
FACTA UNIVERSITATIS 
Series: Mechanical Engineering Vol. 19, No 2, 2021, pp. 285 - 305 

https://doi.org/10.22190/FUME200629040T 

© 2021 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND 

Original scientific paper 

A NEW C0 THIRD-ORDER SHEAR DEFORMATION THEORY 

FOR THE NONLINEAR FREE VIBRATION ANALYSIS OF 

STIFFENED FUNCTIONALLY GRADED PLATES 

 
Received June 29, 2020 / Accepted October 03, 2020 

Corresponding author: Hoang Lan Ton-That  
Department of Civil Engineering, HCMC University of Architecture, 196 Pasteur, District 3, HCMC, Vietnam. 

E-mail: lan.tonthathoang@uah.edu.vn 

Hoang Lan Ton-That

Department of Civil Engineering, HCMC University of Architecture, Vietnam 

Abstract. Nonlinear free vibration of stiffened functionally graded plates is presented 

by using the finite element method based on the new C0 third-order shear deformation 

theory. The material properties are assumed to be graded in the thickness direction by 

a power-law distribution. Based on the Von Karman theory and the third-order shear 

deformation theory, the nonlinear governing equations of motion are derived from the 

Hamilton’s principle. An iterative procedure based on the Newton-Raphson method is 

employed in computing the natural frequencies and mode shape. The comparison 

between these solutions and the other available ones suggests that this procedure is 

characterized by accuracy and efficiency. 
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1. INTRODUCTION 

The plates with stiffeners are often used in several fields of engineering such as 

medical, weapon, nuclear reactor construction, aerospace, etc. to improve stiffness of the 

structures. Many different ways are applied to analyzing plate structures in general as 

well as stiffened plate structures in particular; they are listed as Rayleigh-Ritz method [1], 

finite difference method [2, 3], finite element method (FEM) [4-15], constraint method 

[16, 17], mesh-free method [18-20], semi analytical finite defference method [21, 22], finite 

strip method [23-25], boundary element method [26, 27], integral transform approach [28], 

etc. The most important issue of this type of structure is the connection between the plate and 

the stiffeners. For example, Peng et al [19] used the first order shear deformation theory as 

well as the element-free Galerkin method to study the compatibility conditions between the 

plate and the stiffeners when they work together, etc. Evidently numerical methods are 

essential for calculating stiffened structures, in which the FEM is the most popular because of 
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its efficiency and stability. Chattopadhyay et al. as well as Holopainen  [29, 30] analyzed 

nonlinear static of composite stiffened plates based on the first order shear deformation theory 

and the FEM method or used a new finite model for a linear free vibration analysis of 

stiffened plates, which is based on the nine-node quadrilateral element related to mixed 

interpolation of tensorial components. Functionally graded materials with two constituents e.g. 

ceramic and metal from ceramic surface to metal surface are widely applied. In recent years, 

many surveys have been carried out in the area of functionally graded plates. The 

thermoelastic deformations and vibration behaviors with exact solutions were given by Vel 

and Batra [31]. Stress-driven nonlocal elasticity for nonlinear vibration characteristics of 

carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment was firstly 

introduced by Sedighi and Malikan in [32]. The nonlinear vibration and static deflection 

problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity 

was studied in [33] by Ouakad et al. On the other hand, Qian et al. [34] also analyzed this kind 

of structures based on the meshless local Petrov-Galerkin (MLPG) method. Thau and Choi 

showed the bending and free vibration behaviors of functionally graded plates based on the 

first-order shear deformation theory. Furthermore, concerning the MLPG method, the high-

order shear and normal deformation plate theory was used to analyze thick functionally 

graded plates by Gilhooly et al. Some papers of Liew reviewed the meshless methods for 

composite plate/shell structures. A review of Jha involved the listing of studies for this 

structure. Further, Reddy proposed a general formulation related to the third-order shear 

deformation plate theory and the finite element model. An isogeometric analysis and a 

collocation method employing the shear deformation theory were also applied to the analysis 

of functionally graded plates by Valizadeh et al. or Ferreira et al., Zhang and Zhou, Prakash as 

well as Singha who also proposed a formulation to study linear and nonlinear behaviors of the 

functionally graded plates with respect to the physical neutral surface. An efficient three-node 

finite shell element for linear and nonlinear analyses of composite structures was also given by 

Marinkovíc et al. [14, 35]. Shi's third-order shear deformation theory with its necessary 

stability was first used for a functionally graded plate structure analysis in thermal 

environment by Bui et al. [7]. Besides, the C0 type of this theory was also used in the 

analysis of functionally graded skew plates by Ton [12]. And now, the C0 type of Shi’s 

theory is applied to analyzing stiffened functionally graded plate structures. With the 

third-order shear deformation theory, we recognize that it is widely used because it does 

not need shear correction factors while it gives accurate transverse shear stresses. But 

with low-order finite elements such as four-node quadrilateral element, the need of C1 

continuous approximation for the displacement fields in the third-order shear deformation 

theory causes some impediments. To overcome these shortcomings, the third-order shear 

deformation theory is a revised form which only requires C0 continuity for displacement 

fields. In the C0 third-order shear deformation theory, two additional variables are joined, and 

thence the first derivative of transverse displacements is only required, respectively.  

The body of this paper is organized into four Sections. In Sect.2, finite element 

formulation based on the C0 new third-order shear deformation theory for stiffened 

functionally graded plates is presented. Several examples are subsequently presented in 

Sect.3. The paper ends with some concluding remarks in the last Section. 
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2. FINITE ELEMENT FORMULATION 

Let us consider a stiffened functionally graded plate with geometry as plotted in Fig. 

1a. The bottom and top faces of plate are to be fully metallic and ceramic, respectively. 

The mid-plane of the plate is xy-plane, while the z-axis is perpendicular to the xy-plane.  

 
(a) 

 
(b) 

Fig. 1 (a) The stiffened functionally graded plate and (b) the variation of volume fraction 

The volume fraction of ceramic (Vc) and metal (Vm) are formulated in Eq. (1) and the 

variation of volume fraction for several volume fraction coefficients of a functionally 

graded plate using the power-law distribution is plotted by Fig.1b. 
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where z is the thickness coordinate variable with -h / 2 z h / 2   as well as c, m and n 

represent the ceramic, metal constituents and the non-negative volume fraction gradient 

index, respectively. All values of E, ,  and  that vary through the thickness of plate 

are also formulated as below 
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According to the new theory of Shi [36], a three-dimensional displacement field 

( , , )u v w was given as below 
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This three-dimensional displacement field can be expressed in terms of the C0 third-

order shear deformation theory and seven unknown variables as follows 
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It can be seen that the present theory is composed of seven unknowns including three 

axial and transverse displacements, and four rotations due to the bending and shear 

effects. The strain-displacement relations based on the small strain assumptions can be 

given as follows 
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or matrix form 
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with the membrane strains obtained from 
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The bending strains are given by 
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And the shear strains are basically written by 
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The membrane, bending and shear strains can be then expressed as 
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where Ni, Ni,x and Ni,y are called the shape function and two derivatives of it in x-direction 

and y-direction. 

The global stiffness matrix is computed by 
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On the other hand, the element geometric stiffness matrix 
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Let us consider that the addition of the stiffener is in the x-direction and by 

transforming three Eqs. (6-8) as follows 
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Only the plate elements having an edge coinciding with the stiffener are considered; 

the establishment of formulation is quite similar. The global stiffness matrix for the 

stiffener is given by 
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where  ( ) / 2se h h= +  is the eccentricity between the plate and the stiffener, respectively. 

Besides, the mass matrix of plate element is shown 
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and exactly the same way for the stiffener element 
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For vibration of the stiffened functionally graded plate, the equation can be described as 

 ( ) ( )st st+ +M M q + K K q = 0  (38) 
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3. NUMERICAL RESULTS 

In this section, the numerical solutions for the nonlinear free vibration analysis of 

stiffened functionally graded plates are presented. Not only the fully simply supported but 

also the fully clamped boundary conditions are used in this paper.  

The fully simply supported boundary conditions (SSSS) for this procedure 
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Table 1 Material properties of the plate and the stiffener 

Material I 

E = 3x107 Pa, ν = 0.3 and ρ = 2820 kg/m3 

Material II 

E = 211x109 Pa, ν = 0.3 and ρ = 7830 kg/m3 

Material III 

Em = 322.7 x 109 Pa, m = 0.28, m = 2370 kg/m3, Ec = 207.79 x 109 Pa, c = 0.28,  

c = 8166 kg/m3 

3.1. Verification 

Firstly, the fully simply supported rectangular plate with two stiffeners as depicted in 

Fig. 2 is studied in order to verify reliability and validity of the proposed method. The 

material properties are material I as E = 3x107 Pa, ν = 0.3 and ρ = 2820 kg/m3 in Table 1 

for both the plate and the stiffener. The first five natural frequencies are given in Table 2 

and compared with the solutions of Peng et al. [19] as well as the results from Ansys 

software. It can be seen that the values presented in this paper have a good agreement 

with the references. 

 

 

Fig. 2 The geometric properties of the stiffened rectangular plate with two stiffeners 

perpendicular to each other 

Next, the other fully simply supported rectangular plate with one stiffener in the 

middle is considered. The geometric properties of the plate are a = 0.6m, b = 0.41m and h 

= 0.00633m.  
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Table 2 The comparison of first five natural frequencies (Hz) of the fully simply supported 

rectangular with two stiffeners 

Results Mode 

 1 2 3 4 5 

Ansys 0.0812 0.0849 0.1035 0.1090 0.1292 

L. X. Peng et al. [19] 0.0816 0.0856 0.1000 0.1028 0.1311 

Present 0.0819 0.0861 0.1055 0.1104 0.1320 

Table 3 The comparison of first three natural frequencies (Hz) of the fully simply supported 

rectangular with one stiffener 

Results Mode 

  1 2 3 

Mukherjee et al. [37] 257.05 272.10 524.70 

Harik et al. [38] 253.59 282.02 513.50 

Aksu et al. [2] 254.94 269.46 511.64 

Dayi Ou et al. [39] 258.79 273.89 527.29 

Present 259.47 283.72 525.30 

Furthermore, the geometric properties of the stiffener along edge b of plate are hs = 

0.0222m and bs = 0.001277m. The material properties are material II with E = 211x109 

Pa, ν = 0.3 and ρ = 7830 kg/m3 as Table 1 for both the plate and the stiffener. The first 

three natural frequencies based on the proposed method are compared with the others 

related to Mukherjee et al. [37], Harik et al. [38], Aksu et al. [2] and Dayi et al. [39]. 

From Table 3, it is interesting to note that the obtained numerical solutions match very 

well with the others. 

The last example in this section is related to the nonlinear free vibration analysis for a 

fully simply supported functionally graded Si3N4/SUS304 square plate with a = b = 0.4m 

and thickness h = 0.005m. The material properties are material III with Em = 322.7 x 109 

Pa, m = 0.28, m = 2370 kg/m3, Ec = 207.79 x 109 Pa, c = 0.28, c = 8166 kg/m3. The 

nonlinear to linear frequency ratios NL/L with n = 2 as given in Table 4 are compared 

with the results of Shen [40]. Once again, the accuracy and efficiency of the proposed 

method are proved by the very small errors between the results of two methods. 

Table 4  The nonlinear to linear frequency ratio NL/L of the fully simply supported square 

functionally graded plate 

n = 2 wmax / h 

Results 0.0 0.2 0.4 0.6 0.8 1 

H. S. Shen [40] 1.00 1.021 1.081 1.174 1.293 1.432 

Present 1.00 1.020 1.079 1.169 1.278 1.414 
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3.2. Verification of the nonlinear free vibration of functionally graded plate  

with one stiffener 

By adding one stiffener in the middle as illustrated in Fig. 3 for the functionally 

graded Si3N4/SUS304 square plate as example above with a/h = 10 and 20, the nonlinear 

to linear frequency ratios NL/L are calculated.  

 

Fig. 3 The stiffened functionally graded plate with one stiffener in the middle 

The correlations of geometry between the plate and the stiffener are introduced as bs 

= a/30, hs = 5h or bs = a/50, hs = 5h. Two types of boundary condition and six values of n 

(0, 0.5, 1, 2, 5 and 10) are also used in this example.  

The numerical results based on this proposed method are given in Tables 5-12 and 

displayed in Figs. 4-7. We have found out that the nonlinear to linear frequency ratios 

NL/L decrease with increasing the volume fraction coefficient n.  

This order does not change when we change ratio a/h or the boundary conditions.  

Besides, the first four mode shapes for fully simply supported stiffened functionally 

graded plate with case a/h = 10, bs = a/30 and n = 2 are also depicted in Fig. 8. 

Table 5  Nonlinear to linear frequency ratio NL/L of (SSSS) square FGM stiffened plate 

with one stiffener (bs = a/30, hs = 5h and a/h = 10) 

a/h n (SSSS)                      wcentral /h 

 0.2 0.4 0.6 0.8 1.0 

10 

 

0 1.0211 1.0491 1.0828 1.1213 1.1543 

 0.5 1.0197 1.0461 1.0777 1.1139 1.1536 

 1 1.0191 1.0443 1.0748 1.1095 1.1475 

 2 1.0184 1.0426 1.0717 1.1048 1.1411 

 5 1.0178 1.0410 1.0688 1.1005 1.1350 

 10 1.0176 1.0404 1.0678 1.0988 1.1328 
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Table 6 Nonlinear to linear frequency ratio NL/L of (SSSS) square FGM stiffened plate 

with one stiffener (bs = a/30, hs = 5h and a/h = 20) 

a/h n (SSSS)                      wcentral /h 

 0.2 0.4 0.6 0.8 1.0 

20 0 1.0210 1.0473 1.0772 1.1107 1.1470 

 0.5 1.0194 1.0432 1.0706 1.1012 1.1344 

 1 1.0183 1.0407 1.0667 1.0956 1.1269 

 2 1.0173 1.0384 1.0629 1.0902 1.1195 

 5 1.0164 1.0364 1.0594 1.0851 1.1127 

 10 1.0160 1.0354 1.0578 1.0828 1.1048 

Table 7 Nonlinear to linear frequency ratio NL/L of (CCCC) square FGM stiffened 

plate with one stiffener (bs = a/30, hs = 5h and a/h = 10) 

a/h n (CCCC)                      wcentral /h 

         0.2     0.4 0.6 0.8 1.0 

10 0        1.0032      1.0114     1.0242 1.0415 1.0625 

 0.5        1.0029      1.0106    1.0227 1.0390 1.0590 

 1        1.0027      1.0100    1.0217 1.0374 1.0566 

 2        1.0025      1.0095    1.0206 1.0355 1.0539 

 5        1.0024      1.0089    1.0195 1.0337 1.0511 

 10        1.0023      1.0087    1.0190 1.0329 1.0501 

Table 8 Nonlinear to linear frequency ratio NL/L of (CCCC) square FGM stiffened 

plate with one stiffener (bs = a/30, hs = 5h and a/h = 20) 

a/h n (CCCC)                      wcentral /h 

         0.2     0.4 0.6 0.8 1.0 

20 0        1.0019      1.0066    1.0138 1.0236 1.0358 

 0.5        1.0013      1.0050    1.0112 1.0197 1.0304 

 1        1.0009      1.0042    1.0098 1.0176 1.0275 

 2        1.0007      1.0036    1.0086 1.0157 1.0248 

 5        1.0005      1.0030    1.0075 1.0140 1.0224 

 10        1.0003      1.0027    1.0070 1.0132 1.0212 

Table 9  Nonlinear to linear frequency ratio NL/L of (SSSS) square FGM stiffened plate 

with one stiffener (bs = a/50, hs = 5h and a/h = 10) 

a/h n (SSSS)                           wcentral /h 

  0.2 0.4 0.6 0.8 1.0 

10 0 1.0213 1.0502 1.0875 1.1288 1.1793 

 0.5 1.0196 1.0471 1.0822 1.1230 1.1683 

 1 1.0188 1.0455 1.0792 1.1184 1.1619 

 2 1.0181 1.0438 1.0761 1.1137 1.1551 

 5 1.0176 1.0424 1.0734 1.1093 1.1489 

 10 1.0175 1.0420 1.0725 1.1079 1.1468 
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Fig. 4 The effects of n on the nonlinear to linear frequency ratio NL/L for case SSSS 

with a/b = 1, a/h = 10 and bs = a/30, hs = 5h. 

 

 

Fig. 5 The effects of n on the nonlinear to linear frequency ratio NL/L for case SSSS 

with a/b = 1, a/h = 20 and bs = a/30, hs = 5h. 
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Fig. 6 The effects of n on the nonlinear to linear frequency ratio NL/L for case CCCC 

with a/b = 1, a/h = 10 and bs = a/30, hs = 5h. 

 

 

Fig. 7 The effects of n on the nonlinear to linear frequency ratio NL/L for case CCCC 

with a/b = 1, a/h = 20 and bs = a/30, hs = 5h. 
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Table 10 Nonlinear to linear frequency ratio NL/L of (SSSS) square FGM stiffened 

plate with one stiffener (bs = a/50, hs = 5h and a/h = 20) 

a/h n (SSSS)                           wcentral /h 

  0.2 0.4 0.6 0.8 1.0 

20 0 1.0211 1.0486 1.0819 1.1198 1.1614 

 0.5 1.0194 1.0449 1.0756 1.1104 1.1486 

 1 1.0187 1.0430 1.0722 1.1054 1.1416 

 2 1.0179 1.0411 1.0690 1.1005 1.1348 

 5 1.0173 1.0395 1.0660 1.0959 1.1285 

 10 1.0170 1.0388 1.0647 1.0940 1.1258 

 

 
 

Mode 1 Mode 2 

 
 

Mode 3 Mode 4 

Fig. 8 The first four mode shapes of the stiffened functionally graded plate with one stiffener 

Table 11 Nonlinear to linear frequency ratio NL/L of (CCCC) square FGM stiffened 

plate with one stiffener (bs = a/50, hs = 5h and a/h = 10) 

a/h n (CCCC)                          wcentral /h 

  0.2 0.4 0.6 0.8 1.0 

10 0 1.0035 1.0127 1.0272 1.0467 1.0702 

 0.5 1.0032 1.0118 1.0255 1.0438 1.0661 

 1 1.0030 1.0113 1.0244 1.0420 1.0634 

 2 1.0028 1.0107 1.0232 1.0399 1.0604 

 5 1.0027 1.0101 1.0219 1.0378 1.0573 

 10 1.0026 1.0099 1.0215 1.0371 1.0563 
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Table 12 Nonlinear to linear frequency ratio NL/L of (CCCC) square FGM stiffened plate 

with one stiffener (bs = a/50, hs = 5h and a/h = 20) 

a/h n (CCCC)                          wcentral /h 

  0.2 0.4 0.6 0.8 1.0 

20 0 1.0022 1.0078 1.0166 1.0284 1.0431 

 0.5 1.0016 1.0063 1.0138 1.0242 1.0371 

 1 1.0013 1.0056  1.0126 1.0221 1.0341 

 2 1.0011 1.0049  1.0114 1.0202 1.0313 

 5 1.0009 1.0044  1.0103 1.0184 1.0287 

 10 1.0008 1.0041        1.0098 1.0176 1.0276 

3.3. Nonlinear free vibration of a functionally graded plate with two stiffeners 

The last example is related to the analysis of functionally graded Si3N4/SUS304 square 

plate with two stiffeners perpendicular to each other in the middle as illustrated in Fig. 9.  

 

Fig. 9 The stiffened functionally graded plate with two stiffeners 

Table 13 Nonlinear to linear frequency ratio NL/L of (SSSS) square FGM stiffened 

plate with two stiffeners (bs = a/30, hs = 5h and a/h = 10) 

a/h n (SSSS)                 wcentral /h 

  0.2 0.4 0.6 0.8 1.0 

10 0 1.0225 1.0476 1.0765 1.1083 1.1381 

 0.5 1.0219 1.0459 1.0735 1.1038 1.1362 

 1 1.0211 1.0450 1.0719 1.1013 1.1328 

 2 1.0205 1.0440 1.0702 1.0987 1.1291 

 5 1.0202 1.0432 1.0686 1.0963 1.1257 

 10 1.0201 1.0429 1.0681 1.0954 1.1245 
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Table 14 Nonlinear to linear frequency ratio NL/L of (SSSS) square FGM stiffened 

plate with two stiffeners (bs = a/30, hs = 5h and a/h = 20) 

a/h n (SSSS)                 wcentral /h 

  0.2 0.4 0.6 0.8 1.0 

20 0 1.0222 1.0468 1.0736 1.1022 1.1323 

 0.5 1.0217 1.0456 1.0713 1.0987 1.1276 

 1 1.0210 1.0447 1.0699 1.0966 1.1246 

 2 1.0201 1.0438 1.0683 1.0942 1.1214 

 5 1.0200 1.0429 1.0667 1.0918 1.1181 

 10 1.0199 1.0425 1.0660 1.0907 1.1166 

Table 15 Nonlinear to linear frequency ratio NL/L of (CCCC) square FGM stiffened 

plate with two stiffeners (bs = a/30, hs = 5h and a/h = 10) 

a/h n (CCCC)                 wcentral /h 

  0.2 0.4 0.6 0.8 1.0 

10 0 1.0024 1.0084 1.0180 1.0308 1.0467 

 0.5 1.0022 1.0079 1.0170 1.0292 1.0444 

 1 1.0021 1.0076 1.0164 1.0283 1.0430 

 2 1.0020 1.0073 1.0158 1.0273 1.0415 

 5 1.0019 1.0070 1.0152 1.0263 1.0401 

 10 1.0019 1.0069 1.0150 1.0259 1.0395 

Table 16 Nonlinear to linear frequency ratio NL/L of (CCCC) square FGM stiffened 

plate with two stiffeners (bs = a/30, hs = 5h and a/h = 20) 

a/h n (CCCC)                 wcentral /h 

  0.2 0.4 0.6 0.8 1.0 

20 0 1.0015 1.0047 1.0097 1.0164 1.0246 

 0.5 1.0012 1.0040 1.0085 1.0145 1.0221 

 1 1.0010 1.0036 1.0078 1.0135 1.0207 

 2 1.0009 1.0033 1.0072 1.0125 1.0193 

 5 1.0008 1.0030 1.0066 1.0116 1.0180 

 10 1.0007 1.0028 1.0063 1.0112 1.0174 

Table 17 Nonlinear to linear frequency ratio NL/L of (SSSS) square FGM stiffened 

plate with two stiffeners (bs = a/50, hs = 5h and a/h = 10) 

a/h n (SSSS)                         wcentral /h 

  0.2 0.4 0.6 0.8 1.0 

10 0 1.0224 1.0481 1.0793 1.1144 1.1527 

 0.5 1.0216 1.0462 1.0755 1.1087 1.1448 

 1 1.0212 1.0459 1.0736 1.1056 1.1405 

 2 1.0208 1.0448 1.0716 1.1025 1.1361 

 5 1.0205 1.0439 1.0698 1.0997 1.1320 

 10 1.0202 1.0436 1.0692 1.0988 1.1306 
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Table 18 Nonlinear to linear frequency ratio NL/L of (SSSS) square FGM stiffened 

plate with two stiffeners (bs = a/50, hs = 5h and a/h = 20) 

a/h n (SSSS)                         wcentral /h 

  0.2 0.4 0.6 0.8 1.0 

20 0 1.0220 1.0475 1.0761 1.1074 1.1410 

 0.5 1.0214 1.0460 1.0734 1.1032 1.1350 

 1 1.0211 1.0451 1.0718 1.1007 1.1315 

 2 1.0207 1.0442 1.0701 1.0980 1.1278 

 5 1.0204 1.0433 1.0684 1.0955 1.1242 

 10 1.0200 1.0429 1.0678 1.0945 1.1227 

Table 19 Nonlinear to linear frequency ratio NL/L of (CCCC) square FGM stiffened 

plate with two stiffeners (bs = a/50, hs = 5h and a/h = 10) 

a/h n (CCCC)                       wcentral /h 

  0.2 0.4 0.6 0.8 1.0 

10 0 1.0026 1.0094 1.0201 1.0344 1.0521 

 0.5 1.0024 1.0087 1.0188 1.0323 1.0491 

 1 1.0023 1.0084 1.0181 1.0312 1.0473 

 2 1.0022 1.0080 1.0173 1.0299 1.0454 

 5 1.0021 1.0076 1.0166 1.0286 1.0436 

 10 1.0020 1.0075 1.0163 1.0282 1.0296 

Table 20 Nonlinear to linear frequency ratio NL/L of (CCCC) square FGM stiffened 

plate with two stiffeners (bs = a/50, hs = 5h and a/h = 20) 

a/h n (CCCC)                       wcentral /h 

  0.2 0.4 0.6 0.8 1.0 

20 0 1.0017 1.0055 1.0114 1.0193 1.0291 

 0.5 1.0013 1.0046 1.0099 1.0170 1.0258 

 1 1.0012 1.0042 1.0091 1.0158 1.0241 

 2 1.0010 1.0039 1.0084 1.0147 1.0225 

 5 1.0009 1.0035 1.0078 1.0136 1.0210 

 10 1.0008 1.0033 1.0075 1.0131 1.0203 

The parameters to be changed are given as exactly the same as in the previous example. 

Once again, the numerical results based on this proposed method are given in Tables 13- 

20. Furthermore, the first four mode shapes for a fully simply supported stiffened 

functionally graded plate with case a/h = 10, bs = a/30 and n = 2 are also depicted in 

Fig. 10. 
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Mode 1 Mode 2 

 
 

Mode 3 Mode 4 

Fig. 10 The first four mode shapes of the functionally graded plate with two stiffeners 

4. CONCLUSIONS 

An efficient numerical method based on the new C0 third-order shear deformation 

theory with respect to the Shi theory is firstly developed for a nonlinear free vibration 

analysis of stiffened functionally graded plates. The Shi's third-order shear deformation 

theory with its necessary stability is then a revised form which only requires C0 continuity 

for displacement fields. In this C0 third-order shear deformation theory, two additional 

variables are joined, and thence the first derivative of transverse displacements is only 

required, respectively. Furthermore, the functionally graded materials with excellent 

characteristics of ceramic in corrosive resistances combined with the great toughness of 

metals in absorb energy and plastically deform, lead to outstanding advanced materials that 

can withstand extreme conditions of reality. This is even more wonderful if they are 

reinforced by stiffeners. From the above notions, this paper aims to provide mechanical 

information for this type of structure. In each case of the study with different data, the 

achieved results are found to agree well with the solutions of other numerical methods. 

Based on this proposed method, the present numerical solutions show a more stable procedure 

than others. And its applicability has been clearly shown in the section above. Finally, 

mechanical information from this paper might also be helpful to designers or researchers in 

appropriate selections of stiffened functionally graded plates for specific purposes. 



304 H.L. TON-THAT 

REFERENCES 

1. Liew, K.M., Xiang, Y., Kitipornchai, S., Meek, J.L., 1995, Formulation of Mindlin-Engesser model for 
stiffened plate vibration, Computer Methods in Applied Mechanics and Engineering, 120(3), pp. 339-353. 

2. Aksu, G., Ali, R., 1976, Free vibration analysis of stiffened plates using finite difference method, Journal 

of Sound and Vibration, 48(1), pp. 15-25. 
3. Zhou, X.Q., Yu, D.Y., Shao, X., Wang, S., Tian, Y.H., 2014, Band gap characteristics of periodically 

stiffened-thin-plate based on center-finite-difference-method, Thin-Walled Structures, 82, pp. 115-123. 

4. Bhar, A., Phoenix, S.S., Satsangi, S.K., 2010, Finite element analysis of laminated composite stiffened 
plates using FSDT and HSDT: A comparative perspective, Composite Structures, 92(2), pp. 312-321. 

5. Aishwary, S.R., Sharma, A.K., Gehlot, P., 2018, Free vibration analysis of Stiffened Laminated Plate 

using FEM, Materials Today: Proceedings, 5(2, Part 1), pp. 5313-5321. 
6. Nguyen, M.N., Nguyen, T.T., Bui, X.T., Vo, D.T., 2015, Static and free vibration analyses of stiffened 

folded plates using a cell-based smoothed discrete shear gap method (CS-FEM-DSG3), Applied 
Mathematics and Computation, 266, pp. 212-234. 

7. Bui, T.Q., Do, T.V., Ton, T.H.L, Doan, D.H., Tanaka, S., Pham, D.T., Nguyen, V.T.A., Yu, T., Hirose, 

S., 2016, On the high temperature mechanical behaviors analysis of heated functionally graded plates 
using FEM and a new third-order shear deformation plate theory, Composites Part B: Engineering, 92, 

pp. 218-241. 

8. Ton, T.H.L., Nguyen, V.H., Chau, D.T., 2020, An improved four-node element for analysis of composite 
plate/shell structures based on twice interpolation strategy, International Journal of Computational 

Methods, 17(6), 1950020. 

9. Ton, T.H.L., Nguyen, V.H., Chau, D.T., 2020, Nonlinear bending analysis of functionally graded plates 
using SQ4T elements based on twice interpolation strategy, Journal of Applied and Computational 

Mechanics, 6(1), pp. 125-136. 

10. Ton, T.H.L., Nguyen, V.H., Chau, D.T., Huynh, V.C., 2018, Enhancement to four-node quadrilateral 
plate elements by using cell-based smoothed strains and higher-order shear deformation theory for nonlinear 

analysis of composite structures, Journal of Sandwich Structures & Materials, 22, pp. 2302-2329. 

11. Nguyen, V.H., Ton, T.H.L., Chau, D.T., Dao, N.D., 2018, Nonlinear static bending analysis of 
functionally graded plates using MISQ24 elements with drilling rotations, Proc. International Conference 

on Advances in Computational Mechanics 2017, Springer Singapore, 15479070. 

12. Ton, T.H.L., 2020, Finite element analysis of functionally graded skew plates in thermal environment 
based on the new third-order shear deformation theory, Journal of Applied and Computational 

Mechanics, 6(4), pp. 1044-1057. 

13. Ton, T.H.L., 2020, Improvement on eight-node quadrilateral element (IQ8) using twice-interpolation 
strategy for linear elastic fracture mechanics, Engineering Solid Mechanics, 8(4), pp. 323-336. 

14. Rama, G., Marinkovic, D., Zehn, M., 2018, High performance 3-node shell element for linear and 

geometrically nonlinear analysis of composite laminates, Composites Part B: Engineering, 151, pp. 118-126. 
15. Marinković, D., Gil, R., Zehn, M., 2019, Abaqus implementation of a corotational piezoelectric 3-node 

shell element with drilling degree of freedom, Facta Universitatis-Series Mechanical Engineering, 17(2), 

pp. 269-283. 
16. Kamineni, J.N., Burela, R.G., 2019, Constraint method for laminated composite flat stiffened panel 

analysis using variational asymptotic method (VAM), Thin-Walled Structures, 145, 106374. 

17. Rossow, M.P., Ibrahimkhail, A.K., 1978, Constraint method analysis of stiffened plates, Computers & 
Structures, 8(1), pp. 51-60. 

18. Peng, L.X., Liew, K.M., Kitipornchai, S., 2007, Analysis of stiffened corrugated plates based on the 

FSDT via the mesh-free method, International Journal of Mechanical Sciences, 49(3), pp. 364-378. 
19. Peng, L.X., Liew, K.M., Kitipornchai, S., 2006, Buckling and free vibration analyses of stiffened plates 

using the FSDT mesh-free method, Journal of Sound and Vibration, 289(3), pp. 421-449. 

20. Liew, K.M., Kitipornchai, S., Peng, L.X., 2006, 4 - Mesh-free methods for buckling analysis of stiffened 
and corrugated plates, in Analysis and Design of Plated Structures, N.E. Shanmugam and C.M. Wang, 

Editors. 2006, Woodhead Publishing, pp. 80-116. 

21. Mukhopadhyay, M., 1989, Vibration and stability analysis of stiffened plates by semi-analytic finite 
difference method, Part I: Consideration of bending displacements only, Journal of Sound and Vibration, 

130(1), pp. 27-39. 

22. Mukhopadhyay, M., 1989, Vibration and stability analysis of stiffened plates by semi-analytic finite 
difference method, part II: Consideration of bending and axial displacements, Journal of Sound and 

Vibration, 130(1), pp. 41-53. 



 A New C0-TSDT for Nonlinear Free Vibration Analysis of Stiffened Functionally Graded Plates 305 

23. Zahari, R., El-Zafrany, A., 2009, Progressive failure analysis of composite laminated stiffened plates 
using the finite strip method, Composite Structures, 87(1), pp. 63-70. 

24. Sheikh, A.H., Mukhopadhyay, M., 2000, Geometric nonlinear analysis of stiffened plates by the spline 

finite strip method, Computers & Structures, 76(6), pp. 765-785. 
25. Sheikh, A.H., Mukhopadhyay, M., 1992, Analysis of stiffened plate with arbitrary planform by the 

general spline finite strip method, Computers & Structures, 42(1), pp. 53-67. 

26. Leme, S.P.L., Aliabadi, M.H., 2012, Dual boundary element method for dynamic analysis of stiffened 
plates, Theoretical and Applied Fracture Mechanics, 57(1), pp. 55-58. 

27. Tanaka, M., Bercin, A.N., 1998, Static bending analysis of stiffened plates using the boundary element 

method, Engineering Analysis with Boundary Elements, 21(2), pp. 147-154. 

28. Varghese, V., 2018, An analysis of thermal-bending stresses in a simply supported thin elliptical plate, 

Journal of Applied and Computational Mechanics, 4(4), pp. 299-309. 

29. Sayyad, A., Ghumare, S., 2019, A new quasi-3D model for functionally graded plates, Journal of Applied 
and Computational Mechanics, 5(2), pp. 367-380. 

30. Zargaripoor, A., Daneshmehr, A.R., Nikkhah Bahrami, M., 2019, Study on free vibration and wave 

power reflection in functionally graded rectangular plates using wave propagation approach, Journal of 
Applied and Computational Mechanics, 5(1), pp. 77-90. 

31. Vel, S.S., Batra, R.C., 2002, Exact solution for thermoelastic deformations of functionally graded thick 

rectangular plates, AIAA Journal, 40(7), pp. 1421-1433. 
32. Sedighi, H.M., Malikan, M., 2020, Stress-driven nonlocal elasticity for nonlinear vibration characteristics of 

carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment, Physica Scripta, 95(5), 

055218. 
33. Ouakad, H.M., Valipour, A., Kamil Żur, K., Sedighi, H.M., Reddy, J.N., 2020, On the nonlinear 

vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven 

nonlocal integral elasticity, Mechanics of Materials, 148, 103532. 
34. Qian, L.F., Batra, R.C., Chen, L.M., 2003, Free and forced vibrations of thick rectangular plates using 

higher-order shear and normal deformable plate theory and meshless Petrov-Galerkin (MLPG) method, 

Computer Modeling in Engineering & Sciences, 4(5), pp. 519--534. 
35. Rama, G., Marinković, D., Zehn, M., 2017, Efficient three-node finite shell element for linear and 

geometrically nonlinear analyses of piezoelectric laminated structures, Journal of Intelligent Material 

Systems and Structures, 29(3), pp. 345-357. 
36. Shi, G., 2007, A new simple third-order shear deformation theory of plates, International Journal of 

Solids and Structures, 44(13), pp. 4399-4417. 

37. Mukherjee, A., Mukhopadhyay, M., 1988, Finite element free vibration of eccentrically stiffened plates, 
Computers & Structures, 30(6), pp. 1303-1317. 

38. Harik, I.E., Guo, M., 1993, Finite element analysis of eccentrically stiffened plates in free vibration, 

Computers & Structures, 49(6), pp. 1007-1015. 
39. Dayi, O., Mak., C.M., 2012, Free flexural vibration analysis of stiffened plates with general elastic 

boundary supports, World Journal of Modelling and Simulation, 8(2), pp. 96-102. 
40. Shen, H.S., 2009, Functionally Graded Materials Nonlinear Analysis of Plates and Shells, New York, 

NY, USA: CRC Press Taylor & Francis Group. 

 
 

 

 


