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Abstract. The aim of this paper is to propose a stability analysis approach based on 

the application of the center manifold theory and applied to state feedback Takagi-

Sugeno-Kang fuzzy control systems. The approach is built upon a similar approach 

developed for Mamdani fuzzy controllers. It starts with a linearized mathematical 

model of the process that is accepted to belong to the family of single input second-

order nonlinear systems which are linear with respect to the control signal. In 

addition, smooth right-hand terms of the state-space equations that model the 

processes are assumed. The paper includes the validation of the approach by 

application to stable state feedback Takagi-Sugeno-Kang fuzzy control system for the 

position control of an electro-hydraulic servo-system. 
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1. INTRODUCTION 

The systematic design and tuning of the fuzzy control systems is supported by 

analyses that include stability, controllability, observability, sensitivity and robustness. 

One of the main classical and modern topics in this regard is the stability analysis of the 

fuzzy control systems, which enable their stable design in the context of the model-based 

fuzzy control system design. 
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The general approach to dealing with the stability analysis in the model-based fuzzy 

control, treated in the main woks [1-3], is to make use of Takagi-Sugeno-Kang fuzzy 

models of the process and express the stability analysis conditions as Linear Matrix 

Inequalities (LMIs) in terms of the parallel distributed compensation (PDC) approach, 

which states that the dynamics of each local subsystem in the rule consequents of the 

Takagi-Sugeno-Kang fuzzy models of the process is controlled using the eigenvalue 

analysis [2, 3]. Recent results on LMI-based stability analysis include the relaxation of 

stability conditions [4-11], the negative absolute eigenvalue approach [12] and the use of 

Lyapunov-Krasovskii functionals [13]. 

The main idea in relation with the PDC-based approach to the stability analysis and 

stable design of Takagi-Sugeno-Kang fuzzy control systems based on LMIs is an extensive 

use of quadratic Lyapunov function candidates. The effect of various parameters of the fuzzy 

models are considered resulting in non-quadratic Lyapunov function-based approaches as, 

for example, the membership-function-dependent analysis [14,15], non-quadratic 

stabilization of uncertain systems, exponential stability with guaranteed cost control [16], 

piecewise continuous and smooth functions, piecewise continuous exact fuzzy models, 

general polynomial approaches [17, 18], sum-of-squares-based polynomial membership 

functions [19-22], superstability conditions, integral structure based Lyapunov functions [23], 

the subspace-based improved sector nonlinearity approach [24], the fractional intelligent 

approach, and interpolation function-based approaches [25]. 

The presented short literature survey indicates, as shown in [26] and [27], that the 

classical approach based on PDC to stabilize fuzzy control systems and the use LMIs in 

the stability analysis may introduce computational burden, complexity and coupling of 

subsystems. Therefore, different approaches to LMI-based ones are justified; such also 

popular approaches include 

 Bilinear Matrix Inequalities [28, 29], 

 Popov’s hyperstability theory [30-33], 

 the limit cycle-based approach [34-36], 

 the circle criterion [37-40]; 

 the harmonic balance method [31], [41-44], and, 

 the center manifold theory [45]. 

Many of these non-LMI-based approaches work only with Mamdani fuzzy controllers 

and not with Takagi-Sugeno-Kang ones. A part of the authors’ stability analysis approaches is 

mainly focused on Mamdani fuzzy controllers, avoiding LMI formulation and solving; it 

is built around LaSalle’s invariant set principle [46], Barbashin-Krasovskii theorem [47], 

the use of quadratic Lyapunov function candidates formulated for discrete-time systems 

[48], and the popular Lyapunov’s direct method [49, 50]. Some of these approaches also 

work with Takagi-Sugeno-Kang fuzzy controllers, but many stability analysis approaches are 

formulated for continuous-time systems and since the real-world implementation of fuzzy 

controllers is carried out as digital controllers, there is a real need to either develop stability 

analysis approaches formulated for discrete-time systems or to transfer the continuous-time 

approaches to discrete-time ones (which is not a simple task). 

Several alternative approaches to fuzzy control have been recently developed. All of 

them require the systematic design assisted by appropriate stability analysis approaches. 

A representative alternative approach to the traditional fuzzy systems is represented by 

type-2 fuzzy systems, with the ability to better capture nonlinear mechanisms in dynamic 
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systems compared to the classical type-1 fuzzy systems. The additional parameters of 

these nonlinear systems offer increased flexibility (advantageous in case of optimal fuzzy 

control) but this is paid by their more complicated design and tuning if they are used as 

fuzzy models and controllers. Some of the important applications of type-2 fuzzy systems 

to fuzzy control with stability analysis and nature-inspired algorithms that ensure their 

optimal tuning are reported in [14, 16, 33] and [51-54]. 

A special type of fuzzy systems with nonparametric vectorized antecedents has been 

proposed by Angelov and Yager [55, 56], and is referred to as AnYa. Initially supported by 

the concept of granules, AnYa is based on data clouds, which are sets of previous data 

samples close to each other, and the membership degrees are computed using the relative 

data density of the current data with the existing cloud. The data clouds are used, similar to 

the classical data clusters, in partitioning the problem space to detect different operational 

(nonlinear) conditions in the context of systems modeling and identification. But data clouds 

do not require an explicit definition of the membership functions, and they do not have or 

require boundaries; therefore, they do not have specific shapes. Several applications of 

AnYa systems to control and modeling are reported in [57-60]. 

AnYa systems can evolve their structure by adding new data clouds. This relates them 

to evolving fuzzy systems. As shown in [61], the concept of evolving fuzzy systems was 

coined by P. Angelov back in 2001 and further developed in his later works [62-66]. The 

specific feature of these systems is the computation of the rule bases by a learning 

process, i.e. conducting continuous online rule base learning, with some recent results 

given in [67-69]. The stability analysis of systems based on AnYa and evolving fuzzy 

controllers is an important subject. 

As pointed out in [27], another alternative approach is represented by Tensor Product 

(TP)-based model transformation, as a numerical method capable of transforming the Linear 

Parameter-Varying (LPV) dynamic models into parameter-varying weighted combination of 

parameter independent (constant) system models under the form of Linear Time-Invariant 

(LTI) systems. The TP models are originally polytopic structures, where LTI systems are the 

vertex models of a convex hull of the model; they may be relatively far from any linearized 

operation points. In the case of TP models an LTI system affects the whole operation 

domain, not just a local area as in case of fuzzy systems, but according to the weighting 

functions, which actually replace the membership functions of fuzzy systems. Representative 

applications of TP-based model transformation to modeling and control are discussed in  

[70-76]. 

In contrast to model-based control, data-driven control or data-based control avoids 

the system (process) identification by constructing controllers directly from data without 

identifying a system model. That is the reason why data-driven control is also referred to 

as model-free control, i.e. model-free in controller tuning. Stability analysis is also treated 

in the date-driven or data-based control, but it is difficult to carry out this analysis if 

process models are avoided. A useful discussion on model-based versus data-driven 

control, that inspires future research directions, is presented in [77]. Unlike much of the 

existing work, as, for example [78-80], the fresh paper [81] does not make the a priori 

assumption of persistency of excitation on the input; instead, it studies necessary and 

sufficient conditions on the given data under which different analysis and control 

problems can be solved; thus it reveals situations in which a controller can be tuned from 

data even though unique system identification is impossible. 
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The model-free tuning of fuzzy controllers is an alternative approach to the model-

based design of these controllers in order to benefit from the advantages of data-driven 

control and fuzzy control and to mitigate, if possible, their shortcomings. The indirect 

model-free tuning of fuzzy controllers has initially been proposed and applied in [82-84], 

and continued in [85-87] by structures that combine data-driven control and fuzzy control 

in order to incorporate model-free features in novel fuzzy control system structure. Thus, 

steps forward towards direct model-free tuning of fuzzy controllers are currently taken. 

Starting with the center manifold theory approach to the stability analysis of fuzzy 

control systems with Mamdani fuzzy controllers suggested in [45], this paper highlights 

the center manifold theory approach as a version to stability analysis and next stable 

design of fuzzy controllers. In this regard the paper is focused on state feedback Takagi-

Sugeno-Kang fuzzy controllers. The presentation is focused on second-order input-affine 

nonlinear systems and the application is done on a state feedback controller for an electro-

hydraulic servo system. 

The paper treats the following topics: the process models are presented in the next 

section. Section 3 describes the center manifold approach to stability analysis of fuzzy 

control systems. The application of the stability analysis approach to the state feedback 

position control of an electro-hydraulic servo system is carried out in Section 4. The 

conclusions are pointed out in Section 5. 

2. PROCESS MODELS 

The dynamics of the process is described by the state-space equation of an input-affine 

nonlinear dynamical system 

 , )( uPP bxfx   (1) 

where nT

PnPPP xxx  ] ...   [ 21x  is the state vector, b is an n1 dimensional column matrix 

of constant parameters, u  is the control signal, nn :f  is the process function and 

T indicates matrix transposition. The only constraint imposed to f is that it must be a smooth 

function. 

For the sake of simplicity, as shown in [45], the formulations given as follows will be 

particularized to second-order (n=2) input-affine nonlinear systems. Therefore, Eq. (1) is 

transformed into 
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where 2

21 :, ff  are smooth scalar functions, and  const, 21 bb . A coordinate 

transformation is next applied, which depends on the values of b1 and b2, and the state-space 

equations in (2) become 
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where 2

21 :, gg  are smooth scalar functions, and the new (transformed) state 

variables are x1 and x2. 
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The simplified models given in (2) are justified because many processes can be 

transformed to such models by model order reduction. In addition, several models as 

those specific to sliding mode control and model-free control can be expressed so as to 

depend on the control error and its derivative as state variables and the rest of non-

modeled process dynamics plays the role of a disturbance term. 

Since the free response is analyzed, i.e. the local asymptotical stability of the control 

system around the origin (0, 0) is analyzed, zero reference input is next considered. The 

following state feedback control law is applied: 

 ),,(),( 212211212 xxhxkxkxxgu   (4) 

where  const, 21 kk  are the linear state feedback gains and the nonlinear state feedback 

smooth function 2:h  has the features 
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Using (5) in (3), the closed-loop state feedback control system will be characterized by 

the state equations 
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which are next linearized at the origin (0, 0) leading to the linearized state equations 
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In order to carry out the feedback stabilization, the state feedback fuzzy control is a 

particular case of the general problem defined in [88], it is required that [45], [89] 
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in addition, for the sake of simplicity [45] 

 ,12 k  (9) 

and the higher order terms in the Taylor series expansion of g1 and h must depend only on x1. 

3. STABILITY ANALYSIS APPROACH 

Using the assumptions presented in the previous section and expressing the Taylor 

series expansions of g1 and h, the introduction of the coordinate transformation [45] 
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the center manifold is 
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Computing a second-order approximation of φ according to [89] in terms of (10), the 

local asymptotic stability conditions are [45] 
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where the conditions in (12) hold for 
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Equations (12) and (13) are next processed resulting in the stability condition [45] 
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The stability analysis approach is formulated accepting nonlinear input-output static map 

F of the fuzzy controller 
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with T  a 23-dimensional constant transformation matrix that is not necessarily set and r  

the reference input. 

The stability analysis approach consists of the following steps also given in [45] but 

with a different step 2: 

Step 1 The necessary coordinate transformations are done. 

Step 2 Input-output static map F of the fuzzy controller is approximated to achieve the 

control law in Eq. (4). Two approaches can be used in this regard: 

 approximation of triangular and trapezoidal membership functions with 

exponential functions [90] or using approximation approaches transferred from PI- 

and PID-fuzzy controllers, 

 least-squares fitting by the proper definition of an optimization problem and its 

solving by classical [91-94] or nature-inspired [95-98] optimization algorithms. 

Step 3 The stability conditions (8), (9), (13) and (14) are checked. Their fulfillment 

guarantees the local asymptotic stability. 
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4. VALIDATION ON ELECTRO-HYDRAULIC SERVO SYSTEM POSITION CONTROL 

The validation of the stability analysis approach given in the previous section is done, as 

in [45], in terms of the state feedback control system structure applied to the position control 

of an Electro-Hydraulic Servo system (EHS) with the block diagram presented in Fig. 1. The 

blocks and variables in Fig. 1 are [99]: NL 1 … NL 5 – technological nonlinearities, EHS – 

electro-hydraulic converter, SVD – the slide-valve distributor, MSM – main servo motor, M 

1 and M 2 – measuring instrumentation, u – control signal, y – controlled output, x1 and x2 –

state variables, x1M and x2M – measured state variables. The values of all parameters of EHS 

are [99], [100]: ul = 10 V, g0 = 0.0625 mm/V, ε2 = 0.02 mm, ε4 = 0.2 mm, x1l = 21.8 mm, yl 

= 210 mm, Ti1 = 0.001872 s, Ti2 = 0.0756 s, kM1 = 0.2 V/mm, kM2 = 0.032 V/mm. The three 

steps of the stability analysis approach are applied as follows. 

 

Fig. 1 Block diagram of electro-hydraulic servo system viewed as controlled process [99] 

In Step 1, due to very large parametric insensitivity and large linear domains of NL 1, 

NL 3 and NL 5, in the conditions of small variations of the variables, omitting the 

nonlinearities in Fig. 1 leads to the simplified state equations of the process [45] 
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with the parameter values a = 14.05 and b
*
 = 26.04. 

Using xP1 = x1M and xP2 = x2M in Eq. (17), a simple linear state transformation leads to 

the state-space equations of the process given in Eq. (3), where 
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with a
*
 = a b

*
 = 365.862. 

Since y = x2M, the fuzzy control system structure is illustrated in Fig. 2, where r – 

reference input, e – control error, i1 and i2 – fuzzy controller inputs also given in (16), and 
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Fig. 2 State feedback fuzzy control system 

The block FC in Fig. 2 is a Takagi-Sugeno-Kang state feedback fuzzy controller, 

which is designed starting with a set of linear state feedback controllers to stabilize the 

simplified EHS model in (17) and next applying the modal equivalence principle [101] to 

merge the linear state feedback controllers placed in the rule consequents of FC. The 

disturbance input is not introduced in Figs. 1 and 2 because, as specified in the previous 

sections, stabilization is targeted; reference tracking and disturbance rejection are not 

objectives of this paper. 

In Step 2, as pointed out in [102], cosine-type membership functions for the linguistic 

terms of the input and also scheduling variables are considered to be convenient in the 

analysis of FC. Such membership functions are set, and they are shown in Fig. 3. Fig. 3 

points to the parameters of the input membership functions, B1 > 0 and B2 > 0. 

 

Fig. 3 Input membership functions [102] 

Using Eq. (19) with r = 0, the state-space equations of EHS as controlled process are 
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In Step 3, the local asymptotic stability is analyzed as follows with i1 and i2 instead of 

x1 and x2, respectively, on the basis of the results given in Sections 2 and 3. The state 

feedback control law is expressed in terms of Eq. (4). Use is made of Eq. (19), and the 

modified control law is [45] 
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where k1 = 1, and k2 is set to k2 = 1 + a
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 = 366.862 in order to fulfill the stability condition 

(8). The stability condition (14) is thus transformed into [45] 

 ).0,0(
21

2

1
ii

h
k




  (22) 



 A Center Manifold Theory-Based Approach to the Stability Analysis of State Feedback... 197 

The stability condition (22) is related to relatively small modifications of the nonlinear 

part of the control law. That is the reason why function h has to be a smooth one to be 

produced by the fuzzy controller; therefore, the rule base of FC will be derived as follows 

in this regard. 

Three linear state feedback controllers are first designed, and they will be next placed 

as local controllers in the rule consequents of FC. Imposing the linear closed-loop control 

system poles 
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with 0)( ip  and 0)( iq , and the superscript (i) indicates the index of the linear state 

feedback controller (or the local controller), i = 1…3, expressed as 
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The first local controller, i.e. i=1 in (24), is that situated at the biggest distance to the 

zero control signal line 

 02211  ikiku  (26) 

in the plane <i1, i2>. This local linear state feedback control system is imposed to be the 

most oscillatory but also fastest one in terms of 

 ,32  ,2 )1()1( pqpp   (27) 

where p > 0 is a design parameter that affects the dynamics of the fuzzy control system. 

The second local controller, i.e. i=2 in Eq. (24), is that situated at the average distance 

to the zero control signal line in (26). This local linear state feedback control system is 

also imposed to be oscillatory but with a smaller overshoot and larger settling time by 

imposing 

 .  , )2()2( pqpp   (28) 

The third local controller, i.e. i=3 in (24), is that situated exactly on the zero control 

signal line in Eq. (26). This local linear state feedback control system is imposed to be 

aperiodic with an average settling time compared to the first two local control systems 

because of imposing 

 .0  ,2 )3()3(  qpp  (29) 

Using the information given before, the rule base of the Takagi-Sugeno-Kang state 

feedback fuzzy controller is obtained by merging the three local linear state feedback 

controllers in (24) and placing them in the rule consequents. The rule base is presented in 

Table 1. 
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Table 1 Rule base of Takagi-Sugeno-Kang fuzzy controller 

 i1 

N ZE P 

 

i2 

P u(3) u(2) u(1) 

ZE u(2) u(3) u(2) 

N u(1) u(2) u(3) 

The FC block in Fig. 2 operates on the basis of the SUM and PROD operators in the 

inference engine and the weighted average method for defuzzification. This fuzzy 

controller structure allows for the determination of nonlinear term h(i1, i2) in Eq. (21). 

As done in [45] and [100] for the Mamdani fuzzy control system, the following values 

of Takagi-Sugeno-Kang fuzzy controller parameters ensure the system stability: B1 = 0.5, 

B2 = 1, p = 3.5. The stability tests of this state feedback Takagi-Sugeno-Kang fuzzy control 

system were done by digital simulation considering eight different nonzero initial conditions 

and r = 0. The state trajectories illustrated in Fig. 3 give an indication on the system stability. 

The regulation and tracking performance of the fuzzy control system were not analyzed; 

however, the optimal tuning can be carried out in this context, with the results that can be 

quite different for this application and other challenging ones as well [103-108]. 

 

Fig. 4 State trajectories of state feedback Takagi-Sugeno-Kang fuzzy control system 

considering r = 0, x1M (V), x2M (V) 

5. CONCLUSIONS 

Starting with the authors’ application of the center manifold theory to Mamdani fuzzy 

control systems, this paper suggests its application to state feedback Takagi-Sugeno-Kang 

fuzzy control systems as well. A three-step stability analysis is included in the paper as 

the main result, and an electro-hydraulic servo system application is treated. 

The paper shows that the stability analysis is not complicated. However, several 

stability analysis conditions should be fulfilled. 
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The main limitation of the presentation is that it is focused on second-order input-

affine nonlinear systems. The application to higher order systems is a challenge due to the 

possible difficult computation of the partial derivatives of fuzzy controller input-output 

static map F. This is one of the directions of future research in a strong relation with 

inclusion of several advantageous features specific to fuzzy systems [109-115] so as to 

modify the control system structure. 

Another direction of future research is the stable fuzzy control system design. That 

requires the derivation of connections between the fuzzy controller parameters and the 

control system performance indices. 

Nevertheless, the transition of the approach from continuous-time systems to discrete-

time ones aiming the real-time implementation is also targeted. However, the analysis of 

systems poles is needed, which is not simple in the context of LPV dynamic system 

models while avoiding the use of LMIs associated to PDC. 
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