigidity by two equal couples and 

stochastic axial loads and stochastically fluctuating end moments (Fig. 1).  

The governing differential equations for the coupled flexural and torsional motion of 

the beam can be written as given by Pavlović et al. in [9] 
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 + − − + + = 

    

  (38) 

where U is the flexural displacement in the x-direction,  is the torsional displacement,  

is mass density, A is area of the cross-section of beam, Iy, Ip, IS are axial, polar and 

sectorial moments of inertia, J is Saint–Venant torsional constant, E is Young modulus of 

elasticity, G is shear modulus, U,  are viscous damping coefficients, T is time and Z is 

axial coordinate. 

 

Fig. 1 Geometry of a thin-walled beam system 

Using the following transformations 
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l s
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

= = = = =
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= = = =

 =   =  =
 

 (39)   

where l is the length of the beam, Fcr is Euler critical force, Mcr is critical buckling 

moment for the simply supported narrow rectangular beam, S is slenderness parameter, 

1 and 2 are reduced viscous damping coefficients, we get governing equations as  
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( )

2 4 2 2
2 2

12 4 2 2

2 2 2 4
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22 2 2 4

2 ( ) ( ) 0,

2 ( ) ( ) 0.

u u u u
sM t F T

tt z z z

u
s F t sM t e

Tt z z z

     
+  + +  +  =

   

       
+  −  − +  + =

   

 (40) 

Taking free warping displacement and zero angular displacements into account, 

boundary conditions for the simply supported beam are 

  

( ) ( )

( ) ( )

2 2

2 2

( ,0) ( ,1)

2 2

2 2

( ,0) ( ,1)

,0 ,1 0,

,0 ,1 0.

t t

t t

u u
u t u t

z z

t t
z z

 
= = = =

 

   
 =  = = =

 

  (41) 

Consider the shape function sin(z) which satisfies the boundary conditions for the 

first mode vibration, the displacement ( . )u t z  and twist ( , )t z  can be described by 

 1( , ) ( )sinu t z q t z=  ,  2( , ) ( )sint z q t z =  . (42) 

Substituting ( , )u t z  and ( , )t z  from (42) into the equations of motion (40) and 

employing Galerkin method unknown time functions can be expressed as 

 

2

1 1 1 1 1 11 1 12 2

2

2 2 2 2 2 21 1 22 2

2 ( ) ( ) 0,

2 ( ) ( ) 0.

q q q K F t q K M t q

q q q K M t q K F t q

+ +   − − =

+ +   − − =
 (43) 

If we are defined the expressions 

 2 4

1 =  , 2 4

2 ( )s e =  + ,  4

11 22K K= =  , 4

12 21 ,K K s= =   (44) 

and assume that the compressive stochastic axial force and stochastically fluctuating end 

moment are white-noise processes (4) with small intensity 

 
1( ) ( )F t t=  ,  

2( ) ( )M t t=  , (45) 

then Eq. (43) is reduced to Eq. (3). 

Using the above result for the moment Lyapunov exponent in the first-order perturbation, 

 2

1( ) ( ) ( )p p O =  +  , (46)  

with the definition of the moment stability (p) < 0, we determine analytically (the case 

where N = 0, 1(p) is shown with Eq.(37)) the pth moment stability boundary of the 

oscillatory system as  

 
4 2 2

1 2 1 2

1 10 3 6

64 32

s e p p
s

s e

+ + + + 
 +    +  

+  
.  (47) 
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It is known that the oscillatory system (40) is asymptotically stable only if the 

Lyapunov exponent 0  . Then expression  

 )(O 2

1 += , (48)  

is employed to determine the almost-sure stability boundary of the oscillatory system in 

the first-order perturbation 

 




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+ 2
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4

21 s
16

3

32

5

es

es1

. (49) 

In [9], Pavlović et al. by using the direct Lyapunov method, investigated the almost 

sure asymptotic stability boundary of an oscillatory system as the function of stochastic 

process, damping coefficient and geometric and physical parameters of the beam. According 

to the authors, the condition for almost sure stochastic stability may be expressed by the 

following expression 

  8 2 2 2 4 2 2
1 2 1 2 1 2 1 2( ) 2 ( )[ ( )] 4 ( ) 0s s s e s e  +  −   +   + + +   +  .  (50) 

For the sake of simplicity in the comparison of results, in the following we assume 

that two viscous damping coefficients are equal 

 == 21 , (51) 

For this case, we determine the almost-sure stability boundary as 
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3

, (52) 

and the pth moment stability boundary of the oscillatory system in the first-order 

perturbation as 

 
4

2 2
1 2

1
[(10 3 ) 2(6 ) ]

128

s e
p p s

s e

 + +
  +  + + 

+
.  (53) 

Starting from Eq. (50), derived by Pavlović et al. [9], the almost sure stability 

boundary can be determined in the form 

 
4

2 2
1 2( )

2
s


   +  .  (54) 

With respect to standard I-section we can approximately take that ratios h / b  2, 

b / 1  11,  / 1  1.5, where h is depth, b is width,  is thickness of the flanges and 1 is 

thickness of the rib of I-section. These ratios give us s  0.01928(l/h)2 and e  1.176. For the 

narrow rectangular cross section, according to assumption /h < 0.1, for thin-walled cross 

sections s  1.88(l/h)2 and e  0, which is obtained using the approximation 1 + (/h)2  1.  
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a) I-section    b) Narrow rectangular cross section 

Fig. 2. Stability regions for almost-sure (a-s) and pth moment stability for 0.1 =  

Almost-sure stability boundary and pth moment stability boundary in the first-order 

perturbation for I-section are given in Fig. 2a, and for narrow rectangular cross section in 

Fig. 2b. It is evident that stability regions in the present study are higher compared to the 

results obtained by Pavlović et al. [9]. Also, the moment stability boundaries (53) are 

more conservative than the almost-sure boundary (52). It is evident that end moment 

variances are about ten times higher for I-section than for narrow rectangular section, 

when stochastic axial force vary only a little.  

5. NUMERICAL DETERMINATION OF THE PTH MOMENT LYAPUNOV EXPONENT 

Numerical determination of the pth moment Lyapunov exponent is important in 

assessing the validity and the ranges of applicability of the approximate analytical results. 

In many engineering applications, the amplitudes of noise excitations are not small so 

that the approximate analytical methods such as the method of perturbation or the method 

of stochastic averaging cannot be applied. Therefore, numerical approaches have to be 

employed to evaluate the moment Lyapunov exponents. The numerical approach is based 

on expanding the exact solution of the system of Itô stochastic differential equations in 

powers of the time increment h and the small parameter  as proposed in Milstein and 

Tret’Yakov [8]. The state vector of the system (7) is to be rewritten as a system of Itô 

stochastic differential equations with small noise in the form 

 

1 1 2

2 1 1 1 2 11 1 1 12 3 2

3 2 4

4 2 3 2 4 22 3 1 21 1 2

,

[ 2 ] ( ) ( ),

,

[ 2 ] ( ) ( ).

dx x dt

dx x x dt p x dw t p x dw t

dx x dt

dx x x dt p x dw t p x dw t

= 

= − −  +  + + 

= 

= − −  +  + + 

  (55) 

For the numerical solutions of the stochastic differential equations, the Runge-Kutta 

approximation may be applied, with error R = O(h4 + 4h). The interval discretization is 

[ 0t , T]: { kt : k=0,1,2,3, ....M; 0t < 1t < 2t .........< Mt =T} and the time increment is h = tj+1 − tj. 
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The following Runge-Kutta method used to obtain the (k+1)th iteration of the state vector 

X = (x1,x2,x3,x4)  
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 (56) 
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Random variables i  and i  (i=1,2) are simulated as  
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( 1) ( 1)
2

i iP P = − =  = = , 
1 1 1

212 12
i iP P
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. (57) 
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Having obtained L samples of the solutions of the stochastic differential equations 

(56), the pth moment can be determined as follows  

 1 1
1

1
( ) ( )

L pp

k j k
j

E X t X t
L

+ +
=

  =
   , 1 1 1( ) [ ( )] [ ( )]T

j k j k j kX t X t X t+ + += . (58) 

Using the Monte-Carlo technique by Xie [10], we numerically calculate the pth 

moment Lyapunov exponent for all values of p of interest as  

 
1

( ) log ( )
p

p E X T
T

  =
 

. (59) 

6. CONCLUSIONS 

In this paper, the moment Lyapunov exponents of a thin-walled beam subjected to 

stochastic axial loads and stochastically fluctuating end moments under both white noises 

parametric excitations are studied. The method of regular perturbation is applied to obtain 

a weak noise expansion of the moment Lyapunov exponent in terms of the small 

fluctuation parameter. The weak noise expansion of the Lyapunov exponent is also 

obtained. The slope of the moment Lyapunov exponent curve at p = 0 is the Lyapunov 

exponent. When the Lyapunov exponent is negative, system (43) is stable with 

probability 1, otherwise it is unstable. For the purpose of illustration, in the numerical 

study we considered set system parameters 1 = 2 =  = 1,  = 0.1, L = 4000, h = 0.0005, 

M = 10000 and x1(0) = x2(0) = x3(0) = 1/2. 

Typical results of the moment Lyapunov exponents (p) for system (43) given by Eq. 

(46) in the first perturbation are shown in Fig. 3 for I-section and the noise intensity 

1 = 0.1 and 2 = 0.15. The accuracy of the approximate analytical results is validated 

and assessed by comparing them to the numerical results. The Monte Carlo simulation 

approach is usually more versatile, especially when the noise excitations cannot be 

described in such a form that can be treated easily using analytical tools. From the 

Central Limit Theorem, it is well known that the estimated pth moment Lyapunov 

exponent is a random number, with the mean being the true value of the pth moment 

Lyapunov exponent and standard deviation equal to np / L , where np is the sample 

standard deviation determined from L samples. It is evident that the analytical result 

agrees very well with the numerical results, even for N = 0 when the function 
0
() does 

not depend on  and assumes the form 0() = K0. 

The moment Lyapunov exponents (p) in the first perturbation for narrow rectangular 

cross section and the noise intensity (1 = 0.15 and 2 = 0.01 are shown in Fig. 4. Unlike 

the previous example, it is observed that the discrepancies between the approximate 

analytical and numerical results decrease for larger number N of series (34). Further 

increase of N number of members does not make sense, because the curves merge into one. 
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Fig. 3 Moment Lyapunov exponent )p(  for I-section (1 = 0.1, 2 = 0.15) 

 
Fig. 4 Moment Lyapunov exponent )p(  for narrow rectangular cross section  

(1 = 0.15, 2 = 0.01) 

If we consider the influence of cross-sectional area of stability boundary, generally 

speaking, the narrow rectangular cross section has smaller stability regions than the I-

section. As for the influence of intensity of stochastic force, the end moment variances 

are about ten times higher for I-section than for narrow rectangular section, while the 

difference in axial force variances is small. 
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