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Abstract. In the present work, multi-response optimization of electro-discharge machining 

(EDM) process is carried out based on an experimental analysis of machining superalloy 

Inconel-718. The study aims at optimizing and determining an optimal set of process 

variables, namely discharge current (  ), pulse-on duration (   ) and dielectric fluid-

pressure (  ) for achieving optimal machining performance in EDM. Nine independent 

experiments based on L9 orthogonal array are carried out by using tungsten as the 

electrode. The productivity performance of the EDM process is measured in terms of 

material removal rate (MRR) and its cost parameter is measured in terms of tool wear 

rate (TWR) and electrode wear rate (EWR). The TOPSIS is used in conjunction with five 

different criterion weight allocation strategies— (namely, mean weight (MW), standard 

deviation (SDV), entropy, analytic hierarchy process (AHP) and Fuzzy). While MW, SDV 

and entropy are based on the objective evaluation of the decision-maker (DM), the AHP 

can model the DM’s subjective evaluation. On the other hand, the uncertainty in the DM’s 

evaluation is analyzed by using the fuzzy weighing approach.  
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1. INTRODUCTION 

Over the past two decades, an increasing demand for quality finishing and intricate 

shapes of high strength materials has led to global interest in non-traditional machining. 

Electrical discharge machining (EDM), one of the popular non-traditional machining 

approaches, is at the forefront and perhaps most robust in modern-day machining technology 

[1]. It is widely used in industries for cutting intricate shapes, grooving patterns, micro-

holes, boring, craters in alloys and superalloys like Inconel, haste alloy, etc. Unlike the 

traditional machining approaches, EDM is a non-contact metal removal process that works 

on the principle of thermo-electrical erosion which is controlled by high-frequency pulses 

generated in a dielectric medium. It has a unique ability to eliminate mechanical stresses, 

chatter and vibration issues without being in contact with the working material. In general 

operation, it develops a significant potential difference between an electrode (tool) and the 

workpiece, resulting in melting, vaporization and removal of work material debris [2]. 

EDM is advanced machining; hence it is highly preferred for materials difficult to cut 

like superalloys. Though a significant amount of work has been carried out on machining 

of superalloys with MCDM approaches in EDM and Wire-EDM, optimization analysis 

related to its machining efficiency with different electrodes and dielectric has not been 

adequately explored. Inconel-718, one of the toughest materials is a Ni-based superalloy 

with a chemical composition of C0.8%, Mn0.35%, Ni54%, Cr20%, Ti0.75%, and Fe [3, 

4]. It is extensively used in making gas turbine blades, jet engine parts, ballistic missiles 

and automotive applications. Its ability to retain the same texture and hardness throughout 

various temperatures makes it suitable for robust engineering structures. Despite being rich 

in carbides, abrasive contents and high resistance properties, Inconel-718 displays sparse 

heat dissipation and shows poor machinability, resulting in blur formation and rough 

surface finish while machining in EDM. This can be attributed to poor thermal conductivity 

and rapid work-hardening of Inconel. These challenges make it extremely hard to machine 

even in EDM and thus raises concern regarding the usage of a proper electrode, dielectric 

as well as optimized process parameters. This is where multi-criteria decision-making 

(MCDM) approaches come handy.  

Several researchers over the past few years have tested different materials for tools 

and dielectrics for EDM operations. While a number of them have made use of metaheuristic 

approaches like genetic algorithm (GA), particle swarm optimization (PSO) etc., others 

have made use of MCDM approaches like TOPSIS (technique for order performance by 

similarity to ideal solution), PSI (preferential selection index), and WSM (weighted-sum 

method) in order to improve EDM response parameters. Mohanty et al. researched Inconel 

781 using copper, graphite and brass tools in EDM. In their study, they observed that the tool 

material, discharge current and pulse on-time affect   machinability of Inconel on a wide 

range. Further, they showed experimentally that MRR increases monotonically while using a 

graphite tool followed by copper and brass [5]. Lin et al. investigated the effect of tungsten 

carbide tool on process parameter optimization of Inconel 718 using grey–relation and grey-

Taguchi MCDM technique [6]. Kumar et al. studied the effect of brass wire EDM on Inconel 

718 using Taguchi L27 with a multi attributed simulated annealing (SA) algorithm. They 

found that pulse-on time and gap voltage have a more considerable influence on kerf and 

MRR of material. Vikas et al. [7] studied the MCDM methods to optimize process parameters 

of Inconel-718 using the Cu-Cadmium tool in EDM. They applied Taguchi L9 to the 

design variable dataset and used TOPSIS and PROMETHEE to compare the responses 
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based on ranking. Rahul et al. [8] carried out a research study to determine the appropriate 

setting of process parameters like gap voltage, discharge current, and flushing pressure 

for optimal machining of Inconel 718 in EDM. They used Taguchi L25 orthogonal array 

with PCA-TOPSIS to measure performance characteristics, i.e., MRR, EWR, surface 

roughness, SCD and WLT. They found that the peak current plays the most significant role 

while the flushing parameter is of least interest in machining optimization. Huang and Liao 

[9] performed an experimental study in order to optimize machining parameters of wire-

EDM using grey relation and statistical analysis. Using Taguchi L18 orthogonal array, they 

found that the feed rate has a significant effect on MRR while the gap width and surface 

roughness were influenced by pulse on-time. Joy et al. [10] performed process parameter 

optimization using Taguchi L9 and PROMETHEE approach for Inconel 718 in EDM. 

MCDM method was found to be successful in the combined optimization of MRR & TWR. 

Singaravel et al. [11] performed the turning process optimization of EN25 steel using 

Taguchi and TOPSIS MCDM approach. Chakraborty and Das [12] used a multivariate 

quality loss function approach to optimize several non-traditional machining processes. 

They also used a superiority and inferiority ranking method to identify the best parametric 

combination of a green EDM process [13]. Chakraborty et al.[14] used TOPSIS to optimize 

EDM and WEDM process of Inconel 718 machining.  

Farshid [15] carried out an experimental study on Inconel 718 in EDM and used an 

artificial neural network (ANN) in conjunction with GA to predict machining conditions 

and optimize the EDM process. He found that MRR is more influenced by the process 

conditions as compared to surface roughness. Both current and pulse on-time are effective 

for MRR enhancement but the gap voltage is highly influential for MRR. Implementation 

of ANN-NSGA (artificial neural network-non-sorting genetic algorithm) can efficiently 

optimize the process conditions. Mandeep and Hari [16] experimentally studied machining of 

Inconel X-750 using Wire-EDM. Taguchi and grey relation methods were used to optimize 

the process variables.  

Though the above literature survey shows that a significant amount and a diverse 

quality of work have been done so far in order to optimize the process parameters for 

Inconel-718 with MCDM, considerable lacuna still remains.  

 Relatively very few studies have been conducted with Shannon entropy distribution 

and improved-AHP with TOPSIS for predicting accurate results. 

 No comparative study on the application of various subjective and objective 

weights to experimental data is seen. 

 Very few papers on the comparative assessment of the ranking performance of 

TOPSIS on the application of fuzzy weights and non-fuzzy weights are seen.  

Therefore, in this paper, an attempt is made to determine an optimal combination of 

process variables (namely, discharge current, pulse on-time, and dielectric effect) that would 

effectively increase the MRR while decreasing the TWR and EWR. TOPSIS as a widely 

known and preferred MCDM approach is used in this research as it uniquely converts multiple 

responses into a single performance criterion at a low computational cost. Though the 

conventional TOPSIS is reliable and easy to implement, it is susceptible to uncertainty and 

personal influences. Entropy and AHP weights are competent in improving the TOPSIS 

performance through decision/weight matrix via discrete probability distribution and pairwise 

relative comparison matrix, respectively. These weighted distributions avoid biasing at each 

level, i.e. experimental/personal and converge the data with consistency and a high degree of 

accuracy when combined with general TOPSIS steps. This research covers two crucial 
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objectives— (1) experimental evaluation of suitable process parameters using an L9 

orthogonal array with performance measures being MRR (higher the better), TWR (lower the 

better) and EWR (lower the better), (2) comparison of traditionally used TOPSIS (i.e. MW-

TOPSIS) with SDV-TOPSIS, AHP-TOPSIS, entropy-TOPSIS and fuzzy-TOPSIS. 

2. MATERIALS AND METHODS  

2.1. Experimental details 

In this research study, Inconel 718 superalloy of square cross-section (100mm×100mm 

×4mm) as shown in Fig.1a was used as the work material for machining in a die-sinking 

EDM (Sparkonix MOS, 35A, ZNC) shown in Fig.1b. The mechanical strength and 

chemical composition of Inconel 718 superalloy can be retrieved from [8]. A cylindrical 

pure tungsten electrode (tool of diameter 2 mm and length 4 cm) as shown in Fig.1c and 

EDM oil (dielectric medium) of density 0.764 were used to perform the procedure. The 

experimental conditions with process parameter levels, i.e., the input responses for 

controlled operation are depicted in Table 1 with a duty cycle of 50%. 

 

Fig. 1 (a) Inconel 718 workpiece (b) Tungsten tool (c) Machining of Inconel with Tungsten 

tool in EDM oil 

Table 1 Process parameters and their levels 

Process parameter Units Level 1 Level 2 Level 3 

Pulse-on time    50 (A1) 100 (A2) 200 (A3) 

Flushing Pressure      ⁄  0.3 (B1) 0.4 (B2) 0.5 (B3) 

Discharge current   18 (C1) 20 (C2) 22 (C3) 

The experimental design was created using Taguchi L9 mixed orthogonal array with 

equal weight distribution at each level. The factor selection and their levels were developed 

based on pilot tests and literature surveys. The set of trials were designed and executed on 

the 3×3 level settings depicted in Table 2 on Inconel 718 workpiece and tungsten electrode 

in EDM. The working configuration for tool and job piece was initially positioned at the 

origin, and the machining duration for each trial was set for 14 minutes and 1.5 mm depth. 

The performance measurement of each run was carried out by measuring MRR (    
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   ) as per eq. (1), TWR (g) and EWR (%) as per eq. (2). The weight losses of the tool and 

material were measured using an electronic weighing balance. 

Table 2 Experimental values of MRR, TWR and EWR 

Exp.  

No. 

Pulse-on  

time 

(  ) 

Flushing 

Pressure 

(     ⁄ ) 

Discharge 

Current ( ) 

Parameter  

combinational  

MRR 

(       ) 

TWR 

(       ) 
EWR 

1 50 0.3 18 A1B1C1 0.07597 0.01192 0.29487 

2 100 0.4 18 A2B2C1 0.1225 0.0121015 0.23195 

3 200 0.5 18 A3B3C1 0.11189 0.014906 0.28475 

4 50 0.4 20 A1B2C2 0.14257 0.01819 0.29984 

5 100 0.5 20 A2B3C2 0.19825 0.02149 0.25458 

6 200 0.3 20 A3B1C2 0.1988661 0.023233 0.27438 

7 50 0.5 22 A1B3C3 0.125326 0.00986166 0.18481 

8 100 0.3 22 A2B1C3 0.200095 0.025867 0.30361 

9 200 0.4 22 A3B2C3 0.2088095 0.0150057 0.16595 

2.2. Multi-criteria decision-making by TOPSIS 

TOPSIS is a robust and widely accepted MCDM technique in operation research and 

production engineering. In this method, the best alternatives are searched based on the 

closeness coefficient, i.e. the distances from the ideal best and ideal worst solution. The 

basic idea behind the method is to evaluate the alternatives on the Euclidian distance 

scale, so that the least span from the ideal best and farthest from the ideal worst solution 

is achieved. The alternatives are then ordered based on their rank. The steps for the 

TOPSIS approach are as follows— 

Step 1:  Decision matrix design and assumption of the weight matrix. 

Let       be a decision matrix, where     . 

   [

          
          
    
          

] (4) 

Weight vector may be expressed as   ,     -, where ∑ (     ) 
     . 

The strategies regarding the determination of the weight vector are discussed in the 

subsequent section.  

Step 2: Construction of normalized decision matrix     of each criterion using Eq. (5),    

     
   

√∑    
  

   

 (5) 

Step 3: Determination of weighted normalized matrix using eq.(6), 

           for   ,   - and    ,   - (6) 

Step 4:  Estimation of the ideal positive (best) and ideal negative (worst) solutions using 

Eqs.(7) and (8), respectively. 
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where B is a vector of benefit function and C is the vector of the cost function, for 

   ⌈   ⌉ and   ⌈   ⌉. 
Step 5: Determination of the separation measurement and relative closeness coefficient. 

In the TOPSIS, the difference of each response from ideal positive (best) solution is 

given by Eq. (9).  

   
  √∑ (      

 ) 
 

   
 (9) 

for    ,   - and     ,   -. 
Similarly, the difference between each response from the ideal negative (worst) 

solution is given by Eq. (10). 

   
  √∑ (      

 ) 
 

   
 (10) 

for    ,   - and    ,   - 
Corresponding closeness coefficient (   ) of the ith alternative is calculated using: 

     
  
 

  
     

  (11) 

where         ,    ,   - 
Step 6: The final step is to rank the alternatives in decreasing order of closeness 

coefficient value.  

2.3. Weight allocation without considering uncertainty 

2.3.1. Mean weight method 

This method is based on the principle of equal weight distribution to all output responses. 

Equal weights are assigned in this approach to give equal importance to each parameter while 

evaluating the influence of each parameter on selecting an optimal set for machining. For the 

current three criteria (MRR, TWR and EWR) EDM optimal process parameter selection 

problem, the weight vector is expressed as   ,                  -. Henceforth, 

in this study, for ease of reference, the solutions from these weights applied to TOPSIS are 

called as MW-TOPSIS. 

2.3.2. Standard Deviation (SDV) method 

Standard deviation constructs an unbiased and unprejudiced assignment of weights. It 

significantly improves the MCDM approach and lessens the personal assigned weight stress 

as felt in general-TOPSIS. The SDV weights are calculated through the following equations. 

First, in order to change various scales of the process parameters and normalize them, Eq. (12) 

is used. 
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    (  )       ( )  
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      √
∑ (      )

  
   

 
  (13) 

where    is the average of the values for the ith measure, where        . 

The weight vector is given by eq. (14) as, 

     
    

∑     
 
   

  (14) 

For the current problem, the SDV weight vector is   ,                  - 
and henceforth, the solutions from these weights applied to TOPSIS are called SDV-

TOPSIS. 

2.3.3. Entropy method 

Entropy-TOPSIS is a practical and quick approach to predict the best alternative from 

all responses. TOPSIS combined with entropy weights remove the subjective bias and 

uses objective decision to derive suitable weight vectors in order to compute the rank of 

feasible alternatives. The entropy weight function is assumed to be based on the discrete 

probability distribution. 

    
  

  ( )
∑      (   )
 
     (15) 

Degree of diversity (d) possessed by each criterion is evaluated as, 

         ,          (16) 

And the weight objective for each criterion is given by  

     
  

∑   
 
   

 (17) 

For the current problem, the entropy weight vector is   ,                  - 
and henceforth, in this article, the solutions from these weights applied to TOPSIS are called 

entropy-TOPSIS. 

Table 3 The preference weight distribution based on Saaty nine-point scale 

Scale for     Influence Account for 

1 Equal influence Equally significant 

3 Weak influence Moderately better than other 

5 Strong influence One has a strong influence over other 

7 Very Strong influence One has a very strong influence over other 

9 Absolute influence One has absolute influence over other 

2.3.4. AHP method 

Analytic hierarchy process (AHP) is known for its outstanding analytical style of 

solving and predicting convoluted decision-making at different levels of hierarchy or 

neural system. An improved-AHP can set as many levels of neural/hierarchy and use both 
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objective and subjective influence on the neural decision. In this method for predicting 

weight vector, a pairwise comparison matrix is developed via a scale of the relative 

importance of attributes and the judgments based on the Saaty AHP& RI index given in 

Table 3. The preference weights based on Saaty nine-point scale are distributed according 

to their influence. The AHP weight estimation is based on the following, 

     [

      
   
     

]  [
   
   
       

]  (18) 

where         and  {
    

 

   
         

                
 

Normalized weight   is calculated by normalizing the geometric mean of the 

comparison matrix as, 

    
(∏    
 
   )

 
 

∑ (∏    
 
   )

 
  

   

  (19) 

where     ,   -. 
The AHP weights for the current problem are computed as 

  ,                  -. 

The next step is to estimate consistency index (  ), consistency ratio (  ), and Eigen-

value. A vector   is constructed through the product of pairwise comparison matrix and 

normalized weighted vector for the significance of alternatives. 

   ,  -         , where    ,   -  (20) 

For maximum Eigen-value ( ) of  , 

   
∑   
 
   

 
  (21) 

where    
  

  
         ,   - 

    
   

   
  and     

  

  
  (22) 

where     and      .    is determined for different size matrixes, and its value is 

0.58 for a 3×3 matrix.  

2.4. Weight allocation under uncertainty by Fuzzification 

In the classical set theory, if a classical set of objects (say  ), contains some generic 

elements (say  ), then the belongingness of   to   is expressed in terms of membership 

function   ( ). 

   ( )  {
    
    

  (23) 

Thus, in the classical set, an element has only two options— either to belong or not to 

belong to the set. However, not necessarily all real-life situations can be classified in such 

a bivalent manner. Almost all group decision-making tasks are affected by uncertainty; 

thereby expressing them in terms of classical sets is not always possible.  
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Zadeh introduced the fuzzy set theory, where partial membership in sets is possible. The 

fuzzy set theory uses membership functions to permit the gradual assessment of element 

membership in a set. Thus, a fuzzy set   in   may be represented as [17], 

   *    ( )+      (24) 

where   ( )    ,   - is the membership function of A and   ( ) is the degree of 

membership of   in A.   ( ) can take any value between ,   -, capturing partial 

membership of   in fuzzy set  . 

According to Madi et al. [17] ―A fuzzy number M is a convex normal fuzzy set M of 

the real line R such that [18]: There exists exactly one      with   (  )    (   is 

called mean value of M) and   ( ) is piecewise continuous.‖  

Among various fuzzy numbers like triangular fuzzy number (TFN), trapezoidal fuzzy 

number, bell-shaped fuzzy number, etc., TFN is the most commonly used due to its 

computational simplicity and intuitiveness. TFN is a triplet of three real numbers (     ) 

(see Fig.  2a).  

 

Fig.  2 (a) A typical triangular fuzzy number (b) Linguistic scale selected for the current work 

Table 4 Linguistic variables for the importance weight of each output (TFN) 

Importance Symbol Fuzzy Weight 

Extremely low EL (0, 0, 0.1) 

Very low VL (0, 0.1, 0.3) 

Low L (0.1, 0.3, 0.5) 

Medium M (0.3, 0.5, 0.7) 

High H (0.5, 0.7, 0.9) 

Very high VH (0.7, 0.9, 1) 

Extremely high EH (0.9, 1, 1) 

As seen in Fig.  2,   and   represent the smallest and the largest values;   is the mode 

or core of the TFN. The range expressed by the TFN i.e. (   ) is called support. The 

membership function of the triangular fuzzy number can be expressed as, 
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  (25) 

If say,  ̃  (        ) and  ̃  (        ) are two triangular fuzzy numbers, then 

the distance between two fuzzy numbers is calculated using the vertex method [19]. 

  ( ̃  ̃)  √
 

 
,(     )

  (     )
  (     )

 -  (26) 

Linguistic variables are adjectives attributed to the parameters or alternatives. The 

prime advantage of linguistic variables is that they are expressed in natural language. 

This makes it easier to incorporate the inherent uncertainties associated with decision-

making processes. In any linguistic scale, linguistic variables are represented by a set of 

corresponding fuzzy numbers. The linguistic scale selected for the current work is shown 

in Fig. 2b. The fuzzy linguistic terms and their corresponding TFNs, as well as TFN supports, 

are presented in Table 4. In this work, uneven supports are used so that more significance is 

given to moderate attitudes. Many researchers argue that such uneven supports stimulate 

decision-makers to evaluate their decisions more carefully [20].      

For any MCDM problem involving   criteria and   experts (decision-makers), the fuzzy 

significance coefficients or weights (  ̃             ) are calculated as 

       
 
{   

 } 

     
∑    

  
   

 
  (27) 

       
 
{   

 } 

where j = 1, …, n are criteria and k=1, …, k are decision-makers.    

Table 5 Ratings given to the three criteria by decision-makers 

Response DM1 DM2 DM3 DM4 DM5 DM6 DM7 

MRR VH H EH EH M H H 

TWR H H VH M VH H VH 

EWR M M H H M M L 

Table 6 Aggregated fuzzy weights of the output responses 

Output response Aggregated fuzzy weight 

MRR (0.6143, 0.7857, 0.9143) 

TWR (0.5571, 0.7571, 0.9143) 

EWR (0.3286, 0.5286, 0.7286) 
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The various steps to be followed during the fuzzy-TOPSIS are as follows,  

Step 1: Collect the subjective evaluations of the decision-maker on the importance of 

weights. The subjective evaluations of the decision-makers for the current work are 

presented in Table 5.   

Step 2: Calculate the fuzzy significance coefficients or weights based on the decision-

maker’s subjective evaluations by using Table 6 and Eq. (27). 

Step 3: Form the decision matrix as listed in Eq. (4) and normalized decision matrix 

listed in Eq. (5). 

Step 4: Form a fuzzy weighted decision matrix by multiplying the normalized 

decision matrix listed in Eq. (5) with corresponding fuzzy weights as per Eq. (27). 

  ̃  

[
 
 
 
 ̃   ̃    ̃  
 ̃   ̃    ̃  
    
 ̃   ̃    ̃  ]

 
 
 

  (28) 

where,  ̃     (                    )                           

Step 5: The coordinates for fuzzy positive ideal solution   
 are calculated as 

  ̃ 
  {

    ̃       

    ̃       
              (29) 

The coordinates for fuzzy negative ideal solution  
 are calculated as 

  ̃ 
  {

    ̃       

    ̃       
              (30) 

where         are the index set of beneficial and cost (non-beneficial) criteria, respectively.  

Step 6: The Euclidean distance of each alternative from fuzzy positive and negative 

ideal value is calculated as 

   
  ∑  ( ̃    ̃ 

 ) 
                    (31) 

   
  ∑  ( ̃    ̃ 

 ) 
                    (32) 

where  (   ) represents the distance between two fuzzy numbers calculated by using Eq. 

(26) and depicted in Table 7. 

Step 7: Closeness coefficient     of the alternatives are calculated using Eq. (11) and 

ranked as per descending order in Table 8. 
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Table 7 Fuzzy positive and negative ideal value 

Output  A+ A- 

MRR (0.2664, 0.3407, 0.3965) (0.097, 0.124, 0.1443) 

TWR (0.1036, 0.1408, 0.17) (0.271, 0.3683, 0.4447) 

EWR (0.0701, 0.1127, 0.1554) (0.1282, 0.2062, 0.2842) 

3. RESULTS AND DISCUSSION  

3.1. Effect of process parameters on MRR 

The main effect plot of MRR for various process parameters is shown in Fig.  3a. It is 

seen that the process variables have a significant effect on MRR. The MRR monotonically 

increases when the current is increased from 18A to 20A, but slightly decreases when the 

peak current reaches 22A. For pulse-on time, MRR shows a similar trend as seen in the case 

of the current. It rises when the pulse-on time is increased and then gets saturated depicting 

no further pulse-on time effect on MRR. In contrast, the flushing pressure is seen as having 

less influence on MRR compared to discharge current and pulse-on time. The MRR curve 

remains unaltered when the flushing pressure changes from 0.3     ⁄ to 0.4     ⁄ , but 

MRR drastically drops when the flushing pressure is increased to 0.5     ⁄ . 

3.2. Effect of process parameters on TWR 

The main effect plot of TWR for various process parameters is shown in Fig.  3b. The 

lower, the better is preferred for TWR. It is seen that the process variables have again a 

non-linear effect on TWR as in MRR. The TWR increases when the current is increased 

from 18 to 20A but drastically drops when the peak current reaches about 22A, signifying 

less tool wear at high current. Regarding pulse-on time, TWR shows a similar trend as in 

MRR; it increases rapidly up to 100   but drastically drops at 200  . The flushing 

pressure, in this case, seems to have a significant influence in comparison to MRR. At 

0.3     ⁄ pressure, TWR is maximum but it drastically reduces at 0.4      ⁄ whereas, 

at the 0.5kg/cm2, it shows a slight increment in TWR. 

Table 8 Separation measures, closeness coefficients and ranking order of alternatives 

Exp. No. 

Triangular membership function 

di- di+ Ci Rank 

1 0.2052 0.3355 0.3795 8 

2 0.3225 0.2182 0.5965 3 

3 0.2280 0.3127 0.4217 6 

4 0.2202 0.3205 0.4073 7 

5 0.2958 0.2449 0.5470 4 

6 0.2585 0.2822 0.4781 5 

7 0.3919 0.1488 0.7248 2 

8 0.2013 0.3394 0.3723 9 

9 0.4682 0.0725 0.8659 1 
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Fig.  3 Effect of the process parameters on (a) MRR, (b) TWR, (c) EWR 

3.3. Effect of process parameters on EWR 

The main effect plot of EWR for various process parameters is shown in Fig. 3c. the 

lower, the better is also preferred for EWR. It is seen that the process variables have again a 

non-linear effect on EWR as in MRR and Writhe EWR increases slightly when the current 
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is increased from 18 to 20A but it sharply drops when the peak current reaches 22A. With 

pulse-on time, EWR shows the trend opposite to that in the case of MRR and TWR. It 

slightly rises up till 100   but it drastically drops down till 200  . The flushing pressure, in 

this case, seems to have significant influence and is similar to TWR. 

 

Fig.  4  Euclidean distances of each alternative from PIS and NIS 

 

Fig.  5 Closeness coefficients of the alternatives based on different TOPSIS methods 

3.4. Optimal process parameter selection 

In this section, no uncertainty in the weights assigned to the criteria is considered. Using 

the criterion weights derived using the four criteria weight allocation methods (namely 

MW, SDV, Entropy and AHP), their respective weighted normalized matrix is constructed. 

The weighted-normalized matrix is presented in Table 9. Using this information, the 

Euclidean distances of each alternative from PIS and NIS are calculated and presented in 

Fig. 4. It should be noted that for the solution to be effective the Euclidean distance of the 
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alternative from the PIS should be as low as possible, i.e. in Fig. 4 the   
 should be as near 

the zero line as possible. Similarly, the   
 should be as away from the zero line as possible 

for the solution to be effective. This indicates that the Euclidean distance of the alternative 

from the NIS should be as high as possible. The variation of the closeness coefficient for 

each alterative using different TOPSIS methods is shown in. Fig. 5. It is seen that, among 

all the alternatives, alternative no. 9, i.e. A3B2C3 is the most promising set of process 

parameters that can be effectively used to simultaneously maximize MRR and minimize 

TWR and EWR.  

 

Fig.  6 Euclidean distances of each alternative from FPIS and FNIS of fuzzy-TOPSIS 

Table 9 Weighted normalized decision matrix 

MW-TOPSIS SDV-TOPSIS 

MRR TWR EWR MRR TWR EWR 

0.0526 0.0746 0.1263 0.0540 0.0693 0.1318 

0.0848 0.0758 0.0993 0.0872 0.0704 0.1036 

0.0775 0.0933 0.1220 0.0796 0.0867 0.1272 

0.0987 0.1139 0.1284 0.1014 0.1058 0.1340 

0.1373 0.1345 0.1090 0.1410 0.1250 0.1138 

0.1377 0.1455 0.1175 0.1415 0.1351 0.1226 

0.0868 0.0617 0.0792 0.0892 0.0574 0.0826 

0.1385 0.1619 0.1300 0.1424 0.1505 0.1357 

0.1446 0.0939 0.0711 0.1486 0.0873 0.0742 

Entropy-TOPSIS AHP-TOPSIS 

MRR TWR EWR MRR TWR EWR 

0.0650 0.0945 0.0629 0.0768 0.0975 0.0295 

0.1048 0.0959 0.0495 0.1239 0.0989 0.0232 

0.0958 0.1181 0.0608 0.1132 0.1219 0.0285 

0.1220 0.1441 0.0640 0.1442 0.1487 0.0300 

0.1697 0.1703 0.0543 0.2005 0.1757 0.0254 

0.1702 0.1841 0.0585 0.2011 0.1899 0.0274 

0.1073 0.0781 0.0394 0.1267 0.0806 0.0185 

0.1712 0.2050 0.0648 0.2023 0.2115 0.0304 

0.1787 0.1189 0.0354 0.2112 0.1227 0.0166 
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Fig. 7 Process performance of EDM parameters 

Table 10 Ranking of alternatives by various TOPSIS methods 

Alternative MW-TOPSIS SDV-TOPSIS Entropy-TOPSIS AHP-TOPSIS Fuzzy-TOPSIS 

1 7 8 7 9 8 

2 3 3 3 3 3 

3 6 7 6 8 6 

4 8 9 8 6 7 

5 4 4 4 4 4 

6 5 5 5 5 5 

7 2 2 2 2 2 

8 9 6 9 7 9 

9 1 1 1 1 1 

3.5. Optimal process parameter selection considering uncertainty in decision 

To account for the uncertainty in the decision-making process, the current problem is 

also evaluated by using a fuzzy-TOPSIS approach. The decision regarding the relative 

importance of MRR, TWR and EWR is obtained from 7 decision-makers. The 7-point 

fuzzy scale-based ratings given by the decision-makers are collected in Table 5. Next, these 

are aggregated and the mean fuzzy weights are created, which are reported in Table 6. The 

fuzzy positive ideal value (FPIS) and fuzzy negative ideal value (FNIS) are reported in 

Table 7. Based on these the Euclidean distances of each alternative from FPIS and FNIS are 

calculated as reported in Table 8 and Fig. 6. Similarly, the closeness coefficients are 

calculated and reported in Fig.  5. It is seen that, in the fuzzy-TOPSIS, the alternative no. 9 

is also found to the best compromise solution among all the alternatives. Fig. 7 shows the 

average process performance of the EDM process parameters as calculated by different 

methods. A similar trend is seen for all the methods. The overall optimal set of EDM 

process parameters was found to be A3B3C2. The ranking of the alternatives by various 

TOPSIS methods is shown in Table 10. 
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4. CONCLUSION 

In the present article, five different weight allocation strategies are used in conjunction 

with TOPSIS to predict the optimal process parameter combination in EDM machining of 

Inconel superalloy. While the methods like mean weight method, standard deviation 

method, entropy method, and AHP method do not take into account the uncertainty in 

decision-making process, the fuzzy weight allocation scheme is used to select optimum 

EDM parameters by the collective decision-making process. Based on the experimental 

data and the extensive numerical MCDM analysis it can be concluded that— 

 All the methods namely, MW-TOPSIS, SDV-TOPSIS, Entropy-TOPSIS, AHP-

TOPSIS and Fuzzy-TOPSIS can be effectively used to estimate and optimize the 

EDM process parameters, 

 The 9th alternative, i.e. A3B2C3, is found to be the optimal setting for achieving 

high MRR, low TWR and low EWR,  

 From performance characteristics, it is found that both Entropy & AHP yielded 

similar results, and 

 The optimal set for machining is obtained through proposed MCDM is 22A 

discharge current, 200µs pulse-on time, and 0.4     ⁄ flushing pressure. 

It is evident from the experiments that the pure tungsten electrode can be used as a tool 

in EDM for machining Inconel 718 at a high discharge current (18A-22A) and high pulse-

on time (50-200µs) without any rapture. Also, pulse-on time and current have a higher 

influence on MRR and TWR as compared to dielectric pressure in EDM machining. One 

limitation of the current study is the use of L9 orthogonal array, which can be effectively 

used to study the main effects of the process parameters but is unreliable when machine 

learning based response surface function over the entire domain of the parametric combination 

is desired. Thus, this study can be further improved by using quasi-random low-discrepancy 

sampling approaches like Hammersley, Sobol, etc. to design the experiments. Further, for 

multi-response optimization advanced metaheuristic approaches like cuckoo search, grey 

wolf optimizer, etc. may be used to generate Pareto solutions.  
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