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1. INTRODUCTION 

Viscoelastic materials are those that can simultaneously store and dissipate energy 

when deformed [1, 2]. This occurs because they have structural mechanisms to relax 

some of the stresses that build up when deformed [3, 4]. These relaxations occur at 

different characteristic times which are often referred to as relaxation times [2, 5]. 

Viscoelastic materials are very common in nature and diverse scientific fields focus 

on them. For example, biofilms are known to be viscoelastic and knowledge of their 

mechanical properties is crucial to understanding how they disseminate and how they could 

be eradicated [6-9]. Similarly, human cells are viscoelastic and knowledge of their mechanical 

properties can, for example, help to discriminate cancerous cells from healthy ones in the early 

stages of the disease [10-12]. In the field of engineering, polymeric fuel cells and organic 

solar cells have viscoelastic components whose mechanical response in the operation of 

the devices is known to be ultimately linked to their performance [13-15]. All of these 

applications can benefit from accurate material modeling approaches to complement the 

experimental procedures and thus ensure reliable characterization. Unfortunately, due to 

mathematical complexity, the viscoelastic nature of such materials is often overlooked or 

oversimplified in scientific studies. Recent investigations [16-26] have explored more 

rigorous approaches to take into consideration the intricacies of real viscoelastic behaviors by 

combining the classical theory of viscoelasticity [1, 2, 27-29] with modern characterization 

techniques, such as atomic force microscopy (AFM) [10, 30-39]. These efforts are especially 

important to close the gap between the thorough and rigorous mechanical modeling approach 

of early theories and the interests of scientists that deal with modern techniques. Despite these 

efforts, we believe that there is still a long way ahead to make this viscoelastic modeling 

truly accessible to a broader scientific community, regardless of their mathematical 

background. Therefore, in this study we focus on a more ‘hands-on approach’ where 

detailed straightforward descriptions to implement viscoelastic modeling are provided. The 

practical aspects of the modeling implementations are prioritized over mathematical rigor, 

such that only a very basic knowledge of ordinary differential equations is required to follow 

our presentation. The reader will be walked through the algorithms of how to solve 

numerically the constitutive equations that govern the deformation of viscoelastic materials, 

for the case of an indenter probe that deforms a viscoelastic material with multiple 

characteristic times. This is of special interest for AFM and for nano- and micro-indentation 

techniques, although with few adaptations the routines can also be used for other types of 

characterization techniques. 

For the convenience of the reader, the algorithm descriptions are accompanied by an 

Excel spreadsheet available online that contains examples with the numerical calculation 

methods [40]. Further, users with some background in programming will benefit from the 

numerical implementations given in Python code in an open-access repository [40]. The 

repository provided alongside this paper contains two libraries, afmsim and viscoelasticity, as 

well was implementations and examples of the functions available in these libraries. The 

contact-mode implementation of AFM will be discussed in Section 3.  
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2. GUIDELINES FOR THE SIMULATION OF LINEAR VISCOELASTIC BEHAVIOR 

2.1. Model Selection: Generalized Maxwell Model & Generalized Kelvin-Voigt Model  

In this practical guide, generalized models are used to simulate the response of real 

viscoelastic materials. This provides the necessary flexibility as real viscoelastic materials 

have multiple characteristic times at which they accommodate and relax stresses when 

deformed. Specifically, this document will be referring to the Generalized Maxwell Model 

and the Generalized Kelvin-Voigt Model which are shown in Fig. 1. These two models are 

mechanical analogs [2] which means that they have the same mechanical response when the 

appropriate equivalent parameters are chosen. The selection of one over the other obeys 

pure algebraic convenience, depending on whether force/stress or deformation/strain is 

regarded as the input. For example, if the user wishes to perform a simulation where the 

deformation/strain history is given or calculated ‘a priori,’ then the Generalized Maxwell 

Model is the most convenient. On the other hand, if the force/stress history is known or 

given, then the Generalized Voigt Model is the most convenient. 

 

Fig. 1 a) Generalized Maxwell Model and b) Generalized Kelvin-Voigt Model; Mechanical 

model diagrams representing the linear viscoelastic relationship between stress and 

strain in the complex plane with multiple (N) characteristic times when strain or stress 

is regarded as the excitation, respectively. In a) the Laplace transformed strain, (s), is 

regarded as the excitation and the Laplace transformed stress, (s), as the response; in 

(b) the opposite occurs. Jn and Gn refer to the compliance and modulus of the nth spring, 

respectively. Jg and Ge refer to the glassy compliance and rubbery modulus, 

respectively. n and n refer to the fluidity and viscosity of the nth dashpot 

(damper), respectively. 

Regardless of the chosen model, one must be aware that the model is only a visual 

representation of the material behavior described by ordinary differential equations 

relating the stress and strain. These are the governing equations that describe the linear 

viscoelastic behavior, and their most general form is as follows [20]: 

 ∑ 𝑢𝑛
𝑑𝑛𝜎(𝑡)

𝑑𝑡𝑛
∞
𝑛=0 =  ∑ 𝑞𝑚

𝑑𝑚𝜀(𝑡)

𝑑𝑡𝑚
∞
𝑛=0    (1) 
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where un and qm are differential coefficients, and (t)and (t)are stress and strain, 

respectively. This equation is model independent, where the nth and mth time derivatives 

are acting on the stress and strain tensors, respectively. For mathematical convenience, 

the differential equation can be transformed into an algebraic equation by applying the 

Laplace transform. Doing so will transform Eq. (1) to, 

 �̅�(𝑠)𝜎(𝑠)  = �̅�(𝑠)𝜀(̅𝑠)   (2) 

where �̅�(𝑠)  =  ∑ 𝑢𝑛𝑠𝑛
𝑛 , �̅�(𝑠)  =  ∑ 𝑞𝑚𝑠𝑚

𝑚  and 𝜎(𝑠), 𝜀(̅𝑠) are the transformed stress 

and strain, respectively. Here, it is assumed zero initial conditions which should not affect 

generality as they can be incorporated when necessary [2]. Note that �̅�(𝑠) and �̅�(𝑠) are 

now simply polynomials in the complex variable ‘s’. The interested reader can learn more 

about the Laplace transform by consulting appropriate references [41-43], although this is 

not a strict requirement to understand the practical implementation of the algorithms 

described in this manuscript.  

We can rearrange Eq. (2) in two ways, depending on whether stress or strain is regarded as 

the input. For example, when regarding strain as the input, Eq. (2) is rearranged in the 

following manner: 

 𝜎(𝑠)  = �̅�(𝑠)𝜀(̅𝑠) (3) 

where �̅�(𝑠) =
�̅�(𝑠)

𝑢(𝑠)
 is the relaxance, which is the mathematical transform carrying the 

viscoelastic information that will rule the stress response to a given strain input. 

On the other hand, if the stress is regarded as the input, Eq. (2) can be rearranged as: 

 𝜀(̅𝑠) = 𝑈(𝑠)𝜎(𝑠) (4) 

where the retardance, 𝑈(𝑠) =
𝑢(𝑠)

�̅�(𝑠)
, is introduced. Here, the material transform 𝑈(𝑠), 

containing the mechanical information of a given material, governs the strain response 

when an excitation stress is imposed. As can be observed in Eq. (3) and Eq. (4), the 

retardance is the inverse of the relaxance:  

 �̅�(𝑠) = 1/𝑈(𝑠) (5) 

In the case of the generalized models in Fig. 1, the material transforms are ratios of 

polynomials in the complex variable ‘s’. These polynomial expressions, �̅�(𝑠) and �̅�(𝑠), 

can be expressed in terms of the spring and dashpot (damper) values in the generalized 

models in Fig. 1. The process to find them is analogous to formulating mesh equations in 

electric circuit theory [2, 41]. An example for this calculation is given later in Section 

2.3. For now, the derivation is skipped and the relaxance and retardance for the 

generalized Maxwell and Kelvin-Voigt Models are given here: 

 �̅�(𝑠) = 𝐺𝑒 + ∑
𝐺𝑛𝜏𝑛𝑠

1+𝜏𝑛𝑠

𝑁
𝑛=0  (6) 

 𝑈(𝑠) = 𝐽𝑔 + ∑
𝐽𝑛

1+𝜏𝑛𝑠

𝑁
𝑛=0  (7) 

where Ge is the equilibrium (rubbery) modulus, which describes the elastic response of 

the material at long timescales, and Jg is the classy compliance, which describes the 

elastic response of the material at short timescales [2]. Both quantities are visually 
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defined in Fig. 1. N corresponds to the total number of characteristic times in the material. 

n refers to the nth characteristic time. For the generalized Kelvin-Voigt Model, 𝜏𝑛 = 𝐽𝑛/𝜙𝑛 is 

the retardation time related to the nth Voigt unit, given by the ratio of the compliance of the 

n-th spring over the fluidity of the nth dashpot. For the generalized Maxwell Model, n = 

N / GN is the ratio of the viscosity of the nth dashpot over the modulus of the nth spring. 

Parameters of this type can be found in the literature for certain materials [17, 44, 45].  

The next section describes how to set up the constitutive equation to be solved in our 

viscoelastic simulation. Here, it will become evident the importance of the mathematical 

concepts that were just presented in this section. 

2.2. Defining the Governing Equation 

For the specific case of a tip indenting a surface, a customized equation resembling 

Eq. (1), including geometrical aspects of the physical problem under consideration, is 

needed. This is because there needs to be a relationship between force and indentation 

(instead of a relationship between stress and strain as in Eq. (1)), since the AFM instrument 

measures forces and distances, not stresses. To construct this relationship, geometrical aspects 

involving a boundary value problem need to be considered for which the correspondence 

principle may be conveniently invoked. It states that if the elastic solution for a contact 

problem is known, the viscoelastic solution can be directly formulated as they are analogous 

in the Laplace domain [46]. The mathematical details are beyond the scope of this manuscript, 

but curious readers are directed to the literature that discusses its validity [27, 29, 46, 47]. 

For the case of a spherical indenter with a radius of curvature R, penetrating a viscoelastic 

half-space (e.g., an AFM tip penetrating a flat viscoelastic surface), the relationship 

between force Fts(t) and indentation h(t) is [27]: 

 ∑ 𝑞𝑚
𝑑𝑚[{ℎ(𝑡)}3/2]

𝑑𝑡𝑚
∞
𝑚=0 =

3

16√𝑅
∑ 𝑢𝑛

𝑑𝑛𝐹𝑡𝑠(𝑡)

𝑑𝑡𝑛
∞
𝑛=0  (8) 

Notice that this equation is very similar to Eq. (1), but the stress has been substituted 

with the force, and the strain has been substituted with the indentation. Furthermore, to 

account for the geometry of the system, there is a coefficient on the right-hand side that 

depends on the radius of curvature of the indenter, and the derivatives on the left-hand side 

of the equation are taken on the indentation raised to the power 3/2. Eq. (8) assumes that the 

material is incompressible with a time-independent Poisson’s ratio  = 0.5) [27, 44]. 

With a finite number of N characteristic times, this equation can also be expressed as: 

 𝛼 [𝑞0𝑝 +  𝑞1
𝑑𝑝

dt
 +  𝑞2

𝑑2𝑝

𝑑𝑡2  +. . . +𝑞𝑁
𝑑𝑁𝑝

𝑑𝑡𝑁] = 𝑢0𝐹+𝑢1
d𝐹

dt
+𝑢2

𝑑2𝐹

𝑑𝑡2 +. . . +𝑢𝑁
𝑑𝑁𝐹

𝑑𝑡𝑁  (9) 

where  = 
16√𝑅

3
,  and p = h(t)3/2. 

Eq. (9) is our target governing equation that describes the force-indentation relationship of 

a parabolic tip penetrating a viscoelastic surface. The differential coefficients (u0, u1…, uN, q0, 

q1…, qN) will depend on the numerical values of the spring moduli and dashpot coefficients in 

the chosen model (Fig. 1). The next two sections will cover the process of finding these 

coefficients. Once this is done, the governing equation is completely set up to be solved 

numerically. Fig. 2 lays out the general process of viscoelastic modeling that we have 

discussed so far, as well as the remaining steps detailed in next sections. 
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As a final note, the correspondence principle is formally invalidated for the retract 

portion [28, 47], i.e., when the AFM tip is retracting from the surface but still in contact 

with it. We observed that for the timescales associated with AFM experiments 

disregarding this fact generally introduces only very small inaccuracies, so we will omit it 

within this manuscript. To include it, more complex contact-mechanics schemes need to 

be considered [28, 48], as it has been done on some recent AFM studies [16, 21]. 

 

Fig. 2 Summary of the main steps involved in the modeling of a physical problem 

involving the deformation of a viscoelastic material. These steps are detailed 

through Sections 2.1 to 2.5 of this manuscript. 
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2.3. Obtaining the material transform for the viscoelastic model chosen 

In the last section we targeted the governing equation for the contact mechanics 

problem of a parabolic tip penetrating a viscoelastic sample, which can be solved with 

Eq. (9). For simplicity in our illustration of the method, we will now assume that the 

viscoelastic model chosen has only one characteristic time: The Standard Linear Solid 

(SLS) model. Also, it will be assumed that deformation can be regarded as input, such 

that the Maxwell-SLS Model will be the most convenient model to use. Specifically, the 

Maxwell-SLS Model is a three-parameter model consisting of one spring arm with the 

equilibrium modulus Ge in parallel with one Maxwell arm (an arm with a spring and a 

dashpot in series). The Maxwell-SLS Model can be visualized by truncating Fig. 1a to 

contain only one Maxwell arm (that is, setting N = 1). 

After selecting an adequate model (e.g., Maxwell-SLS) and selecting the appropriate 

constitutive equation (e.g., Eq. (9)) describing the force/deformation relationship, the next 

step is to obtain the material transform for the selected viscoelastic model. The concept of 

material transform was introduced in Section 2.1. As discussed there, obtaining the material 

transform expression for a given model involves an analog process to formulating mesh 

equations in electric circuit theory. Details of this process can be found in the literature 

[2, 41]. Here, for simplicity, general rules are given as a recipe, without discussing the 

mathematical or physical justification. These rules for obtaining the material transform 

are as follows: 

1) Relaxances are added up in parallel. For example, for the Maxwell-SLS Model, 

to obtain the overall relaxance of the model we need to add up the individual relaxances 

of the individual elements. In this case, we need to add up the relaxance of the isolated 

spring (Ge) with the relaxance of the Maxwell arm that contains spring G1 and dashpot1. 

However, before we can perform this addition, we must first determine the relaxance of 

the Maxwell arm itself, for which the 2nd rule below will be needed. 

2) Retardances are added up in series. For example, to obtain the relaxance of the 

Maxwell arm (a spring in series with a dashpot), we need to add up the retardance of the 

spring (1/G1) with the retardance of the dashpot (1/1s). Recall from Section 2.1 that 

relaxances and retardances hold an inverse relationship. Thus, for the Maxwell arm the 

retardance is 1/1s + 1/G1 and its relaxance is the inverse of this expression, equal to 
1

1/η1s+1/G1
. 

Thus, according to the above two rules, for the example of the Maxwell-SLS Model, 

the total relaxance is the addition of the isolated spring’s relaxance (Ge) with the Maxwell 

arm’s relaxance (
1

1/η1s+1/G1
, which yields 𝐺𝑒 +

1

1/η1s+1/G1
. After some algebraic 

arrangements and with the substitution n = 1/G1this expression can be transformed into: 

 𝑄𝑆𝐿𝑆
̅̅ ̅̅ ̅̅ (𝑠) = 𝐺𝑒 +

𝐺1𝜏1𝑠

1+𝜏1𝑠
 (10) 

where the characteristic time 1is the ratio of dashpot coefficient to the modulus of the 

spring in the Maxwell arm. For the generalization of a Maxwell Model with an arbitrary 

number of characteristic times (Fig. 1a), the relaxances of the rest of the Maxwell arms 

should be added. It can be easily inferred that following this process would lead us to the 

generalized expression in Eq. (6), which governs the response of the generalized model in 

Fig. 1a. 
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2.4 Calculating the Coefficients for the Governing Equation 

Once we have calculated the material transform (either �̅�(𝑠) or �̅�(𝑠), depending on 

the chosen viscoelastic model), the next step is to find the differential coefficients (u0, 

u1…, uN, q0, q1…, qN) from this material transform. To do that, we need to perform 

algebraic manipulation of the material transforms �̅�(𝑠) and 𝑈(𝑠) such that they can be 

expressed as a ratio of polynomials in the complex variable ‘s’. For illustrative purposes 

we continue with the Maxwell-SLS Model example and assign the following arbitrary 

values for the parameters: Ge = 1.0x106 Pa, G1 = 1.0x108 Pa, 1 = 1.0x10-2 s.  

The first step is to perform the algebraic addition in Eq. (10):  

 𝑄𝑆𝐿𝑆
̅̅ ̅̅ ̅̅ (𝑠) =

𝐺𝑒(1+𝜏1𝑠)+𝐺1𝜏1𝑠

1+𝜏1𝑠
 (11) 

Then, we expand all terms in the numerator and denominator (the denominator will have 

more than one factor when the model has more than one characteristic time) and gather 

all the terms with common ‘s’ exponent: 

 𝑄𝑆𝐿𝑆
̅̅ ̅̅ ̅̅ (𝑠) =

𝐺𝑒+(𝐺𝑒+𝐺1)𝜏1𝑠

1+𝜏1𝑠
 (12) 

All the terms that are multiplied by s0 in the numerator are combined and assigned to 

q0. Similarly, all the terms that are multiplied by s0 in the denominator are combined and 

assigned to u0. Then, all terms multiplied by s1 in the numerator are combined and 

assigned to q1, while all terms multiplied by s1 in the denominator are combined and 

assigned to u1, and so on. Then, it follows that all terms multiplied by sn are grouped and 

assigned to qn in the numerator and to un in the denominator. Thus, for our specific 

example we have for the numerator: 

 𝑞0 = 𝐺𝑒 = 1.0 × 106 𝑃𝑎  (13) 

 𝑞1 =  (𝐺𝑒 + 𝐺1)𝜏1 = 1.01 × 106 𝑃𝑎 𝑠 (14) 

And for the denominator we have: 

 𝑢0 =  1 (15) 

 𝑢1 =  𝜏1 = 1.0 × 10−2s (16) 

Once we have calculated all these differential coefficients, we can plug them into Eq. 

(9), which concludes the process of explicitly setting up the governing equation. The rest 

of the manuscript will now focus on explaining the steps to solve this equation 

numerically (i.e., through computational simulation). 

As a note of caution, it is worth mentioning that the algebra used to find the differential 

coefficients becomes quite involved when a large number of characteristic times is chosen. 

For convenience, the reader is invited to explore the Jupyter Notebook “Calculation of the 

coefficients, (u0, u1…, uN, q0, q1…, qN), for the differential equation for a 3 Arm Gen. 

Maxwell, Kelvin-Voigt Model” in an open-access GitHub repository [40]. This Notebook 

conveniently performs the algebra by means of the SymPy library [49]. 
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2.5. Numerical Solution of the Governing Equation 

In the next two subsections, we describe the algorithms to solve the governing 

equation (Eq. (9)) numerically. The solution is divided into two sections: the first one 

relates to the portion where tip and sample are in contact during the probe approach and 

the initial portion of the tip’s retract trajectory, before losing tip-sample contact. The 

second portion corresponds to the recovery of the surface after tip-sample contact is lost. 

In this second portion the surface remains temporarily depressed after the tip retracts, 

followed by surface recovery in a stress-free fashion (the rebound portion [50]). 

2.5.1. Numerical Solution for the Indentation into a Viscoelastic Material: 

Contact Portion of the Force Spectroscopy Curve 

For the numerical procedure of Eq. (9), the left-hand-side (LHS) and right-hand-side 

(RHS) of Eq. (9) are separated according to the variable that one wishes to solve for 

(either force or indentation). In the case of AFM simulations, the known input parameter 

for Eq. (9) at a given time step is the surface indentation. This is because solution of the 

AFM tip’s equation of motion (e.g., the harmonic oscillator model [30]) yields the 

trajectory of the tip, from which we can calculate the indentation (details of this will be 

provided in Section 3. Thus, the input for the viscoelastic governing equation (Eq. (9)) is 

the indentation, and the output is the force (the tip-sample force). 

The first step in solving numerically Eq. (9) is to calculate all higher order derivatives 

on the LHS using the indentation as the initial input (calculated from the AFM tip 

trajectory). Specifically, the tip position at the ith time step, hi, provides the information 

needed to calculate the zero-order derivative on the LHS of the equation, namely the term 

p = h(t)3/2. However, since we know that depression of the surface will lead a positive 

(upward) force exerted by the sample on the AFM tip, we must change the sign of hi 

when calculating the zero-order derivative of the deformation term: 

 𝑝𝑖 =  (−ℎ𝑖)3/2 (17) 

We can now calculate the rest of the derivatives on the LHS of Eq. (9) using the finite 

difference method [42, 43]. For example, for the first order derivative (
𝑑𝑝

dt
= �̇�𝑖)  the 

numerical approximation using backward difference [42] becomes: 

 �̇�𝑖 =
𝑝𝑖 − 𝑝𝑖−1

Δ𝑡
 (18) 

where pi=(-hi)3/2 corresponds to the ith time step, as indicated in Eq. (17), and pi-1=(-hi-1)3/2 is 

the analogous term corresponding to the previous time step, (i–1). The finite time step is 

denoted by Δ𝑡. Also note that at t = 0, all higher order derivatives on the LHS are initially set 

to zero: �̇�𝑖=0 = 0, �̈�𝑖=0 = 0, 𝑝𝑖=0 = 0, etc., and only p0=(-h0)3/2 has a non-zero value, with h0 

being the initial sample deformation at time zero. The higher order derivatives at each time 

step are determined similarly, using Eq. (19) and Eq. (20): 

 �̈�𝑖 =
�̇�𝑖− �̇�𝑖−1

Δ𝑡
 (19) 

 …  

 𝑝𝑖
𝑁 =

𝑝𝑖
𝑁−1 − 𝑝𝑖−1

𝑁−1

Δ𝑡
 (20) 
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where N is the number of characteristic times in the viscoelastic model. The key for this 

numerical approach is to respect the order of calculation of derivatives. When the input 

parameter is the deformation, as in this example, the lowest-order derivative of the 

deformation term must be calculated first, followed by the calculation of the higher order 

derivatives in ascending order.  

Once all the derivatives of indentation have been calculated, it is time to focus on the 

RHS of Eq. (9). When calculating the RHS of Eq. (9), we use the reverse strategy 

described in the previous subsection. In this case, we solve first for the highest-order 

force derivative, and then from it we calculate the lower-order derivatives of the force. As 

a first step, we rearrange Eq. (9) and solve for the highest force derivative at the ith time 

step (
𝑑𝑁𝐹𝑖

𝑑𝑡𝑁 ) introducing two intermediate variables: 

 
𝑑𝑁𝐹𝑖

𝑑𝑡𝑁 =  𝑠𝑢𝑚𝑎𝑄𝑖–  𝑠𝑢𝑚𝑎𝑈𝑖 (21) 

where 

  𝑠𝑢𝑚𝑎𝑄𝑖  =  
𝛼

𝑢𝑁
[𝑞0𝑝𝑖  +  𝑞1

𝑑𝑝𝑖

dt
 +  𝑞2

𝑑2𝑝𝑖

𝑑𝑡2  +. . . +𝑞𝑁
𝑑𝑁𝑝𝑖

𝑑𝑡𝑁 ] (22) 

is the LHS of Eq. (9), divided by the coefficient (differential constant) of the highest-

order force derivative, and where 

  𝑠𝑢𝑚𝑎𝑄𝑖  =  
𝛼

𝑢𝑁
[𝑞0𝑝𝑖  +  𝑞1

𝑑𝑝𝑖

dt
 +  𝑞2

𝑑2𝑝𝑖

𝑑𝑡2  +. . . +𝑞𝑁
𝑑𝑁𝑝𝑖

𝑑𝑡𝑁 ] (23) 

is the RHS of Eq. (9), with the highest-order derivative term removed, divided by the 

differential constant of the highest-order force derivative. Note that in calculating the 

variable  𝑠𝑢𝑚𝑎𝑈𝑖 we use the force derivatives of the previous time step, (𝑖 − 1), , instead 

of the current time step. Recall also that  = 
16√𝑅

3
 for an incompressible material, and p(t) 

= h(t)3/2 (ensuring that h has a positive sign, as previously discussed – see Eq. (17). Once 

we have calculated the highest-order derivative, the lower-order force derivatives can be 

determined by using Euler integration method [42, 43].  

 𝐹𝑖
𝑁−1 = 𝐹𝑖−1

𝑁−1 + 𝐹𝑖
𝑁Δ𝑡 (24) 

… 

and we can continue the process until arriving at the lowest force derivative, namely the 

force itself (Eq. (26)): 

 �̇�𝑖 = �̇�𝑖−1 + �̈�𝑖Δ𝑡 (25) 

 𝐹𝑖 = 𝐹𝑖−1 + �̇�𝑖Δ𝑡 (26) 

Eq. (26) is the resulting viscoelastic force response due to indentation, which is 

transmitted to the AFM tip. This procedure is repeated for each time step dt until the end 

of the AFM simulation is reached, and in this manner, we obtain the force history. Note 

that if there has been no previous indentation history (e.g., when the AFM tip first 

approaches a pristine, undeformed sample during the simulation), the initial conditions 

(t = 0) for the force and for all its derivatives up to the (N–1)th derivative are equal to 

zero, 𝐹𝑖=0
𝑁−1 = . . . = �̇�𝑖=0 = 𝐹𝑖=0 = 0. Therefore, at time zero only the highest-order 

derivative can have a non-zero value. An example calculation for a 3-Maxwell-arm 
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model is provided in the next subsection. Fig. 3 summarizes in a flow chart the procedure to 

calculate the viscoelastic surface deformation that has been discussed so far in this section. 

 

Fig. 3 Flow chart describing the calculation steps to obtain the force response for the contact 

portion of an indenter penetrating a viscoelastic surface. For each timestep of the 

algorithm, the indentation is regarded as the input for Eq. (9). The calculation steps are 

detailed in Section 2.5.1. This algorithm is conveniently implemented with Python 

code in an open-access repository [40] under the afmsim library with the contact_mode 

function. It is also available in the excel spreadsheet within the same repository. 
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2.5.2. Example – 3 Arm Generalized Maxwell Model  

To illustrate the process described above, consider a Generalized Maxwell Model with 

three characteristic times (3 Maxwell arms, refer to Fig. 1a). Again, the procedure begins 

with the calculation of the deformation derivatives, since the deformation is known:  

 𝑝𝑖 =  (−ℎ𝑖)3/2 (27) 

 �̇�𝑖 =
𝑝𝑖 − 𝑝𝑖−1

Δ𝑡
 (28) 

 �̈�𝑖 =
�̇�𝑖− �̇�𝑖−1

Δ𝑡
 (29) 

 𝑝𝑖 =
�̈�𝑖− �̈�𝑖−1

Δ𝑡
 (30) 

Once all deformation derivatives are determined, the force response can be calculated. 

  𝑠𝑢𝑚𝑎𝑄𝑖   =  
𝛼

𝑢3
[𝑞0𝑝𝑖 +  𝑞1�̇�𝑖 + 𝑞2�̈�𝑖 + 𝑞3𝑝𝑖] (31) 

  𝑠𝑢𝑚𝑎𝑈𝑖   =  
1

𝑢3
[𝑢0𝐹𝑖−1 + 𝑢1�̇�𝑖−1 +  𝑢2�̈�𝑖−1] (32) 

Eq. (21) for the 3-Arm Generalized Maxwell Model will therefore equal:  

 𝐹𝑖(𝑡) =  𝑠𝑢𝑚𝑎𝑄𝑖  − 𝑠𝑢𝑚𝑎𝑈𝑖 (33) 

Using Euler integration, we find the lower-order derivatives and the force itself (zero-

order derivative, Eq. (36)):  

 �̈�𝑖 = �̈�𝑖−1 + 𝐹𝑖Δ𝑡 (34) 

 �̇�𝑖 = �̇�𝑖−1 + �̈�𝑖Δ𝑡 (35) 

 𝐹𝑖 = 𝐹𝑖−1 + �̇�𝑖Δ𝑡 (36) 

where the initial force and force derivatives at time zero are all equal to zero, �̈�(0) =
�̇�(0) = 𝐹(0) = 0. 

The corresponding implementation in Python code is illustrated in the contact_mode 

function. This algorithm is also implemented in the Excel spreadsheet provide in the 

online repository [40]. 

2.5.3. Numerical Solution for the Viscoelastic Recovery after the AFM Tip Loses 

Contact with the Surface during the Retract Portion of the Spectroscopy Curve: 

The Rebound Problem  

This portion of the simulation applies only for the retraction portion of the indenter 

trajectory, after the indenter loses contact with the viscoelastic sample. At this point the 

temporarily indented viscoelastic surface becomes ‘stress-free’ (since there is no longer 

an indenter exerting forces on it) and recovers in time according to a deformation profile 

that depends on its viscoelastic properties and on the previous indentation history. This 

process is also known as the rebound indentation portion [50]. This portion is seemingly 

irrelevant for the characterization of viscoelastic materials using AFM force-distance 

curve methods because there is no way to observe from experimental observables the 

surface recovery. However, in the simulations it is relevant as we need to track surface 
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position for each time step even if the tip temporarily loses contact with the sample. This 

allows us to have continuity of tip-sample distance knowledge, which is relevant in the 

calculation of long-range noncontact forces (Section 3.2). 

Focusing now on the technical details, the onset of this portion in the simulation will 

be indicated by a change of sign in the Force term. Since forces cannot become negative 

(assuming the absence of van der Waals forces), as this would indicate that the AFM tip 

is grabbing and pulling the surface upwards, a flag variable in the simulation should be 

established to determine when the force changes from positive to negative. From this 

point on, the stress-free condition begins, and the calculations described in the previous 

section (2.5.1) are no longer applicable. Specifically, the input parameter for the rebound 

portion will not be the indentation as in the previous section. Instead, the stress-free 

condition, which governs the recovery, dictates that in our calculations all force values 

and force derivatives become zero. Thus, Eq. (9) reduces simply to: 

 𝛼 [𝑞0𝑝 + 𝑞1
𝑑𝑝

dt
 +  𝑞2

𝑑2𝑝

𝑑𝑡2  +. . . +𝑞𝑁
𝑑𝑁𝑝

𝑑𝑡𝑁] = 0 (37) 

and we solve for the highest-order derivative of the deformation (recall that we are now 

solving for the deformation profile): 

 
𝑑𝑁𝑝

𝑑𝑡𝑁 = −
1

𝑞𝑁
(𝑞0𝑝 + 𝑞1

𝑑𝑝

dt
 +  𝑞2

𝑑2𝑝

𝑑𝑡2  +. . . +𝑞𝑁−1
𝑑𝑁−1𝑝

𝑑𝑡𝑁−1) (38) 

The lower-order deformation derivatives can now be determined by using Euler 

integration:  

 𝑝𝑖
𝑁−1 = 𝑝𝑖−1

𝑁−1 + 𝑝𝑖
𝑁Δ𝑡 (39) 

 …  

 �̇�𝑖 = �̇�𝑖−1 + �̈�𝑖Δ𝑡 (40) 

 𝑝𝑖 = 𝑝𝑖−1 + �̇�𝑖Δ𝑡 (41) 

And finally, using Eq. (27), the sample surface position can be calculated: 

 ℎ𝑖 = 𝑝𝑖
2/3 (42) 

It is noteworthy that in this procedure the indenter shape parameter (α) has not played 

a role. This is in accordance to the literature, where it has been noted that for the rebound 

viscoelastic problem the viscoelastic surface recovery is independent of the indenter 

shape [50]. Further, as all the viscoelastic forces are zero, due to the stress-free condition, 

the only forces still present between the tip and the sample are the long-range noncontact 

forces between the tip and the sample surface, which correspond to dispersion forces 

(London or van der Waals forces) and are discussed in Section 3.2. The flow chart in Fig. 

4 illustrates the procedure to calculate the surface deformation profile as a function of 

time for the stress-free condition.  
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Fig. 4 Flow chart describing the calculation steps to obtain the deformation response for 

the viscoelastic recovery portion (rebound [50]) when the indenter loses contact 

with the viscoelastic surface during retract of the indenter. For each timestep the 

stress-free condition dictates that the force and all its derivatives in Eq. (9) are 

zero. This allows the calculation of higher order derivatives of indentation in RHS 

of Eq. (9) to finally obtain the resulting time-dependent surface recovery profile. 

The calculation steps are detailed in Section 2.5.3. The algorithm has been 

implemented in Python code and is available in an open-access repository [40] 

under the afmsim library and the contact_mode function. 
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3. CASE STUDY OF VISCOELASTIC INDENTATION WITH AN ATOMIC FORCE MICROSCOPE  

IN ACQUISITION OF FORCE DISTANCE CURVES 

3.1. Viscoelastic Implementation in Force-Distance Curve Methods 

During an off-resonance force-distance curve acquisition, the base of the AFM cantilever 

is brought towards the surface at a constant velocity. The governing equation that captures the 

dynamics of the cantilever tip interacting with the surface via the tip-sample forces is [30]:  

 𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝑧(𝑡)  = 𝑘𝑧𝑏(𝑡) + 𝐹𝑡𝑠(𝑡) (43) 

where t is time, k is the stiffness, c = 
2𝜋𝑓𝑚

𝑄1
 is the damping coefficient, f the fundamental 

eigenfrequency (natural frequency), m =
𝑘

(2𝜋𝑓)2
 is the equivalent mass, Q1the quality factor 

of the fundamental eigenmode, �̈�(𝑡)is the tip acceleration, �̇�(𝑡) is the tip velocity, �̇�(𝑡) is 

the tip position, zb(t) is the cantilever base position and Fts(t) is the tip-sample force. As 

indicated, the dynamical variables are time-dependent. 

The initial position of the cantilever base, zb,initial serves as the starting point for the 

approach process towards the sample surface. During this experiment, the user specifies 

the cantilever-base approach velocity, �̇�𝑏.  

 𝑧𝑏(𝑡) = �̇�𝑏𝑡 (44) 

Numerically, the new base position, zb, for each time step, i, is obtained by multiplying 

the approach velocity by the total simulation time, and adding the result to the initial 

cantilever base position (the total simulation time is simply the index i multiplied by the 

time step dt): 

 𝑧𝑏,𝑖 = 𝑧𝑏,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + �̇�𝑏,𝑖(𝑑𝑡) (45) 

We now calculate the tip acceleration, �̈�(𝑡), by solving the equation of motion (EOM) 

of the cantilever tip (Eq. (46)) in introducing a subindex corresponding to the time step: 

 �̈�𝑖 =
−𝑘𝑧𝑖−1 − 

2𝜋𝑓𝑚�̇�𝑖−1
𝑄1

 + 𝑘𝑧𝑏,𝑖+𝐹𝑡𝑠,𝑖−1

𝑚
 (46) 

At time zero, Fts = 0, as there is no tip-sample contact yet (the experiment begins with the 

cantilever placed far away from the sample). z and �̇� are given initial values by the user, 

z0 = zb,initial and �̇�𝑖 = 0, since we assume that the cantilever was initially at rest and in 

equilibrium.  

Using the tip acceleration we calculate the tip position z (Eq. (47)) and velocity �̇� (Eq. 

(48)) using the Verlet Integration process (a numerical method used to integrate Newton’s 

Equations of motion) and the Central Difference, respectively [42, 51, 52]. 

 𝑧𝑖+1 = 2𝑧𝑖 − 𝑧𝑖−1 + �̈�𝑖Δ𝑡2 (47) 

 �̇�𝑖 =
𝑧𝑖+1− 𝑧𝑖−1

2Δ𝑡
 (48) 

Note that in order to calculate the position for time step (i + 1) with Eq. (47) and the 

velocity for time step i with Eq. (48), it is necessary to know the position at the previous 

two time steps i and (i - 1). Therefore, at the beginning of the simulation, it is necessary 

to define one additional initial condition of position for time step i = -1. One generally 
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sets this initial condition to be equal to the initial cantilever base position, namely zi=-1 = 

zb,initial. 
In our code we rename the tip position as TipPos, which is given the value zi+1. If 

TipPosis greater than the current surface position, there is no tip-sample contact. As the 

cantilever approaches the sample, this variable will become negative, indicating that tip-

sample contact has been established and that viscoelastic forces can now be calculated 

using Eq. (9) as explained in Section 2.5. 

Fig. 5 provides examples of tip-sample interaction force curves calculated using the 

above procedures for different sets of parameters, using a 3-Arm Generalized Kelvin-

Voigt Model. Note here that the spring parameters for this model are given in terms of 

compliances (J) instead of moduli (G). As explained in Section 2.1, retardances and 

relaxances hold an inverse relationship (Eq. (5)). Specifically, the relaxance of a spring is 

its modulus (a measure of its stiffness) while its retardance measures how soft the spring 

is: its compliance. Thus, the larger the value of compliance, the softer the spring is. 

Generally, viscoelastic materials have low values of glassy compliance (Jg), which means 

that they behave in a stiff-elastic manner when quickly deformed (i.e., at short 

timescales). On the other hand, viscoelastic materials have larger equilibrium (rubbery) 

compliances (Je) when probed with very slow excitations (Je = J1 + J2 + … + JN) [1, 2]. 

 

Fig. 5 Tip-sample interaction force curves calculated using the contact_mode function 

contained in the afmsim library [40] for a 3-Arm Generalized Kelvin-Voigt Model. 

The solid line corresponds to the tip approach and the dash-dotted line corresponds to 

the tip retract. Hysteresis is evident in all plots, as expected for a (dissipative) 

viscoelastic material. Fig. 5a provides results for different characteristic time 1, 

2x10-2 s, 1.5x10-1 s and 4.5x10-1s. The remaining viscoelastic model parameters are  

Jg = 2.0x10-10 Pa-1, J1 =9.0x10-9 Pa-1, J2=7.0x10-9 Pa-1, J3 = 1.0x10-10 Pa-1, 2 = 

0.5x10-3 s, 3 = 0.5x10-2 s. Fig.5b displays results for different cantilever stiffness. The 

simulation parameters are Jg = 2.0x10-10 Pa-1, J1 = 5.0x10-9 Pa-1, J2 = 7.0x10-9 Pa-1, J3 

= 1.0x10-10 Pa-1,1 = 1.5x10-1 s, 2 = 0.5x10-3 s, 3 = 0.5x10-2 s and k = 0.5, 1 and 

2 N/m. 
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3.2 Long-range Noncontact Forces  

To accurately simulate an AFM experiment, noncontact forces (van der Waals or 

London dispersion forces) must be accounted for. As the simulation begins, if the tip-

position is greater than zero, meaning there is no tip-sample contact yet, the tip and 

sample will experience an attractive force, which is generally modeled using the Hamaker 

equation [30]: 

 𝐹𝑣𝑑𝑊 = −
𝐻∗𝑅

6 (𝑇𝑖𝑝𝑃𝑜𝑠)2 (49) 

where H is the Hamaker constant, R is the radius of curvature of the AFM tip (assumed to 

be nearly spherical) and TipPos gives the tip-sample distance (the distance between the 

tip and the unperturbed surface). The negative sign indicates that the forces are attractive 

(i.e., the tip experiences a downward force). When there is no tip-sample contact, Eq.(49) 

describes the only force present, so Fts the tip-sample force in the cantilever tip equation 

of motion, Eq. (43)) must be calculated using Eq. (49), and there is no viscoelastic force 

component. Once tip-sample contact is established, the tip-sample force, Fts, has two 

contributions: the first one is the viscoelastic force described above, Fi, and the second 

one is the attractive tip-sample force from Eq. (49). When the tip is pushing onto the 

surface, the tip-sample distance is set to≈0.2 nm, which corresponds approximately to 

the diameter of a single atom of average size (that is, we assume that the atoms of the tip 

and the sample are touching one another, so the centers of the atoms in contact are one 

atomic diameter away). The total tip-sample force is then: 

 𝐹𝑡𝑠 = 𝐹𝑖 −
𝐻∗𝑅

6 𝑎2 (50) 

For simplicity, we assume that the van der Waals forces are unable to deform the surface. 

Strictly speaking this is not true, since attractive tip-sample forces are in some cases able to 

pull the surface upwards and cause it deform above the initial unperturbed position. This can 

be important when modeling the imaging of materials having very low stiffness. 

3.3 Time Step 

The time step, or iteration step, is of central importance, as it has a strong effect on the 

accuracy of the results and significantly affects the stability of numerical methods. 

Numerical methods are prone to instabilities when the time step is too large and can diverge 

very rapidly. On the other hand, extremely small time steps bring about high memory 

demands and lead to unnecessarily large computation time. Therefore, the right balance 

between too small and too large a time step needs to be established. In selecting the time 

step, one should consider the total simulation time required, the smallest characteristic time 

in the material and the period of the AFM cantilever (the inverse of its natural frequency). 

The smaller the total simulation time, the smaller the time step must be in order to ensure 

stability (for the case of high deformation rates). Instead of recommending a specific time 

step that provides stability, a guideline for ranges of time steps seems more applicable. It is 

recommended that a time step smaller than the smallest characteristic time divided by 10 or 

the fundamental period T of the cantilever divided by 10,000 be used for the simulation to 

obtain stable results. The lower limit depends on the computational resources available. 

Since every simulation has its own peculiarities, these general suggestions may not always 

be valid, so the optimum time step must in the end be determined by trial and error.  
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3.4 Verification 

Upon successfully running a numerical simulation, for example using the contact_mode 

function we have provided [40], the question remains as to whether it is actually accurate 

and correct. One way to verify the results is by comparing the results of the left-hand-side 

(LHS) with the right-hand-side (RHS) of the following equation, the Boltzmann 

Superposition Integral, adjusted for a spherical tip according to Lee and Radok [17].  

 
16√𝑅

3
 ℎ(𝑡)3/2 = ∫ 𝑈(𝑡 − 𝜉)𝐹(𝜉)𝑑𝜉

𝑡

0
 (51) 

where the LHS equals  

 𝐿𝐻𝑆 =  𝛼 ∗ ℎ(𝑡)3/2 (52) 

and the RHS, the convolution of force with retardance (U*F), equals  

 𝑅𝐻𝑆 =  𝐽𝑔𝐹(𝑡)  + ∑ ∫
𝐽𝑛

𝜏𝑛
𝑒−(𝑡−𝜉)/𝜏𝑛𝑑𝜉

𝑡

0𝑛  (53) 

where 𝑈(𝑡) =  𝐽𝑔  +  ∑
𝐽𝑛

𝜏𝑛
𝑒−𝑡/𝜏𝑛

𝑛  is the compliance of the material. Recall that=
16√𝑅

3
, 

h(t) and F(t) are the indentation and the force, respectively, as before. 𝜉is the integration 

variable. 

Once the simulation data is collected, one can use the deformation data to calculate 

the LHS, and the force data to calculate the RHS. The RHS can be calculated with the 

conv function in the viscoelasticity library in our GitHub repository [40]. Calculating the 

RHS requires passing the force and time arrays from the simulation to the numerical 

convolution described in Eq. (53). This can also be done using the conv function in the 

viscoelasticity library in our GitHub repository [40]. When doing this, it is sometimes 

computationally very expensive to pass the entire force and time arrays, which could be 

very large if the time step of the simulation is very short. Instead, one could pass a shorter 

(scattered) version of the arrays containing data every defined number of time steps. If 

the latter is decided for computational convenience, a word of caution should be given as 

to how scattered the version of the arrays should be. Specifically, we strongly advice 

following the time step boundaries provided in Section 3.3. An example of the consequence 

of passing too scattered force and time arrays is illustrated in Fig. 6. This plot verifies the 

simulation as correct, if the convolution integral (RHS) and the results from the simulation 

(tip position multiplied by α constant: LHS) overlay each other. As can be seen, when the 

arrays are too scattered (the time step is too large), LHS and RHS do not overlay (see the 

blue line labeled with a time step dtconv = 9.9x10-5 s). In contrast, the yellow line (with a 

time step dtconv = 9.9x10-7) perfectly overlays the scattered purple star points (LHS). Note 

that for this verification we have not considered van der Waals tip-sample forces.  
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Fig. 6 Impact of computing the convolution of force with retardance (RHS, Eq. (53)) 

with arrays that have different time step values. The convolutions were computed 

with the following time step values dtconv = 9.9x10-5 s; 9.9x10-6 s and 9.9x10-7 s 

and plotted with different colors as indicated in the figure’s legend. These results 

are compared with Eq. (53) (LHS), which is plotted with purple stars. It can be 

observed that a time step of approximately 9.9x10-7 s has to be passed to the 

convolution integral (RHS, Eq. (53)) in order to match the results from the 

simulations (LHS, Eq. (52)). Note how the yellow line matches the purple star 

markers. 𝑈(𝑡) =  𝐽𝑔  +  ∑
𝐽𝑛

𝜏𝑛
𝑒−𝑡/𝜏𝑛

𝑛 is the retardance of the material, h is the 

indentation, F(t) the force, the integration variable, and the coefficient is =
16√𝑅

3
. 

4. CONCLUSION  

We have outlined detailed guidelines for implementing linear viscoelastic simulations in 

the context of AFM force-distance curve methods, where an indenter deforms a linear 

viscoelastic material. The manuscript has been written in a practical manner in an effort to 

make it accessible to a broad audience of researchers and students of different disciplines. 

In this spirit, procedural details have been prioritized over mathematical details, for which 

the user has been referred to relevant literature. Specifically, we have provided detailed 

explanations for setting up the governing equation ruling the behavior of the linear 

viscoelastic material being indented, and the subsequent numerical solution of this equation. 

For the numerical solutions, we have provided conceptual explanations and given specific 

examples, along with ready-to-use Python codes and Excel spreadsheets. Despite the 

simplicity of the presentation we have not sacrificed rigor, as the modeling has been placed 

in the context of complex viscoelastic materials possessing multiple characteristic times. 

This manuscript targets a large audience desiring to perform analysis and characterization 

of viscoelastic materials in a rigorous manner, but having only a moderate background in 

the field of linear viscoelasticity.  
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