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Abstract. In this work, the effect of the fiber orientation on the mechanical response of 

variable angle tow (VAT) panels is investigated. A computationally efficient high-order 

one-dimensional model, derived under the framework of the Carrera unified formulation 

(CUF), is used. In detail, a layerwise approach is adopted to predict the complex 

phenomena that may appear in VAT panels. Static, free-vibration and buckling analyses 

are performed, considering several material properties, geometries, and boundary 

conditions, and the results are assessed with those obtained using existing approaches. 

Considering the findings of the comparative analysis, several best design practices are 

suggested to improve the mechanical performances of VAT panels. 
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1. INTRODUCTION 

 Advanced tow placement techniques allow fiber to be placed along a curvilinear pattern 

within each layer. This has led to the emergence of a new class of composite materials 

named variable angle tow (VAT) laminates. Compared to the classical composites, the VAT 

laminates provide a more extensive design space and allow engineers to further optimize the 

final structure in terms of the minimum weight or maximum strength/stiffness [1, 2, 3]. In the 

VAT laminates, the fiber orientation angles vary spatially, owing to which the stiffness 
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properties exhibit local variations. Such a stiffness variation can be discrete or continuous 

with curvilinear fiber paths [4, 5, 6, 7]. It has been reported that VAT laminates can improve 

the structural performance such as the strength and buckling characteristics, and free-

vibration response of composite structures compared to the corresponding values for 

classical composites [8, 9].  

Hyer and Lee [10] improved the buckling load in a plate with a circular hole by using 

variable stiffness composites. Several investigations based on numerical models [3, 11, 12] 

and experimental tests [13] demonstrated the advantages of VAT panels in preventing 

buckling. Moreover, the analysis of VAT structures has not been limited to simple problems 

but has dealt with various cases such as composite cylinders [14, 15], thin plates and thin-

walled structures [16, 17, 18], for improving first ply failure modes [19], and simply 

supported rectangular plates under non-uniform uniaxial compression [20]. In addition, the 

introduction of VAT composites can improve the buckling and postbuckling load-carrying 

capacity under in-plane positive and negative shear loading [21]. Furthermore, Hao et al. 

[22] investigated the buckling response of variable-stiffness composite panels by employing 

the Mindlin plate theory in conjunction with the isogeometric analysis and demonstrated that 

the classical finite element models cannot accurately describe the stiffness variation in VAT 

structures. VAT laminates can also be used to modify the dynamic response of composite 

structures by tailoring the overall structural stiffness. This aspect can be attributed to the 

effect of the parabolic fiber orientation angles, cutout size, thickness, and boundary 

conditions on the characteristics of the VAT composites [23]. Stodieck et al. [24] used a 

simple mathematical rigid plate model to examine the effect of the VAT lay-ups, 

particularly, the fiber angle variation, on the aeroelastic performance of a wing. Furthermore, 

Zhao and Kapania [25] used the finite element method to investigate the prestressed free 

vibration of a simply supported VAT laminated plate under uniform end shortening. Honda 

et al. [26] formulated an optimum design methodology to propose novel reinforced 

composite plates with locally anisotropic structures. In addition, Akhavan et al. [27] 

employed a new p-version finite element method to perform the natural frequency and mode 

shape analyses of rectangular plates made of variable stiffness composite laminates. Labans 

and Bisagni [28] conducted both numerical and experimental investigations pertaining to the 

buckling and free-vibration response of constant and variable-stiffness cylindrical shells. 

Moreover, Samukham et al. [29] used the finite element method to study the dynamic 

instability of VAT composite plates subjected to in-plane loading. The authors employed the 

first-order shear deformation theory as the displacement field model to derive the governing 

equations and examined the effect of different parameters including the fiber angle 

orientation, load parameters, boundary conditions, orthotropy ratio and aspect ratio on the 

system response. The generalized differential integral quadrature method can be combined 

with the Rayleigh–Ritz method to solve the governing differential equation corresponding to 

the parametric instability problem of VAT panels [30]. In a curved panel with VAT 

laminates, the boundary conditions and fiber angles considerably influence the buckling and 

dynamic instability behavior [31]. Furthermore, it has been reported that fiber placement at 

an angle of 0° and thickness build-up at transversely supported regions of composite panels 

can help realize a high axial compressive stiffness [32]. 

Viglietti et al. [33]. used refined one-dimensional models based on the Carrera unified 

formulation (CUF) to investigate VAT laminates on the dynamic response of complex 

wing structures. Vescovini and Dozio [34] proposed an accurate approximation technique 
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to perform the vibration and buckling analyses of variable stiffness plates by using the 

CUF approach in combination with the Ritz method. Their results pertained to thick 

variable stiffness laminates such as monolithic and sandwich structures under any 

combination of boundary conditions. Furthermore, a three-dimensional stress field was 

accurately identified using 1D CUF models with a higher computational efficiency 

compared to that when using 3D finite element models [35]. The advantages of the layerwise 

method in the analysis of VAT and sandwich beam structure were also demonstrated by 

Patni et al. [36]. Specifically, the authors considered the three-dimensional (3D) stress 

distribution derived using hierarchical serendipity Lagrange finite elements and reported on 

the enhanced structural performance of VAT structures compared to that of traditional 

straight-fiber composites [37]. Several studies have reported on the application of the CUF 

in various cases involving plates, shells, beams, thermoelastics, piezo-electric problems, and 

aeroelastic applications [38, 39, 40, 41, 42]. In particular, in the 1D CUF beam theory, a 

polynomial expansion is used to describe the displacement field over the cross-section, 

allowing the order of the expansion to be considered as a free parameter of the formulation. 

Refined 1D beam models can be modeled based on the equivalent single layer (ESL) or 

layerwise (LW) theories. However, the ESL cannot describe the continuity of transverse 

stresses and zigzag behavior of the displacement along with the thickness of composite 

layers [43, 44, 45]. In addition, LW theories are defined based on the dependency between 

the number of unknown parameters and layers [46, 47, 48, 49]. Thus, to expand the 

displacement fields over the cross-section, a Taylor expansion with a generic N-order [50, 

51] or Lagrange polynomial expansion can be used. 

This discussion indicates that although several reports exist regarding the static and 

dynamic analyses of VAT composite panels performed under the framework of various 

displacement models as well as different approximation approaches, the effect of the fiber 

orientation angle on the static, buckling and free-vibration response of VAT composite 

plates under various boundary conditions has not been extensively investigated. Therefore, 

in this work, a high-fidelity one-dimensional beam model is used to study the natural 

frequencies, critical buckling load, and static response of composite plates made of VAT 

laminates. The results are validated by performing a comparative analysis with several 

existing approaches. Furthermore, a parametric study is performed to examine the influence 

of various parameters such as the fiber orientation angle, material properties, boundary 

conditions, and geometry dimensions on the performance of the laminates. In addition, while 

many works consider the static, free-vibration and bulking analysis separately, in this work 

all the problems are examined together in order to show that the best panel design is not the 

one that gives better performances in one of the single analyses, but a better design comes 

from a trade-off to obtain acceptable performance in all the operational scenarios. 

2. VAT LAMINATES 

To represent the variable stiffness properties, the fiber orientation angle can be varied 

continuously in each ply along either the x or y coordinates or both the coordinates. Such 

design flexibility enables the VAT composite to enhance the structural performance. The 

variation in the VAT fiber angles can be mathematically formulated using only a few 

parameters [52]. Thus, in the present work, a VAT plate with a linear variation in the fiber 
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angle is defined using the following notation to describe the fiber pattern in the VAT 

laminates [8, 53].  

 1 0 0

| |
( ) 2( )

y
y T T T

a
     (1)  

The desired stiffness and strength can be achieved by introducing two different angles, 

T0 and T1 which denote the lamination angle at the center and edge of the composite 

laminates, respectively.  y  is related to the fiber variation along the y-axis, a is the 

width of the VAT panel, and b is the length of the laminate. Fig. 1 illustrates the 

coordinate system for the VAT lamina with a curvilinear fiber design. 

 

Fig. 1 VAT composite model 

 3. NUMERICAL MODEL 

3.1. Preliminaries 

 The notations and quantities employed in this work are introduced based on 

continuum mechanics. The VAT structures are modeled by using a refined one-

dimensional model based on the CUF. With no loss of generality, the length of the beam 

structures is defined along the y axis, and the cross-section is defined on the xz-plane. The 

displacement vector is denoted as u. Superscript T denotes transposition;   and  

denote the stress and strain vectors, respectively.  

 ( , , ) {     }T

x y zx y z u u uu  (2) 

 ( , , ) { , , , , , }T

xx yy zz xy xz yzx y z       σ  (3) 

 ( , , ) { , , , , , }T

xx yy zz xy xz yzx y z   (4) 

where  is strain and is defined using a linear differential operator b (6×3 matrix [54]):  

  bu  (5) 
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Furthermore, based on Hooke’s law, the stress vector can be expressed as: 

 σ C  (6) 

where C  is the matrix of the elastic coefficients of the material, which can be considered 

as a variable of the space coordinates in the case of VAT panels, as described in detail in 

the subsequent sections. 

3.2. Variable kinematics of one-dimensional models 

The displacement field for the beam structure in the CUF can be defined as: 

 ( , , ) , ( ),         1,2, ,( )x y z F x z y M    u u  (7) 

where F  is an arbitrary cross-section expansion over the x,z-plane, u (y) is a generalized 

displacement vector, and M is the number of expansion terms. The kinematics of the 

model can be modified according to function F . In this work, 9 and 16 node Lagrange 

elements are used as F  expansion polynomials, and they are denoted as L9 and L16, 

respectively. These expansions are used to formulate cubic and quadratic higher-order 

kinematics, respectively. The L9 polynomial expansion can be summarized as follows 

(for more details, please refer to [54, 55]):  

 1 1 2 2 9 9...x x x xu Fu F u F u     

 1 1 2 2 9 9...y y y yu Fu F u F u     (8) 

 1 1 2 2 9 9...z z z zu Fu F u F u      

where  F1, F2, …., F9 denote the Lagrange L9 set over the cross-section, and ux1, uy1, uz1, 

…., uz9 denote 27 unknown displacement variables that represent the pure displacement 

components at each node of the L9 element. In the L9 set, the interpolation functions are 

as follows: 
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 (9) 

where α and β denote the normalized coordinates and vary over the interval [-1, +1]; for 

more details, please refer to [56].  

The Lagrange expansions allow the laminate to be investigated using an LW approach 

in which an individual kinematics is defined for each layer. Therefore, the cross-sections 

are defined separately in the laminate layers and in each single ply. The use of the LW 

improves the accuracy of determination of the mechanical behavior compared to that 

obtained using the classical model based on the ESL [57]. In this manner, the actual 

description of the laminates can be obtained, as shown in Fig. 2.  
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Fig. 2 Each layer is modeled independently in the case of layerwise approach 

where the finite element method is adopted along the y-axis for the discretization of the 

structure with the generalized displacement vector, which is approximated as:  

 ( ) ( )( , , ) ,          1,2 ,i ix y z F x z N y i K   u q  (10) 

Here, index i denotes the number of nodes of the beam element, Ni(y) is the shape 

function, iq  denotes the nodal unknowns, and K is the number of nodes on the element. 

Based on the principal virtual displacement, the virtual internal work can be expressed as:  

 int V
L dV  

T
σ  (11) 

where V is the volume of the element, and ‍  is the virtual variation of the strain, which 

is presented as: 

 ( ,( ) ( ))s j sjF x z N y    b u b q  (12) 

where Fs stands as an arbitrary cross-section expansion, Nj, is shape function, and qsj  is 

the virtual variation nodal unknown. By combining Eqs. (6), (7), (11), and (12), the 

geometrical relations can be obtained in the linear form. Therefore, the virtual variation of 

the internal work can be defined as: 

 

Fundamental Nucleus

( ) ( ) ( ) ( ), ,int j s iV
L N y F x z F x z N y dV   

T T

sj τiq  b Cb q   

 T sij

sj i



 q k q  (13) 

According to CUF, sij
k is a (3×3) matrix and is termed as the stiffness fundamental 

nucleus (FN). In terms of the path function for the VAT composites, each layer involves point-

by-point continuous angle variations with different values. In the case of VAT, the components 

of the FN are subjected to volume integrals. Thus, only two terms of the FN are considered in 

the following analysis, and the other terms can be obtained by permutations [54]:  

 
22 , , 66 , , 44 , ,

23 , , 44 , ,

‍‍‍

‍‍

sij

xx x s x i j z s z i j s i y j y
V V V

sij

xy s x i y j x s i j y
V V

k C F F N N dV C F F N N dV C F F N N dV

k C F F N N dV C F F N N dV



  



 

 



  

 
 (14) 

In this case, stiffness coefficients C vary within the computational domain; therefore, 

these coefficients must remain inside the integral of the FN. 
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3.3. Numerical implementation of the VAT concept 

 In general, when using finite elements, integrals can be obtained by using the well-

known Gauss–Legendre formula. The integral form of the function is evaluated in the 

(,) domain by considering a natural system (for more details, please refer to Carrera et 

al. [54]). In the VAT structure, each fiber path can be defined as an arbitrary function, and 

the fibers follow a curvilinear pattern. Hence, each position corresponds to a different 

stiffness value. Furthermore, in the VAT composite, the lamination angle should be 

accurately defined in the entire domain of the plate, in which C is no longer constant. In this 

manner, the integral can be introduced in the unique form of the volume, as presented in Eq. 

(14). In this work, the Gauss integration technique is used, and the material coefficients in the 

VAT composite can be evaluated in a specific Gauss point. Therefore, in the CUF framework, 

the real values of the lamination angle at each Gauss point are considered. Furthermore, the use 

of the 1D CUF beam model ensures a smoother approximation of the component stiffness 

compared with that obtained using the finite element method; for more details, please refer to 

[58]. Fig. 3 illustrates a simplified example of the VAT concerning the Gauss points for four 

nodes; in contrast, nine Gaussian points were used in the present study. 

 

Fig. 3 VAT definition by Gaussian points 

The CUF material properties can be evaluated in the VAT case by defining the correct 

Gauss integration point-to-point in the lamination by calculating the FN [54].  

3.4. Linearized buckling equations 

 This section focuses on the linearized buckling problems. The tangent stiffness matrix 

can be obtained by linearizing the virtual variation of internal strain energy  ( intL ): 

 ( )  ( )T sij T

int i sj V
L dV

       
0

q k q σ  (15) 

where (Lint) is calculated considering the sum of the linear stiffness and virtual variation 

work associated with the initial stresses 0
. Subsequently, by using the CUF formulation 
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in Eq. (7) and FEM in Eqs. (10) and (16), the following formulation can be obtained 

based on the Green–Lagrange nonlinear strain and displacement relations (see Carrera et 

al. [55]):  

 ( ) ( )T sij T sij T sij sij

int i sj i sj i sjL    

   
          0 0q k q q k q q k k q  (16) 

where k
sij

is the same as in Eq. (14), and a new 
sij

0k  appears in the form of a diagonal 

matrix, which is investigated as the FN of the geometrical stiffness matrix and is expressed 

for the buckling case as follows: 

 

, , , , , ,

, , , , , ,

, , , , ,

( ‍‍‍

‍‍‍

‍‍‍

sij

xx x s x i j yy s i y j x zz z s z i jV V V

xy x s i j y xy s x i y j xz x s z i jV V V

xz z s x i j yz z s i j y yz s z iV V V

F F N N dV F F N N dV F F N N dV

F F N N dV F F N N dV F F N N dV

F F N N dV F F N N dV F F N



  

  

  

     

     

     

  

  

  

0

0 0 0

0 0 0

0 0 0

k

, )y jN dV I

 (17) 

In Eq. (17), the stress tensor is determined by the 9 components corresponding to a 

3×3 identity matrix I. Moreover, depending on shape function (Ni) and function F  over 

the cross-section, any desired beam model can be accessible in the CUF framework. 

Finally, the global matrices are assembled in the classical FEM. The critical buckling 

loads are determined as initial stress states 0
, which render the tangent stiffness matrix 

singular; i.e., | | 0 0
K K  [55].  

3.5. Free Vibration Equations 

 Under the CUF framework, the same approach as that based on Eqs. (10-13) can be 

employed for solving free vibration. Subsequently, the work done by the inertial forces 

provides the fundamental nucleus of the mass matrix, as defined in Carrera et al. [55]: 

 ‍ T

ine V
L dV    u u  (18) 

where ρ is the material density, and ü denotes the acceleration vector. From this 

expression, the FN of the mass matrix can be found straightforwardly and be used to solve 

usual free vibration problems. 

4 RESULTS AND MODEL VALIDATION 

4.1. Convergence analysis for a single-layer VAT panel 

A convergence analysis is performed considering a single-layer VAT plate comparing 

different kinematic models and meshes with a different refinement level. The results are 

validated using a classical FE model developed in Nastran. The properties of the lamina 

are as follows: E1=50 GPa, E2= E3=10 GPa, G12= G13= G23=5 GPa, υ12= 0.25, with a 

thickness of 0.02 m and dimensions a=b=1 m. A linear variation of the fiber orientation 

is considered and expressed using parameter <T0|T1>, as shown in Eq. (1). The boundary 

conditions are shown in Fig. 4. 
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Fig. 4 Boundary conditions of the single-layer VAT plate, <T0|T1>=  <75°|15°> 

Cubic beam elements, B3, are used along the beam axis (y) with two different polynomial 

expansions, L9 and L16, to enable the beam kinematics approximation on the cross-section (xz-

coordinates). At first, to evaluate the convergence of the models, refinement is performed along 

the z-direction with nz
*
= (1, 3, 6, 9) considering the L9 Lagrange polynomial expansions on 

the cross-section. In this case, the number of elements in the x and y directions (10B3) is 

considered constant (see Fig. 5). In the next step, refinement was performed simultaneously 

along the beam axis with ny
*
= (5, 7, 10, 15, 20, 30) B3 and along the plate width considering 

nx
*
= ny

*
. This refinement was performed considering both the L9 and L16 expansions on the 

cross-section, as shown in Figs. 6 and 7, respectively.  

 

Fig. 5 Refined elements over the cross-section 
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Fig. 6 Refined elements through the beam with L9 expansion over the cross-section 

 
Fig. 7 Refined elements through the beam with L16 expansion over the cross-section 

 

Table 1 summarizes the results obtained for the first and second critical buckling loads 

for each of the models considered. The results indicate the convergence of the proposed 

CUF approach with a significantly lower number of DOF as compared to those used in the 

Nastran model (see Figs. 8 and 9). Furthermore, the results indicate that the CUF model with 

L9 polynomial expansions and 10B3 beam elements can converge satisfactorily compared to 

the Nastran model. Therefore, this mesh can be employed for further modeling.  

4.2. Pre-buckling and buckling analyses of a sixteen-layer VAT plate  

A 16-ply balanced symmetric square plate, proposed in [22], is considered in this 

section. The square plate has a length of a=254 mm. The stacking sequence, in according 

with Eq. (1) is expressed as  . 

The panel is loaded with a pure compression load and is simply supported, as shown in 

Fig. 10. The lamina properties are set as follows: E1=181 GPa, E2=10.270 GPa, G12 = 

G13= 7.170 GPa, G23 =3.780 GPa, υ12=0.28, and each ply has a thickness of 0.15 mm.  

Three CUF based models with 10B3, 15B3, and 20B3 beam elements have been 

considered corresponding to 160, 240 and 320 L9 cross-sectional elements, respectively. 

The results have been compared with a classical FEM model presented in [22]. As 

reported in Table 2, the CUF model converged with a significantly lower number of 

DOFs compared to classical FEM model. The convergence of the first six critical loads 

evaluated with the proposed CUF-based models is presented in Fig. 11.  
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Table 1 Linear elastic buckling estimates according to the number of elements through 

the beam and cross-section 

Model DOF 1st Critical Load 2nd Critical Load nz
*
 nx

*
= ny

*
 

Nastran 

61206 

242406 

964806 

1.92 N 

1.85 N 

1.85 N 

2.04 N 

2.02 N 

2.02 N 

- 

- 

- 

- 

- 

- 

CUF L9 

3969 

9261 

17199 

25137 

1.91 N 

1.90 N 

1.90 N 

1.90 N 

2.04 N 

2.03 N 

2.03 N 

2.03 N 

1 

3 

6 

9 

10 

10 

10 

10 

CUF L9 

1089 

2025 

3969 

8649 

15129 

2.13 N 

1.98 N 

1.91 N 

1.87 N 

1.86 N 

2.57 N 

2.18 N 

2.04 N 

1.98 N 

1.97 N 

1 

1 

1 

1 

1 

  5 

  7 

10 

15 

20 

CUF L16 

2112 

3960 

7812 

17112 

30012 

1.97 N 

1.92 N 

1.88 N 

1.86 N 

1.85 N 

2.48 N 

2.14 N 

2.02 N 

1.97 N 

1.96 N 

1 

1 

1 

1 

1 

  5 

  7 

10 

15 

20 

 nz
*
= number of elements through the thickness 

 nx
*
= number of elements along the width 

 ny
*
= number of elements along the beam axis 

 

Fig. 8 First critical buckling load vs. DOF, based on the refinement of the beam elements 
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Fig. 9 Second critical buckling load vs. DOF, based on the refinement of the beam element 

 

Fig. 10 SSSS boundary condition (BC) of the plate 

Table 2 First five critical loads for the sixteen-layer plate [<60°|15°><60°|15°>/<-60°| 

-15°><60°|15°>] 

Model DOF Mode 1 

(kN) 

Mode 2 

(kN) 

Mode 3 

(kN) 

Mode 4 

(kN) 

Mode 5 

(kN) 

Ref.  [22] 

CUF 10B3 

CUF 15B3 

CUF 20B3 

387205 

43659 

95139 

166419 

13.62 

13.78 

13.61 

13.67 

21.62 

22.03 

21.69 

21.68 

35.40 

37.67 

35.94 

35.69 

54.46 

55.24 

54.51 

54.60 

56.01 

60.57 

57.65 

56.69 
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Fig. 11 Convergence of the first six critical loads using different CUF-based models 

Pre-buckling and buckling analyses considering various stacking sequences were 

performed in order to determine non-uniform stress distributions due to the in-plane load and 

their effects on the critical loads. Herein, T0 is a fixed angle, and T1 increases from 0° to 90° 

in steps of π/15, as reported in Table 3. The model with 10B3 elements is considered. 

Table 3 Different lay-up considered for the laminate 

Lay-up Stacking sequence 

[<T0°|T1°>/<-T0°|T1°>/<-T0°|-T1°>/<T0°|T1°>]4 

T0° T1° 

1 60   0 

2 60 15 

3 60 30 

4 60 45 

5 60 60 

6 60 75 

7 60 90 

Table 4 reports the displacements fields and the normal in-plane stresses of some of 

the stacking sequences considered. Table 5 shows the first five critical buckling modes 

and the related critical load values for all the lamination schemes considered.  

The results demonstrate that curvilinear fiber paths can be used to modify the in-plane 

stress distributions. Non-uniform stress fields can be obtained although the panel is 

subject to a constant uniaxial compression. 

In the buckling case, as shown in Table 5, the variation of fiber orientations, T1, and 

the resulting change in the stress field lead to significant changes in the critical buckling 

loads and their modal shapes.    
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For instance, increasing T1 from 0° to 45°, the first critical  load increases by 47.64% , 

while, for a lamination angle, T1, higher than 45°, the first mode to appear has two halfwaves 

instead of one in the direction of the applied load. Fig. 12 reports the values of the first six 

critical loads with the variation of lamination angle T1. 

These results demonstrate that the proposed CUF model can be used to evaluate the 

complex stress fields resulting from the use of VAT laminas, that is, this approach provides 

an accurate prediction of the geometric stiffness and critical loads of such complex 

structures. To validate further the performances of the present model the free vibration of 

VAT laminates is considered in the following section.   

Table 4 Pre-buckling displacement and stress distribution for some of the staking sequences 

considered. The stress fields have been evaluated at the top of the plate.  

 

Design Displacement 
 

 

 

 

Lay-up  

1 

 

  

 

 

Lay-up  
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4 
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Lay-up  

7 
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Table 5 First six critical loads and modal shapes  

 

Design Mode 1 (kN) Mode 2 (kN) Mode 3 (kN) Mode 4 (kN) Mode 5(kN) Mode 6 (kN) 

 

 

Lay-up 1 

 
Fcr1=11.44 

 
Fcr2= 23.60 

 
Fcr3= 42.40  

 
Fcr4= 52.08  

 
Fcr5= 54.69 

 
Fcr6= 68.99  

 

 

Lay-up 2 

 
Fcr1= 13.78  

 
Fcr2= 22.03  

 
Fcr3= 37.67  

 
Fcr4= 55.24 

 
Fcr5= 60.57 

 
Fcr6= 64.98 

 

 

Lay-up 3 

 
Fcr1= 16.22  

 
Fcr2= 20.62  

 
Fcr3= 32.61 

 
Fcr4= 50.89 

 
Fcr5= 59.69  

 
 Fcr6 = 67.66  

 

 

Lay-up 4 

 
Fcr1= 16.89  

 
Fcr2= 18.29  

 
Fcr3= 26.46  

 
Fcr4= 39.44  

 
Fcr5= 57.42  

 
 Fcr6= 62.02  

 

 

Lay-up 5 

 
 Fcr1=14.56  

 
Fcr2= 14.93  

 
Fcr3= 19.50  

 
Fcr4= 27.62  

 
Fcr5= 39.17  

 
Fcr6=54.04  

 

 

Lay-up 6 

 
Fcr1= 10.44  

 
Fcr2= 11.28  

 
Fcr3= 14.05 

 
Fcr4=18.90  

 
Fcr5=26.63  

 
Fcr6=36.73  

 

 

Lay-up 7 

 
Fcr1= 7.76  

 
Fcr2= 8.42  

 
Fcr3=11.43  

 
Fcr4= 14.71  

 
Fcr5= 21.05  

 
Fcr6= 27.68  
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Fig. 12 First six critical buckling loads for different T1 values 

4.3. Free vibration analysis of a sixteen-layer VAT plate 

In this section, the free-vibration response of a VAT panel has been investigated 

considering different geometries and boundary conditions, see Eq. 19. Various stacking 

sequences see Table 3, have been considered. Two different geometries have been used: 

square and rectangle plates with a/t=105.85 and a/t=52.92  (a=0.254, b=0.127 m), as 

shown in Figs. 14 (up) and 14 (down), respectively. 
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 Case 1 Case 2 Case 3 Case 4 

Fig. 14 Four-edge plates subjected to four different BCs, case 1 (SSSS), case 2 (SSSS-I), 

case 3 (CCCC) and case 4 (CFCF) 

The first six natural frequencies for the square and rectangle geometries for various 

BCs are summarized in Tables 6 to 9.  

The results for case 1 (SSSS), as described in Table 6 and Fig. 15, indicate that when the 

square panel is considered the first natural frequency exhibits a growth of 14.57%  with an 

increase of T1 from 0° to 45°, whereas in lay-ups 5, 6, and 7 (T1 from 60° to 90°) the first 

frequency values decrease by 16.47%. In contrast, in the rectangular panel, with the increase 

in the T1 angle from 0° to 90°, the first frequencies increase by 71.91%. The natural 

frequencies obtained for cases 2 (SSSS-I) and 3 (CCCC) are listed in Tables 7 and 8, 

respectively. Figs.16 and 17 show that the variation of T1 results in similar effects on natural 

frequencies when cases 1, 2 and 3 are considered. However, in case 4 (CFCF) the results 

indicate that when the square plate is considered, an increase in the fiber orientation angles 

(T1) leads to an increase of 130.96% in the first natural frequency values, see Tab. 9 and Fig. 

18. These findings demonstrate that the frequency behaviors are strongly dependent on the 

geometry, boundary conditions, and stacking sequence designs. The large design space 

coming from the use of VAT composite materials makes it possible to optimize the staking 

sequence exceeding the performance normally obtained by classic composite materials. 

Table 6 First six natural frequencies for case 1 - SSSS 

a/h Design Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

=105.85 

Lay-up 1 
Lay-up 2 
Lay-up 3 
Lay-up 4 
Lay-up 5 
Lay-up 6 
Lay-up 7 

229.50 
246.31 
260.17 
262.96 
252.34 
230.86 
210.77 

537.07 
590.42 
591.19 
551.92 
495.98 
428.17 
372.97 

659.99 
635.41 
656.93 
688.61 
701.96 
702.29 
635.35 

838.68 
911.18 
948.65 
961.98 
859.34 
728.86 
703.71 

945.24 
984.15 

1016.47 
983.72 
946.74 
870.24 
769.15 

1026.53 
1149.90 
1131.57 
1048.42 
1009.32 

948.18 
893.22 

=52.92 

Lay-up 1 
Lay-up 2 
Lay-up 3 
Lay-up 4 
Lay-up 5 
Lay-up 6 
Lay-up 7 

897.56 
988.30 

1125.46 
1259.12 
1379.00 
1479.00 
1543.10 

1332.14 
1402.41 
1500.44 
1576.96 
1638.24 
1702.01 
1758.48 

2051.60 
2159.78 
2338.30 
2228.99 
2057.49 
1923.68 
1916.83 

2193.36 
2303.63 
2550.20 
3060.88 
2645.51 
2291.65 
2249.48 

2323.23 
2393.00 
2747.62 
3136.75 
3431.71 
2830.93 
2754.41 

3304.48 
3454.18 
3392.48 
3339.63 
3615.06 
3593.33 
3436.64 
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Table 7 First six natural frequencies for case 2 - SSSS-I 

a/h Design Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

=105.85 

Lay-up 1 
Lay-up 2 
Lay-up 3 
Lay-up 4 
Lay-up 5 
Lay-up 6 
Lay-up 7 

485.38 
483.44 
470.75 
452.97 
436.04 
424.72 
420.64 

898.62 
935.55 
885.60 
800.44 
716.54 
650.46 
611.19 

1019.77 
974.59 
984.91 

1011.30 
1034.19 
1004.93 

914.40 

1389.39 
1401.63 
1392.64 
1321.94 
1150.35 
1055.29 
1076.54 

1521.14 
1636.83 
1533.39 
1396.73 
1357.23 
1326.70 
1307.15 

1824.45 
1697.43 
1747.67 
1847.50 
1748.45 
1508.17 
1357.56 

=52.92 

Lay-up 1 
Lay-up 2 
Lay-up 3 
Lay-up 4 
Lay-up 5 
Lay-up 6 
Lay-up 7 

897.16 
987.92 

1125.45 
1258.87 
1378.90 
1479.00 
1543.09 

1330.80 
1401.45 
1500.43 
1576.27 
1637.87 
1702.01 
1758.35 

2050.53 
2158.27 
2338.29 
2227.66 
2056.67 
1923.67 
1916.47 

2190.15 
2301.56 
2550.18 
3058.72 
2643.98 
2291.64 
2248.80 

2321.18 
2390.72 
2747.59 
3135.22 
3429.08 
2830.92 
2753.17 

3298.19 
3450.16 
3392.46 
3337.48 
3614.83 
3593.32 
3434.61 

Table 8 First six natural frequencies for case 3 - CCCC 

a/h Design Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

=105.85 

Lay-up 1 
Lay-up 2 
Lay-up 3 
Lay-up 4 
Lay-up 5 
Lay-up 6 
Lay-up 7 

485.52 
483.66 
471.05 
453.29 
436.28 
424.89 
420.77 

899.09 
936.15 
886.28 
801.14 
717.03 
650.70 
611.32 

1020.00 
975.06 
985.77 

1012.23 
1034.96 
1005.31 

914.56 

1390.14 
1402.73 
1394.25 
1323.38 
1151.26 
1055.87 
1076.99 

1522.16 
1638.32 
1534.78 
1398.49 
1358.57 
1327.43 
1307.54 

1824.80 
1698.27 
1749.73 
1849.72 
1750.10 
1508.77 
1357.76 

=52.92 

Lay-up 1 
Lay-up 2 
Lay-up 3 
Lay-up 4 
Lay-up 5 
Lay-up 6 
Lay-up 7 

898.47 
989.23 

1126.72 
1260.92 
1380.96 
1480.54 
1544.27 

1333.59 
1403.79 
1502.21 
1579.44 
1640.75 
1703.27 
1759.09 

2053.71 
2161.57 
2341.32 
2232.79 
2060.86 
1924.99 
1917.67 

2195.50 
2306.00 
2553.10 
3066.07 
2649.94 
2293.35 
2250.82 

2326.34 
2395.29 
2751.29 
3141.84 
3437.33 
2833.02 
2755.95 

3307.40 
3456.95 
3396.34 
3346.17 
3620.55 
3595.84 
3438.23 

Table 9 First six natural frequencies for case 4 - CFCF 

a/h Design Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

=105.85 

Lay-up 1 
Lay-up 2 
Lay-up 3 
Lay-up 4 
Lay-up 5 
Lay-up 6 
Lay-up 7 

168.47 
191.95 
226.63 
271.46 
321.29 
364.45 
389.11 

221.02 
251.97 
290.17 
332.93 
378.61 
418.01 
437.02 

438.20 
508.91 
544.89 
560.23 
552.72 
527.06 
495.56 

467.69 
510.87 
618.04 
753.28 
830.02 
738.07 
653.91 

496.24 
574.94 
685.38 
822.39 
897.86 

1008.61 
929.14 

819.45 
938.46 
928.32 
895.22 
974.37 

1061.33 
1064.60 

=52.92 

Lay-up 1 
Lay-up 2 
Lay-up 3 
Lay-up 4 
Lay-up 5 
Lay-up 6 
Lay-up 7 

715.46 
547.99 
579.07 
846.73 

1276.64 
1477.97 
1500.65 

825.44 
575.96 
597.58 
871.56 

1331.63 
1634.49 
1497.18 

1217.10 
1075.40 
1151.93 
1375.78 
1529.77 
1683.48 
1554.01 

1748.81 
1420.49 
1440.75 
1743.31 
1842.07 
1791.30 
1812.39 

1862.21 
1440.48 
1456.42 
2205.91 
2269.04 
1993.34 
2028.78 

1990.40 
1531.47 
1519.91 
2211.32 
2825.54 
2321.45 
2381.92 
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Fig. 15 Sensitivity of the first six frequencies, BC case 1 for different fiber orientations T1 

  

Fig. 16 Sensitivity of the first six frequencies, BC case 2 for different fiber orientations T1 

 

Fig. 17 Sensitivity of the first six frequencies, BC case 3 for different fiber orientations T1   
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Fig. 18 Sensitivity of the first six frequency, BC case 4 for different fiber orientations T1 

4.4. Trade-off analysis 

Identifying the best lamination strategy requires a compromise to fulfill the design 

requirements in each operational scenario: static, dynamic or buckling. In this section, a 

preliminary trade-off analysis is performed using the results shown previously. 

The results of the performed linear buckling, free vibration and static analyses are 

compared considering the lamination strategies reported in Table 3. The fully simply 

supported boundary condition is used. The results of the buckling analysis are obtained from 

Table 5 corresponding to the boundary condition shown in Fig. 10. The results of the natural 

frequencies for the different VAT lay-up schemes were considered based on Table 6 where a 

fully simply supported square plate is investigated. In the case of static analysis, a transverse 

uniform pressure has been applied to the simply supported panel. 

To investigate the effect of different lay-up designs of the VAT a weighted index has 

been introduced. The critical buckling loads, natural frequencies and maximum displacement 

are considered. The normalization in these cases corresponds to the scaling of a variable to 

have a positive value greater than 0 or a maximum value of 1. Consequently, each value 

includes a weight during the evaluation, as follows:  

 1 ,max i i
w

max max

X X X
I

X X

 
   

 
0 1i

max

X

X
  (20) 

where Iw is introduced as a weighted index for the various analyses, and Xmax denotes the 

maximum value of Xi for each variable in every individual lay-up design.  

 The results for the three analyses are presented in Table 10. For both the buckling and 

free-vibration analyses, the minimum weighted index values correspond to lay-up 7. In 

Table 10, the sum of all the weighted indexes is presented for each lay-up design to 

evaluate the performance of each fiber orientation angle. In addition, the mean values, and 

percentages of all the weighted indexes are summarized. 

Considering the buckling modes, lay-up 2 exhibits the highest percentage of 93% among 

those of all the other lay-up designs. Lay-ups 2, 3 and 4 appear as the optimal designs in 

both the buckling and free-vibration analyses. In terms of the static behavior, the optimal 
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models for the VAT lay-ups are different.  Lay-up 1 provides the best compromise among 

the set-up considered since it can keep a percentage higher than 90% in all the analyses 

considered. 

The results indicate that the buckling analysis is more sensitive to the change in the 

fiber angle orientation compared to the other two analyses. The mean value of the 

buckling load indexes ranges from 5% to 93% of the maximum value. The displacement 

obtained in the static analysis ranges from 68% to 100% of the maximum value. Finally, 

the mean value of the natural frequency indexes ranges from 76% to 98%. 

Table 10 Weighted indexes for evaluating the lay-up schemes 

Type of 

analysis 
Iw 

 Modes Lay-up 1 Lay-up 2 Lay-up 3 Lay-up 4 Lay-up 5 Lay-up 6 Lay-up 7 

 

 

Free-

vibration 

analysis 

Mode 1 

Mode 2 

Mode 3 

Mode 4 

Mode 5 

Mode 6 

0.87 

0.91 

0.94 

0.87 

0.93 

0.89 

0.94 

1.00 

0.90 

0.95 

0.97 

1.00 

0.99 

1.00 

0.94 

0.99 

1.00 

0.98 

1.00 

0.93 

0.98 

1.00 

0.97 

0.91 

0.96 

0.84 

1.00 

0.89 

0.93 

0.88 

0.88 

0.72 

1.00 

0.76 

0.86 

0.82 

0.80 

0.63 

0.90 

0.73 

0.76 

0.78 

 Sum 

Mean 

Percent (%) 

5.42 

0.90 

90.26 

5.76 

0.96 

95.93 

5.90 

0.98 

98.25 

5.79 

0.97 

96.56 

5.50 

0.92 

91.68 

5.04 

0.84 

84.01 

4.60 

0.77 

76.70 

 

 

 

Critical 

buckling load 

Mode 1 

Mode 2 

Mode 3 

Mode 4 

Mode 5 

Mode 6 

0.68 

1.00 

1.00 

0.94 

0.90 

1.00 

0.82 

0.93 

0.89 

1.00 

1.00 

0.94 

0.96 

0.87 

0.77 

0.92 

0.99 

0.98 

1.00 

0.78 

0.62 

0.71 

0.95 

0.90 

0.86 

0.63 

0.46 

0.50 

0.65 

0.78 

0.62 

0.48 

0.33 

0.34 

0.44 

0.53 

0.46 

0.36 

0.27 

0.27 

0.35 

0.40 

 Sum 

Mean 

Percent (%) 

5.52 

0.92 

92.05 

5.58 

0.93 

93.00 

5.49 

0.91 

91.50 

4.96 

0.83 

82.67 

3.88 

0.65 

64.74 

2.74 

0.46 

45.69 

2.10 

0.35 

35.01 

Static 

Max-

displacement 
0.92 0.79 0.71 0.69 0.74 0.86 1.00 

structural 

analysis 

Sum 

Mean 

Percent (%) 

0.92 

0.92 

91.78 

0.79 

0.79 

79.45 

0.71 

0.71 

70.94 

0.69 

0.69 

68.91 

0.74 

0.74 

73.69 

0.86 

0.86 

85.76 

1.00 

1.00 

100.00 

5.  CONCLUSIONS 

 In this work, buckling, free-vibration, and static response analyses of VAT laminates 

were performed under the CUF framework. A one-dimensional CUF beam theory was 

used, and a layer-wise approach was adopted as cross-sectional kinematic. The spatial 

variation of the fiber orientation has been described in a rigorous manner with a smooth 

and continuous variation of the panel stiffness. Different lay-up was considered to reveal 

the effects of the use of curvilinear fibers on the static, buckling and free vibration 

response of a square symmetric VAT plate. The results have been compared with those 

presented in literature and with classical FEM models. 
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A preliminary convergence analysis was conducted to assess the present computational 

model. The results show the computational efficiency of the current approach that can ensure 

an accurate prediction of the critical loads with a fraction of the computational cost required 

by classical FEM models.  

The parametric analysis of a sixteen-layer panel was conducted to study the effects 

resulting from the variation of the lamination parameters. Static, buckling and free-vibration 

analyses were conducted. The results show that VAT lamination schemes can be used to 

redistribute the in-plane normal stress fields, that is, the critical buckling loads can be 

modified to fulfill the design requirements. The free vibration analyses have pointed out that 

different lay-ups led to a variation of the dynamic response of the structure. The 

effectiveness of the VAT depends on the geometry and boundary conditions of the structure.  

In conclusion, the results pointed out that the use of VAT laminates gives the 

possibility to obtain optimal designs that can satisfy strict requirements. Nevertheless, the 

large number of design variables requires a significant computational effort to identify the 

most promising configurations, that is, efficient computational models are mandatory. The 

high accuracy and computational efficiency make the present approach suitable for future 

applications in the design and optimization of VAT composites. 
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