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Abstract. Fuel injection causes considerable oscillations of fuel pressure at the injector 

inlet. One of the reasons is hydraulic impact when the needle valve closes. For multiple 

injections, the previous injections affect the following. As both the fuel pressure in rail pac 

and the injection rate grow, the oscillations increase. The pressure oscillation range at 

the common rail injector inlet at pac=1500 bar is up to 350 bar, and at the rail pressure 

pac=500 bar, the amplitude decreases to 80 bar. Physical properties of the fuel are also 

important. As the viscosity of the fuel increases, its hydraulic friction grows which results 

in a rapid damping of pressure oscillations. The data for an injector operating on 

sunflower oil is presented. As compared with diesel fuel, the oscillations range decreases 

from 400 to 250 bar at the same operating mode. The influence of the interval between the 

impulses of a double injection on the injection rate of the second fuel portion was 

investigated. Superposition of two waves during multiple injections may result in 

amplification and damping of the oscillations. Simulation was performed to estimate the 

influence of fuel type and time interval Δτ between control impulses of a double injection 

on the injection quantity of the second portion at pressures of 2000-3000 bar. When the 

rail pressure pac grows, the oscillations and their impact on the injection process increase. 

For diesel fuel at pressure of pac=2000 bar, the variation in injection rates of the second 

portion is 2.36-4.62 mg, and at pac=3000 bar – 1.58-6.63 mg. 
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1. INTRODUCTION 

The development of engines with perspective energetic and ecological parameters 

demands the development of new versions of the fuel supply system for different models of 

diesel engines. In this connection, important tasks are ensuring injection pressure up to 

2000 bar and higher as was investigated by Pflaum [1], Shatrov [2], Yu [3], Bosch company 

[4], as well as the injection rate front shape control and organization of fuel distribution in 

the combustion chamber which was studied by Shatrov [5], Kamaltdinov [6], Iakovenko 

[7], Wuethrich [8]. It was demonstrated by Wloka [9], Grekhov [10], Zhao [11], Vera-

Tudela [12] that the desired fuel injection law at any operation mode of the engine is 

formed by variation of the control impulse duration and pressure in the common rail. It also 

depends on the wave phenomenon originating in the high-pressure line and having a 

considerable impact on the fuel injection process in the case of a multistage injection. 

The pressure growth in case of multiple injections makes the fuel injection process 

more complicated. Baratta [13], Beirer [14], Catania [15] and experiments carried out in 

MADI demonstrated that the pressure oscillations at the injector inlet become crucial.      

Beirer [14] investigated the influence of hydrodynamic effects in the fuel line on 

pressure oscillations in the Common Rail Injector (CRI). 

The oscillations grow as the channel length increases and the diameter decreases. But the 

fuel line also influences their frequency. For example, if the fuel line length increases, the 

frequency decreases. This is explained by the fact that the pressure wave travel time in a long 

channel is higher. Oscillation process increases with the growth of the fuel pressure in the 

common rail and control impulse duration. 

It was demonstrated that depending on the interval between two portions of double 

injection, the injection rate could vary considerably. The wave process that originates when 

one CRI injects fuel has an impact on fuel injection process of the injectors belonging to the 

other diesel engine cylinders.  

Iakovenko [7] made a conclusion about the reasons of the pressure oscillations: 

pressure oscillations are triggered by the so called “water-hammer” effect induced by the 

nozzle closure at the end of each injection. When the fuel is flowing via the nozzle holes 

during injection process, its kinetic energy grows which is transformed into the energy of 

the pressure waves when the needle valve closes and the flow stops abruptly. 

Beirer [14] found in his research that the fuel pressure oscillations cannot be the reason 

of the resonance of the mechanical parts of the fuel system because their natural oscillation 

frequency is considerably lower than the frequency of the wave process in the hydraulic 

circuit. However, the authors demonstrated the possibility of the origination of the hydraulic 

resonance which takes place when the needle closes as soon as the compression wave 

reaches the nozzle due to the reflection of the injection-induced depression wave in the rail. 

When the injector needle valve closes on its seat, the hydraulic impact takes place. The 

pressure wave and the direct pressure wave (compression wave) which originate as a 

consequence appear to be in the same phase which causes intensive pressure oscillations in 

the delivery line. It is important to take into consideration this effect in the case of multiple 

injections and seek to avoid it. 

The analyses of the injector design influence on the wave process are of a high 

interest. For example, here it is demonstrated that in a nozzle having holes on the locking 

cone, the hydraulic impact when the injector is closing is not so strong as in the case of a 

nozzle having holes in the sack volume. 
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The results described need to be supplemented by data on the ways of prevention of 

oscillation effects and the influence of fuel properties on them. The present paper 

presents the results of solving these scientific tasks. 

2. EXPERIMENTAL SETUP 

The experimental setup (Fig. 1) has a modular design making possible its adaptation 

for current research tasks and various designs of fuel systems. This setup consists of the 

following parts: 

▪ asynchronous electric motor 3 (7.5 kW, 3000 rpm) with a thyristor transducer 12 

enabling a smooth control of rotational speed; 

▪ low-pressure fuel line which includes a low-pressure fuel pump 16, 12 V and 24 V 

electric power supply units 8 - 9, fine-mesh fuel filter 15. 

 

Fig. 1 Experimental setup: 1 – frame; 2 – protective casing; 3 – asynchronous electric motor; 

4 – coupling; 5 – fuel tank; 6 – mounting plate; 7, 11 – fuses; 8, 9 – electric power 

supply units; 10 – magnetic contactor; 12 – thyristor transducer; 13 – emergency stop 

switch; 14 – electric motor mounting; 15 – fine fuel filter; 16 – low-pressure fuel 

pump; 17 – fuel pressure regulator; 19, 20 – elements mounting the electric motor on 

the frame 

The fuel system (Fig. 2) of the experimental setup includes: high-pressure pump 1, 

fuel accumulator 2 with pressure sensor 16, fuel line 5 (length lfl=1000 mm, channel 

diameter dfl=2.2 mm) and electro-hydraulic injector 3. The experimental stand is 

equipped with a control system developed in MADI. The difference is that the newly 

developed control system ensures the formation of any shape of electric control pulse. 

This feature is fundamentally important in the study of pressure oscillations in the diesel 

fuel system. 



582 M.G. SHATROV, A.U. DUNIN, P.V. DUSHKIN, A.L. YAKOVENKO, L.N. GOLUBKOV, et al. 

 

Fig. 2 Fuel system of the experimental setup: 1 – high-pressure fuel pump; 2 – fuel 

accumulator; 3 – electro-hydraulic injector; 4, 5 – high-pressure fuel lines; 6, 7 – fuel 

accumulator mounting plates; 8, 9, 10, 14 – clamping plates; 11 – fixings; 12 – fuel 

accumulator fixing pin; 13 – pressure sensor mounting plates; 15 – pressure sensor 

fixing pin; 16 – pressure sensor 

Electromagnetic drive of the control valve is used in two electro-hydraulic injectors 

(Fig. 3). The second electro-hydraulic injector (fuel injector nozzle hole diameter dс=0.09 

mm, number of holes iс=8, Fig. 3b) differs from the first injector (fuel injector dс=0.12 

mm, iс=7, Fig. 3a) with the presence of a fuel accumulator 6 integrated into the body 3 

and with the design of the control valve 2. 

  

Fig. 3 Layouts of the injectors: a – injector No1, b – injector No2, 1 – solenoid,  

2 – control valve, 3 – CRI body, 4 – control chamber, 5 – multiplier (for version b, 

elements 5 and 7 are one piece); 6 (a) – channel supplying fuel to the injector 

nozzle; 6 (b) – fuel accumulator; 7 – injector nozzle needle; 8 – injector nozzle;  

9 – needle valve spring; 10 – inlet throttle; 11 – outlet throttle; 12 – valve spring; 

13 – additional throttle; 14 – channel 
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The experimental setup is complemented by two piezoelectric sensors T6000, 

manufactured in Russia. The first sensor (No 4636 having sensibility 2.1 pC/bar and pressure 

measuring range 0…6000 bar) is mounted at the inlet of the CRI and registers the pressure 

oscillations when the fuel is injected. The second sensor (No 4588 having sensibility 2.2 

pC/bar and pressure measuring range 0…6000 bar) is mounted in the chamber and registers 

the instants of the fuel injection start and its end. 

The magnitude of fuel injection rate Q is measured by the gravimetric method. When 

determining Q of each point, the measurement is carried out twice, which allows us determine 

the random measurement error of this magnitude (Q). The instrument error of high-precision 

scales is neglected since its value is substantially less than the random measurement error. 

Each measurement provides Q not less than ±5.0%, which is achieved by selecting a 

sufficient number of consequent cycles. 

The measurement errors of the inlet pressure in the injector and fuel accumulator are 

determined by the accuracy of measuring instruments. Therefore, calibration of pressure 

sensors T6000 and DMP304 (manufactured in Germany, pressure measuring range 0…4000 

bar) is previously conducted. 

The experiment was carried out in two stages: the first stage – the injector operates in a 

single injection mode; the second stage – the injector operates in a multiple injection mode. 

3. RESULTS AND DISCUSSION 

The influence of some factors upon pressure oscillations at the CRI inlet was 

investigated: fuel pressure pac, control impulse duration τimp, type of fuel used. With this, 

two different injectors having principally different design were studied in the experiment. 

Two types of the fuels were used: a fossil-origin diesel fuel and renewable sunflower 

oil (Table 1). 

Table 1 Properties of the fuels used 

Properties Diesel fuel Sunflower oil 

Density (t = 20 оС), kg/m3 820 923 

Kinematic viscosity (t = 20 оС), mm2/s  3.0 65.2 

Cetane number 45 33 

Low calorific value, MJ/kg 42.5 37.0 

Fuel injection causes considerable oscillations of fuel pressure at the inlet of the 

injector. One of the reasons is hydraulic impact which originates when the injector nozzle 

needle closes. In this case, in injector No1 with pressure pac=1000 bar and control impulse 

duration τimp=0.6 ms (which corresponds to fuel injection rate Q=16.5 mg), the injection 

causes the origination of pressure oscillations which have the amplitude up to 250 bar (Fig. 

4). Evidently these oscillations have influence upon the fuel supply process in the case of 

multiple injections: the previous injections would influence the following ones. 
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Fig. 4 Pressure at the inlet of the CRI No 1 (pac=1000 bar, τimp=0.6 ms, Q=16.5 mg) 

As the fuel pressure and injection rate grow, the oscillation process increases. Fig. 5 

shows the comparison of data registered at three pressures in the fuel accumulator and 

constant control impulse duration τimp =0.6 ms. A single injection is used in this case. 

 

Fig. 5 Fuel pressure oscillations at the entry of the CRI No1 at various pressures 

(τimp=0.6 ms): Q=9.1 mg (pac=500 bar); Q=16.5 mg (pac=1000 bar); Q=38.3 mg 

(pac=1500 bar) 

The pressure oscillation range at the CRI inlet is up to 350 bar at pac=1500 bar, and at 

pac=500 bar, the amplitude decreases to 80 bar. 

Fig. 6 shows both the comparison and the variation of the first control impulse 

duration at constant pressure in the fuel accumulator pac=1000 bar. On the basis of this ne 
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can conclude that as the first portion of the fuel injected decreases, the fuel pressure 

oscillations range also decreases. 

 

Fig. 6 Fuel pressure oscillations at the entry of the CRI No1 at various duration of the 

first injection (pac=1000 bar): Q=2.2 mg (τimp=0.3 ms); Q=16.5 mg (τimp=0.6 ms) 

Fig. 7 shows the experimental data for modified injector No2 at the operation mode 

pac=1000 bar and τimp=0.6 ms. Compared with the No1 version of the CRI (Fig. 5), the 

pressure oscillations are considerably lower. The pressure oscillations range for the 

version No1 is 400 bar, and for the version No2 – 120 bar, that is, 3.3 times lower.  

 

Fig. 7 Pressure at the inlet of the CRI No2 (pac=1000 bar, τimp=0.6 ms, Q=24.0 mg) 

Hence, the reduced internal volume of the injector plays a considerable role and may 

be an efficient measure for lowering the pressure oscillations. 
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Injector No2 has a pressure balanced valve in addition to the integrated fuel 

accumulator. Leonard [16] proved that the balanced valve makes it possible not only to 

decrease the volume of fuel leaks at high pressure, but also to improve the injector 

working process in the case of multiple injections. 

Physical properties of the used fuel are also important in the fuel injection process. As 

the fuel viscosity increases, so does the hydraulic friction which contributes to a rapid 

damping of the oscillations. Fig. 8 shows the data obtained with the use of injector No1 

when operating on more viscous sunflower oil. As compared with diesel fuel (Fig. 4), the 

oscillations range decreases from 400 to 250 bar at the same operating mode. 

 

Fig. 8 Pressure at the inlet of the CRI No1 (pac=1000 bar, τimp=0.6 ms, Q=15.9 mg), 

operation on sunflower oil 

The influence of the interval between the impulses of a double injection on the 

injection rate value of the second portion was investigated. Injector No1 was used. 

The oscillograph trace of a current passing through the electric magnet of injector 

No1 is shown in Fig. 9. The injector control is carried out in two phases: forcing and 

holding. For forcing, the voltage of about 50 V is applied to the electric magnet during 

0.3 ms which promotes a rapid raise of the control valve. The injector needle is kept 

under control by using pulse-width modulation with duty ratio of 50%. 

The injection rate and injection characteristic of the second portion depend on the 

time at which the second injection is affected related to the first injection. Fig. 10 shows 

the results of the investigations at constant pressure pac=1000 bar with two injections each 

having τimp=0.6 ms when there is a variable interval Δτimp between two portions of the 

double injection. The vertical line in the picture designates the fuel injection start instant. 

Superposition of the waves during operation with the multiple injections may result in 

both the amplification and the damping of the pressure oscillations process. If the second 

injection is executed at the rear wave edge (pressure increase) or in the minimal pressure 

zone – the oscillations damping takes place. If or when the second injection is executed at 

the front (decreasing) wave edge or in the maximal pressure zone, the oscillations increase. 
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Fig. 9 Oscillograph trace of a current passing through the electric magnet of injector No1 

(double injection): τimp – control impulse duration, Δτimp – interval between two 

portions of the double injection 

 

Fig. 10 Pressure oscillations at the inlet of the CRI No1 at various intervals between the 

double injection Δτimp (pac=1000 bar): Q=17.5 mg (Δτimp=3.6 ms); Q=9.5 mg 

(Δτimp=5.5 ms) 

Fig. 10 shows that at the interval of Δτimp=3.6 ms, after injection of the second 

portion, the maximal pressure oscillations range is 330 bar. While at the interval of 

Δτimp=5.5 ms, the maximal oscillation range increases (1.45 times) to 480 bar. 

Fig. 11 shows the results of estimation of the dependence of injector rate Q of the 

second injection on the interval between the injections. The first injection value is 

constant and amounts to Q1=16.5 mg. The difference between the first and the second 

magnitudes of the injection rate is almost 2 times. 
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It should be mentioned that the average value of the second injection rate is 

considerably lower than that of the first injection rate. 

Even if the beginning of the second injection is shifted from the first injection to the 

interval of Δτimp =50 ms, the value of the second portion is 13.1 mg which is by 3.4 mg 

lower than the first one, in spite of the fact that the pressure oscillations created by the 

first injection are damped completely during 50 ms. 

The background of the revealed phenomenon has two potential explanations. 

First, the pressure in the fuel accumulator decreases after the first injection. The 

pressure deviation value is not large and according to data presented in Figs. 5 and 6, it 

amounts to 50 bar (depending on the operation mode). 

 

Fig. 11 Fuel injection rate at various intervals between the injections Δτimp (pac=1000 bar, 

τimp=0.6 ms) 

The second factor is the voltage slump on the injector power supply condenser. As it 

follows from oscillograph traces in Fig. 9, the forcing current of the second injection is 

by 2.5 A lower than the first one which causes longer opening of the injector. 

This is the answer why the modern injection systems also make stringer requirements 

to such parameters as fuel pressure control dynamics and charging of the power supply 

condenser of the injectors. 

Injection characteristic of the second fuel portion also depends on Δτimp because the 

pressure built up in the needle valve volume is interlinked with the pressure at the CRI 

inlet. For example, if the injection of the second fuel portion starts in the minimal zone of 

the pressure wave and terminates in the maximal zone of the pressure wave (Fig. 10), the 

fuel flow velocity through the spray holes will vary with the continuing injection process 

from low to high value. 

Simulation was carried out to estimate the influence of fuel type and time interval Δτ 

(Fig. 12) between the control impulses of the double injection on the value of the 

injection quantity of the second fuel portion at pressures 2000…3000 bar. 
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Fig. 12 Control impulses modeled: F – injector electromagnet force, Δτ – time interval 

between the control impulses, τ1 – the first control impulse duration, τ2 – the 

second control impulse duration 

Simulation was carried out using the software package for modeling fuel system 

operation developed in MADI.  

In this software package, the fuel system is divided into the following elements: 

▪ basic units: injectors, high-pressure fuel pump; 

▪ connecting parts: fuel lines and fuel accumulator. 

Each element contains equations integrated into the system and describing: 

▪ the law of conservation of momentum for the mechanical moving parts of the fuel 

system; 

▪ volume and mass balances for the internal volumes and cavities of the high-pressure 

line of the fuel system. 

The elements are connected with each other by fuel lines, in which wave phenomena 

takes place. They are modeled taking into account hydraulic friction in the high-pressure 

line. The systems of equations describing processes in the fuel system elements are the 

boundary conditions for calculation of the wave phenomena in the high-pressure line. 

The fuel flow in the high-pressure line channels is considered isothermal, and the fuel 

density and sound velocity are constant. The processes occurring in the volumes 

contained in the injector and the high-pressure fuel pump are considered equilibrium. In 

the computer model, yielding of the final volumes and fuel lines is not taken into account. 

The CRI No2 was selected as a subject of the research because it provides a smaller 

pressure oscillations range. 

Two equal control impulses were modeled (τ1 = τ2). We selected such duration of control 

impulses τ that the fuel quantity supplied during the first injection was Q1 ≈ 3…4 mg. 

Modeling results of the operation of the CRI No2 on diesel fuel for two fuel pressures 

in the rail of pac = 2000 and 3000 bar are presented in Figs. 13 and 14. 

As was demonstrated during experimental tests carried out in MADI (Fig. 11), 

pressure oscillations at the injector inlet were the reason of variation of the injection rates 

as a function of Δτ. 
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Fig. 13 Fuel injection rate Q2 at different intervals between injections Δτ for diesel fuel 

(Q1 =3.3 mg): pac=2000 bar 

 

Fig. 14 Fuel injection rate Q2 at different intervals between injections Δτ for diesel fuel 

(Q1 =3.3 mg): pac=3000 bar 

When pressure pac grows, the oscillation phenomenon and its impact on the working 

process increase. When operating on diesel fuel at pressure pac=2000 bar, the spread in 

the injection rates of the second portion is Q2 = 2.36…4.62 mg, and at pac=3000 bar, Q2 = 

1.58…6.63 mg. 
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The results of fuel injection rate Q2 variation calculated for a higher density fuel 

corresponding to the sunflower oil are presented in Figs. 15 and 16. 

 

Fig. 15 Fuel injection rate Q2 at different intervals between injections Δτ for a higher 

density fuel (Q1 =3.4 mg): pac=2000 bar 

 

Fig. 16 Fuel injection rate Q2 at different intervals between injections Δτ for a higher 

density fuel (Q1 =3.4 mg): pac=3000 bar 

The main difference between the test results given in Figs. 13, 14 and Figs. 15, 16 is a 

faster attenuation of the oscillations observed when passing to a more dense fuel. In the 

case of pac=2000 bar, the spread in the injection rates of the second portion is Q2 = 

2.96…4.21 mg, and at pac=3000 bar – Q2 = 2.42…5.50 mg. 
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It is seen from comparison of calculated data (Fig. 13 … Fig. 16) that due to a higher 

hydraulic friction, the range of maximal pressure oscillations is lower. This will have a 

positive effect on the control accuracy of the second portion of a higher density fuel injected.  

The pressure oscillations that are described above should be taken into consideration 

when applying the injection rate shaping control method developed in MADI in which 

electric control impulses are used. The method of injection rate shaping is employed in 

the cases when the control impulse strategy consists of the primary, main and post 

impulses. Electric impulses are supplied from the electronic control module to the 

electromagnetic valves of injector No1 and injector No2 (Fig. 3). Duration of the first 

primary control impulse determines the amplitude of the front edge of the first stage of 

the boot-type injection rate shape. In the case of a multiple injection, one should select 

the proper intervals between the control impulses which could assure a boot-type 

injection rate shape with the desired value of oscillations of the first stage of the boot-

type fuel injection rate shape. 

4. CONCLUSIONS 

1. Fuel injection causes considerable pressure oscillations at the inlet of the injector. The 

range of these oscillations depends on injection pressure, control impulse duration, fuel 

physical properties and the injector design. One of the reasons of the oscillations is the 

hydraulic impact which takes place when the injector needle valve closes on the seat. 

2. Both the pressure drop in the accumulator after the pilot injection (the value of the 

pressure deviation is 5 MPa depending on the mode) and the voltage drop across the capacitor 

of the power injector (the current boost of the second injection is by 2.5 A lower than that of 

the first one) are responsible for the longer opening of the injectors in the case of the next 

injection. 

3. The presence of the fuel accumulator integrated into the CRI body decreases the wave 

phenomenon related to the fuel injection process. During recent experiments with the CRI 

No2 modified with an integrated fuel accumulator (pac=1000 bar, τimp=0.6 ms), the impulse 

amplitude at the inlet to the injector was 120 bar which was for 3.3 times lower than in the 

case of CRI No1 without the use of fuel accumulator. 

4. When fuel accumulator pressure pac grows, the oscillation phenomenon and its impact 

on the working process increase. So, the variation range in the injection rates of the second 

portion is Q2 = 2.36…4.62 mg, and at pac=3000 bar, Q2 = 1.58…6.63 mg when operating on 

diesel fuel at the rail pressure pac=2000 bar. 

5. After switching the CRI operation to a fuel having higher viscosity, due to the growth of 

the hydraulic friction, there is a more rapid attenuation of the pressure oscillations caused by 

the pilot injection. So, when the CRI No1 operates (pac=1000 bar, τimp=0.6 ms) on sunflower 

oil, the range of pressure oscillations decreases from 40 MPa (when the diesel engine operates 

on diesel fuel) to 25 MPa (when the diesel engine operates on sunflower oil).  
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