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Abstract. In the paper, analysis of the curved profile measurement accuracy is 

described. Since there was no CAD model or other reference profile for the measured 

detail, the first step was to generate the reference contour of the cam using the technical 

drawing and tolerance requirements. The test campaign consisted of three experiments 

aimed at determining the effect of scanning velocity on the results of form deviation δ 

measurement, evaluation of deviation δ measurement uncertainty and the measurement 

repeatability. The scanning time was checked, too. The obtained results demonstrated 

feasibility of the chosen CMM and measurement strategy. It was found also that the 

measurement uncertainty did not depend on the scanning sampling step from 0.05 to 0.2 

mm, and the true measurement time was for 30-40% longer than that expected from the 

nominal scanning velocity. 

Key Words: Curved Profile, Tolerance, Measurement, CMM, Uncertainty 

1. INTRODUCTION 

Free-form surfaces and curved profiles are widely used in the design and manufacturing 

of details with high and strict precision requirements [1,2]. During the machining process, 

vibrations and other inaccuracies may affect the final state of the curved profile, which leads 

to the necessity of thorough dimensional and shape inspection to ensure its functionality. 

Thus, the characterization of free-form surfaces is an increasingly important area of 

metrology [3]. In particular, tolerance of the profile along with the position tolerance is a 

crucial feature in the design and manufacture of products with curved profiles.  

The contour of curved profiles can be detected either by sensing or by measuring, and 

measurement systems are generally based on mobile or stationary coordinate measurement 

systems with specific software and sensors [4]. The accuracy of the results from coordinate 
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measurements depends on the accuracy of the measuring device, workpiece properties, 

environmental conditions, and especially on the operator and measurement procedures [5]. 

Appropriate planning of a measurement strategy for free-form surfaces is addressed in 

many publications. For example, it was proposed to establish the local geometric deviation, 

namely, the difference between each measurement point and the CAD model of the 

measured surface [6]. Other papers dealt with two key problems of surfaces and curves 

profile error measurement: (1) evaluation algorithm of profile error on the basis of 

minimum zone principle or maximum material condition; (2) computer aided arbitrament 

for minimum zone principle and maximum material condition [7]. For the measurement of 

freeform shaped workpieces, the distortions caused by the tip mechanical filtration have 

impact on measurement accuracy, so that correction is desired in order to restore to the real 

workpiece surface [8]. Menq and Chen noted that after measurement with a contact probe, 

the generated surface differed from the real one because of the radius compensation errors 

of the probe. Minimization of the compensation errors required that the probing directions 

of the CMM coincide with the normal vectors of the probed points. They emphasized 

unavailability of the normal vectors of data points when the CAD model of a new design 

did not exist [9]. Similarly, in 3D gear measurements, the influence of CMM geometric errors 

on the results is still unclear because the requirement for a gear measurement standard with 

ideal geometry cannot be fulfilled [10]. It should be noted that the laser-based measurement 

methods of curved profiles need compensation, too [11]. 

A significant share in the overall calculus of errors in scanning measurements performed on 

coordinate measuring machines (CMM) refers to dynamic errors [12]. Since the measurement 

time and cost increase proportionally as the increase of sampling points, it is essential to study a 

sampling method [13].  

The volumetric probing uncertainty of a CMM is usually determined adding a 

component of the length measuring uncertainty, considering the distance between 25 

points on the calibrating sphere, to get the overall point coordinate uncertainty of the CMM 

[14]. Evaluation of repeatability and reproducibility of the CMM equipment is necessary, 

too [15]. Prior to numerical characterization, filtering is done and it is also essential for 

extracting information needed to provide process feedback and establish functional 

correlation [16]. A study of roundness of different artifacts using different algorithm and 

filters demonstrated impact of filtering on the measurement results [17]. The number of 

CMM points in the measurement of each feature of a part has to enable achievement of a 

simulated feature-fit that results in a high-quality representation of the manufactured 

feature [18]. In order to simplify the calculation and simultaneously retain the accuracy of 

evaluation, the method was proposed, based on the extraction of key points from scanning 

data set [19]. Other authors emphasized, however, that the simulation of measurement 

became very complicated when the solution of the measuring task needed construction of 

elements using measured features [20]. Some authors emphasized that there are very few 

commercially available software systems that offer sweep scan path planning function. 

Moreover, newly proposed methods able to generate a viable sweep scan path automatically 

require significant user’s knowledge and involvement [21].  

From that perspective, it is crucial to keep consistency in the measurement procedure. A 

dictionary definition of ‘consistency’ is ‘constant adherence to the same principles of thought 

or action’ [22]. Saunders and co-authors noted that this definition is intended to refer to a 

personal characteristic, but since many personal choices are made during programming, 
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operating, and evaluating of the CMM measured points, the term also works well within the 

context of measurement [23]. 

According to the definition of the profile tolerance in ISO 1101 [24], the surface profile 

error can be defined by the minimum diameter covering all measured points of the cluster 

spheres whose centers lie on the design model. Profile tolerance may be related to a basic 

surface; then its orientation and position are dependent on the definition of bases and 

base-dependent coordinate system.  

Researchers have proposed various practical approaches towards evaluating form 

deviations of 2D contour profiles based on coordinate measurement data. For example, a 

2D contour was divided into straight and curved parts [25]. There are reports in which 

extracted points of curved profile deviated from reference data within ±0.1 mm [26]. In the 

present paper, we focused on the statistical analysis of the results obtained for the curved 

2D profile with no available CAD model. The measurement results appeared to be 

dependent on the scanning parameters, so that a balance between accuracy demands and 

measurement time had to be found. Also the problem of basic surface for measurements 

was challenged in order to keep consistence of the results. 

2. MATERIALS AND METHODS 

In the research studies, a cam with complex 2D profile curvature was measured. Its 

dimensions and tolerances are shown in Fig. 1. Its form tolerance was 0.15 mm , and 

roughness of curved surface was limited to Ra = 1.25 μm and Rz = 6.3 μm. Using the data 

from Fig. 1, theoretical (reference) profile was generated as a file *.dxf using the program 

SolidWorks 2019. 

 

Fig. 1 Technical drawing of the measured cam 
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The contour of the cam was generated using the technical drawing, and in form of *.dxf 

file was input to the CMM control program. In the file, 2829 theoretical (reference) points 

constituted the profile with coordinates x, y, z in the local coordinate system (LCS) defined 

according to the technical drawing. The points were located approximately uniformly 1 

mm below the base surface of the cam, i.e. z = -1 mm for each point. The length of the 

contour was lc = 123,49 mm.  

The measurements were performed with the CMM Mitutoyo Crysta – Apex S 7106. It 

is a high-accuracy CNC coordinate measuring machine that guarantees a maximum 

permissible error defined by ISO 10360-2:2009 of E0,MPE = (1.7+3L/1000) μm at ambient 

temperature 20 ±2 °C. L stands for the selected measuring length in mm. The measuring 

range in three axis is x = 700; y = 1000; z = 600 mm, 3D acceleration a = 2309 mm/s2, and 

linear velocity in three directions x, y, z is v = 519 mm/s. 

Moreover, the CMM has temperature compensation function in the range of 16÷26 °C, 

which makes it suitable for working in the industrial conditions. The machine can be 

equipped with contact scanning probe, non-contact laser probe or vision probe [27]. 

Scanning mode makes it possible to perform measurement with 0.05-1.0 point-point step 

or distance between points, scanning speeds between 0.5 and 4 mm/s, and permissible 

probe deflection in the range from 0.15 to 0.4 mm. 

Fixation of the cam with defined LCS is shown in Fig 2. Fig. 3 presents the initial 

window of CMM for scanning of an outer closed contour with the set values described 

below in the text.  

 

Fig. 2 Fixation of the measured cam on the CMM table 
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To perform the experiments, control software MCosmos was used. In this program, 

ready scripts are available for the measurement of all standardized geometrical tolerances, 

as well as the measurement of complex shapes in local coordinates. 

Before the measurement, a fixture was made so that the entire profile could be measured 

in one fixation with one probe. The probe was calibrated with the calibration sphere, and a 

local coordinate system (LCS) was defined according to the tolerance data provided in the 

drawing Fig 2. The LCS definition covered following elements: 

▪ base A as a head surface of the measured cam became the main surface of the LCS, 

it defined axes X and Y from 4 measuring points, 

▪ base B defined LCS center in the center of the hole ∅20, using 4 points of the circle, 

▪ base C as a line connecting three points, two of them lay in the bisector of the first 

smaller base hole and the third one was the center of the second smaller base hole; it 

was moved in parallel up to base B become axis Y, 

▪ remaining axes x and y are derived from the right-hand coordinate system. 

 

Fig. 3 Window of the MCosmos program for the measurement parameters 

During the measurement, the CMM program written for that specific purpose is collecting 

the coordinates of measuring points. According to the definition of the profile deviations, it 

registers maximal deviation value δmaxand shows its position in the profile. The number of 

collected points is dependent on the measurement step and only approximately corresponds to 

the profile length divided by step. Apart from deviation value δ, scanning time was registered 

directly by the CMM program.  

After the measurement is finished, the program records automatically the measurement 

report with the value of the largest registered deviation from the reference profile. Moreover, 

the program makes it possible to register all the measuring points from the scanning, in the 

respective file *.dxf.  
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3. TEST CAMPAIGN 

The test campaign consisted of three experiments aimed at determining the effect of 

scanning velocity on the results of form deviation δ measurement, evaluation of deviation δ 

measurement uncertainty and the measurement repeatability. 

During the profile scanning, three parameters could be set: 

▪ scanning velocity vs in the range between 0.5 and 4 mm/s, 

▪ permissible probe deflection pd in the range between 0.15 and 0.4 mm, and, 

▪ scanning step s between 0.05 and 1 mm.  

The respective values used in each measurement series are presented in the Table 1. 

Table 1 Parameters of experimental measurements  

Series No. vs [mm/s] pd [mm] s [mm] Number of repetitions n 

1 1 0.15 0.2 5 

2 1 0.2 0.2 5 

3 1 0.3 0.2 5 

4 1 0.4 0.2 5 

5 2 0.15 0.2 5 

6 2 0.2 0.2 5 

7 2 0.3 0.2 5 

8 2 0.4 0.2 5 

9 3 0.15 0.2 50 (3×5+1×10+1×25) 

10 3 0.2 0.2 5 

11 3 0.3 0.2 5 

12 3 0.4 0.2 5 

13 4 0.15 0.2 5 

14 4 0.2 0.2 5 

15 4 0.3 0.2 5 

16 4 0.4 0.2 5 

17 3 0.15 0.2 50 

18 3 0.15 0.05 50 

The above-mentioned parameters were chosen in order to perform three different 

experiments, as explained below.  

3.1. Effect of scanning velocity on results of the form deviation measurements 

In the first set of experiments, the goal was to determine the effect of different scanning 

velocities vs on the results of profile form deviation, considering the measurement time. In 

this set of measurements, the scanning step remained unchanged, s = 0.2 mm. As shown in 

the Table 1 above, the measurements were performed for 16 combinations of vs and pd 

settings. For each combination, the measurements were repeated 5 times. The number of 

measuring points differed in a small range from 645 up to 660. 

3.2. Uncertainty evaluation 

It can be assumed that the factors having effect on the measurement uncertainty of a cam 

contour are similar to the ones typical for roundness measurement [28-29]. Uncertainty 

analysis was performed using the Type A approach [30] with 50 repetitions made in the 
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repeatability conditions. Two series of measurements marked 17 and 18 in Table 1 had similar 

parameters vs = 3 mm/s and pd = 0.15 mm, but different sampling step. This experiment was to 

demonstrate how the uncertainty of form deviation is dependent on the number of probing 

points. In the series 17, at sampling step s = 0.2 mm, the number of probing points was ca. 650, 

while in the series 18 it was 2560-2590, close to the respective number in the reference file 

*.dxf. 

3.3. Repeatability in short measurement series 

Considering a relatively long time of a single measurement, which can be as long as 

200 s at scanning speed vs = 1 mm/s, it is reasonable to expect that 50 repetitions may not 

completely conform to the repeatability conditions requirement. To challenge this issue, 

the third experiment was performed. In the case of the series 9 (Table 1, vs = 3 mm/s, pd = 

0.15 mm, s = 0.2 mm), the measurement was firstly performed three times with 5 repetitions 

each time, then with 10 repetitions, and finally with 25 repetitions. This procedure was 

described in Tab. 1 as 3×5+1×10+1×25. Thus, the strict repeatability conditions were kept only 

for each group of repetitions, but not only for the entire sample of 50 similar measurements. As 

a result, measurement repeatability for a smaller number of repetitions could be compared 

with the results for a larger number. 

 All these measurements, as well as the ones described in Section 3.1, were performed 

on the same day, with no resetting the CMM. After calibration of the probe, the measured 

cam was not moved from its fixed position. The coordinate system once established was 

applied to each measurement due to the specially prepared software program. Moreover, to 

assure a higher level of repeatability, the initial position of the probe before each 

measurement was identical.  

The experiments described in Section 3.2, however, were performed several months later, 

and for each of them the CMM was started anew. In this way the obtained results in series 17 

and 18 must be treated as two separate experiments, while the others are somewhat 

interconnected between each other through the same definition of the coordinate system and a 

relatively short time between the repetitions. 

4. RESULTS AND DISCUSSION 

Overall number of the maximal deviation measurement results was 225. In order to 

determine normality of the results distribution, the Kolmogorov-Smirnov test was applied 

to each of tests with 50 repetitions, namely, series No. 9, 17 and 18, as described in the 

previous section. Respective D-values of the statistics were 0.1789, 0.14551 and 0.18754, 

while p-values were 0.07, 0.22 and 0.05, respectively. Hence the measurement results in 

the series did not differ significantly from Gaussian distribution, despite some differences 

in statistical parameters. Fig. 4 presents the respective histograms. 
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Fig. 4 Histograms of the measurement results of 50 repetitions in the series No. 9, 17, and 18 

Knowing that the distribution of form deviation δ measurement results is normal, it is 

possible to apply the Student-Fisher parameters to the smaller series of 5, 10 and 25 

repetitions. Thus, confidence interval CI can be calculated as follows: 

 CI = tα,n-1 ×Sn (1) 

where:   tα,n-1 – Student-Fisher distribution quantile, n – number of the repetitions in series, 

Sn – standard deviation. 

Assuming confidence level P = 0.99, the respective quantile value for 5 repetitions is 

tα,n-1 = 4.604, for 10 repetitions tα,n-1 = 3.250, and for 25 repetitions tα,n-1 = 2.797 [31].  

4.1. Effect of scanning velocity on form deviation 

In Tables 2-5, there are collected measurement results for form deviation δ obtained at 

different scanning velocities vs and probe deflection pd, together with the time of 

measurement t. The series numbers correspond with the ones specified above in Table 1. 

Table 4 contains results for probe deflection pd = 0.15 mm only for one series with 5 

repetitions. 

Table 2 Form deviation δ obtained at vs = 1 mm/s (series 1-4)  

 pd= 0.15 mm pd= 0.2 mm pd= 0.3 mm pd= 0.4 mm 

Repetition No. δ [mm] t [s] δ [mm] t [s] δ [mm] t [s] δ[mm] t [s] 

1 0.118 198 0.115 179 0.114 156 0.112 145 

2 0.120 203 0.116 181 0.113 155 0.112 145 

3 0.116 205 0.115 177 0.112 154 0.111 146 

4 0.118 201 0.116 177 0.113 155 0.111 147 

5 0.119 199 0.118 178 0.115 154 0.112 146 

Mean value 0.118 201.2 0.116 178.4 0.113 154.8 0.112 145.8 

Standard deviation Sn 0.001 2.864 0.001 1.673 0.001 0.837 0.001 0.837 

Confidence interval 0.007 13.18 0.006 7.7 0.005 3.85 0.003 3.85 
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Table 3 Form deviation δ obtained at vs = 2 mm/s (series 5-8)  

 pd= 0.15 mm pd= 0.2 mm pd= 0.3 mm pd= 0.4 mm 

Repetition No. δ [mm] t [s] δ [mm] t [s] δ [mm] t [s] δ[mm] t [s] 

1 0.119 95 0.115 84 0.114 75 0.112 75 

2 0.116 97 0.115 84 0.116 77 0.112 75 

3 0.115 95 0.115 84 0.112 77 0.114 73 

4 0.116 97 0.115 84 0.113 77 0.112 74 

5 0.118 95 0.114 84 0.118 78 0.114 74 

Mean value 0.117 95.8 0.115 84.0 0.115 76.8 0.113 74.2 

Standard deviation Sn 0.002 1.095 0.000 0.000 0.002 1.095 0.001 0.837 

Confidence interval 0.008 5.04 0.002 0.000 0.011 5.04 0.005 3.85 

Table 4 Form deviation δ obtained at vs = 3 mm/s (series 9-12)  

 pd= 0.15 mm pd= 0.2 mm pd= 0.3 mm pd= 0.4 mm 

Repetition No. δ [mm] t [s] δ [mm] t [s] δ [mm] t [s] δ[mm] t [s] 

1 0.120 61 0.117 56 0.116 47 0.113 47 

2 0.117 62 0.116 56 0.116 50 0.110 47 

3 0.117 63 0.113 57 0.113 50 0.119 49 

4 0.116 62 0.115 57 0.115 51 0.114 50 

5 0.116 61 0.113 55 0.116 50 0.112 49 

Mean value 0.117 61.8 0.115 56.2 0.115 49.6 0.114 48.4 

Standard deviation Sn 0.002 0.837 0.002 0.837 0.001 1.517 0.003 1.342 

Confidence interval 0.008 3.85 0.008 3.85 0.006 6.98 0.015 6.18 

Table 5 Form deviation δ obtained at vs = 1 mm/s (series 1-4)  

 pd= 0.15 mm pd= 0.2 mm pd= 0.3 mm pd= 0.4 mm 

Repetition No. δ [mm] t [s] δ [mm] t [s] δ [mm] t [s] δ[mm] t [s] 

1 0.120 50 0.113 46 0.115 42 0.121 38 

2 0.118 49 0.115 46 0.117 40 0.114 38 

3 0.117 49 0.117 46 0.115 41 0.114 37 

4 0.115 47 0.117 46 0.117 41 0.113 37 

5 0.117 48 0.117 46 0.111 41 0.118 38 

Mean value 0.117 48.6 0.116 46.0 0.115 41.0 0.116 37.6 

Standard deviation Sn 0.002 1.140 0.002 0.000 0.002 0.707 0.003 0.548 

Confidence interval 0.008 5.25 0.008 0.000 0.011 3.26 0.016 2.52 

From the above results, it can be seen that larger permissible probe deflection pd 

enabled 22-28% shortening of the measurement time at each scanning speed. However, it 

caused distinguishable 1-6% reduction of the obtained result of form error δ. Graph in 

Fig.5 shows how this reduction differs for different scanning speed values vs.  

From Fig. 5 it can be concluded, that at higher scanning speeds, the influence of 

probe deflection is smaller. For pd≤ 0.2 mm, speed-dependent differences in obtained form 

deviations δ lay below E0,MPE = (1.7+3L/1000) μm for the used CMM. Notably, this range 

of the deflection values ensured insignificant effect of scanning speed vs on the form 

deviation results. For each pd = 0.15 and 0.2 mm, differences between obtained δ at various 

vs were 1 μm. Larger probe deflections led to widening of the results span, which indicated 



130 T. MAZUR, M. RUCKI, Y. GUTSALENKO 

increased uncertainty of the measurement. Due to this observation, we are against application 

of pd> 0.2 mm for this sort of measurement.  

 

Fig. 5 Form deviation δ obtained at different scanning speeds vs and different probe 

deflections pd 

Calculations of true scanning velocity vs' revealed substantial differences between them 

and set values vs. Values of vs' were determined from the known length of measured 

contour lc and automatically registered time of each measurement. Table 6 presents the 

values and percentage differences between them. 

Table 6 True values of scanning speed vs' related to the nominal ones vs for different probe 

deflections pd (sampling step was 0.2 mm)  

 pd= 0.15 mm pd= 0.2 mm pd= 0.3 mm pd= 0.4 mm 

vs [mm/s] vs' [mm/s] 
Percen- 

tage 
vs' [mm/s] 

Percen- 

tage 

vs' 

[mm/s] 

Percen- 

tage 

vs' 

[mm/s] 

Percen- 

tage 

1 0.120 50 0.113 46 0.115 42 0.121 38 

2 0.118 49 0.115 46 0.117 40 0.114 38 

3 0.117 49 0.117 46 0.115 41 0.114 37 

4 0.008 5.25 0.008 0.000 0.011 3.26 0.016 2.52 

It should be noted that the true scanning speed never reached its nominal value, and 

smaller probe deflections reduced its value by almost 40%. Considering previous conclusion 

that the measurement should not be performed with pd> 0.2 mm, this finding becomes 

extremely important. In the case of 100% inspection of large lots of the cams similar to the 

one investigated, measurements will take 30-40% longer time than it would be expected from 

the nominal scanning speed. In the Flexible Manufacturing Systems working in the frames of 

Industry 4.0 concept [32], prolonged inspection time may become an issue. 

4.2. Results of uncertainty evaluation 

In the Type A uncertainty evaluation, three series of the measurement results were 

used, 50 repetitions each. It can be assumed that the standard uncertainty is approximately 

equal to the standard deviation u(x) ≈Sn, and the coverage factor for the level of confidence 

p = 99% can be kp = 2.576 [28]. As described above, series No. 9 followed repeatability 
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conditions, but not as strictly as series No. 17. On the other hand, series No. 18 had a larger 

number of probing points, close to that of the reference file derived from the technical 

drawing. Table 7 presents values of the calculated standard and expanded uncertainties. 

Examples of the measured profiles with emphasized δmax are shown in Figs 6 and 7. 

Table 7 Uncertainty estimation based on the series with 50 repetitions  

Series No.  9 17 18 

  [mm] 0.1151 0.1137 0.1152 

Sn ≈ u(x) 0.00158 0.00195 0.00142 

U0.99 = kp× u(x) 0.004 0.005 0.004 

 

Fig. 6 Example of the measured profile with the result of δ = 0.113 mm; sampling step 

s = 0.2 mm, 660 probing points 

The results presented in Table 7 appear a little unexpected. A higher degree of 

conformity is between series No. 9 and 18 than between No. 17 and any of two others, 

despite its conditions were “in-between” (same number of probing points as No. 9 and time 

of experiment closer to No. 18). Nevertheless, it should be kept in mind that the differences 

between both mean values   and expanded uncertainties U0.99 for three series lay below 

E0,MPE. Hence, it may be stated that the influence of sampling is negligibly small when 

estimating the measurement uncertainty of CMM measurement of the cam profile.  
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Fig. 7 View of the area with the largest identified form deviation: a) δmax = 0.113 mm after 

scanning with step s = 0.2 mm, b) δmax = 0.116 mm after scanning with step s = 0.05 mm 

This conclusion is confirmed by a detailed analysis of the maximal deviation localization 

on the cam profile. Irrespective of what sampling step, scanning velocity or probe deflection 

was applied ,δmax was identified in the same area.  

Moreover, it should be noted that a large number of probing points effects in increase of 

the processing time and, hence, the measurement lasts longer. Experimental evaluation of 

the uncertainty demonstrated that it is unnecessary, and the results with similar uncertainty 

may be obtained at a larger sampling step in a shorter time. 

4.3. Repeatability in short measurement series 

Table 8 presents the results obtained subsequently for the series No. 9, as described in 

Section 3.3. The first column presents the number of each measurement in the series 9, while 

the second one is the number of a group, as follows: 5 repetitions in the 1st group, 5 in the 2nd 

and 3rd, respectively, 10 repetitions in the 4th group and 25 repetitions in the 5th group. For each 

group, respective standard deviations Sn and confidence intervals CI were calculated both for 

measured deviation δ and for measurement time t. In the last row, overall statistics is added for 

the entire series No. 9 for t0.01,49=2.6802. Fig. 8 shows the histograms of the results with 

approximated distribution curves for the group No. 5 and for overall statistics. 

Table 8 Statistics for form deviation δ and scanning time t obtained at vs = 3 mm/s with 

sampling step s = 0.2 mm and pd= 0.15 mm in short measurement groups  

Group No.  [mm] Sn CI t  [s] Sn CI 

1 0.1172 0.00164 0.0076 61.8 0.837 3.85 

2 0.1150 0.00255 0.0117 65.2 0.447 2.06 

3 0.1150 0.00173 0.0080 62.6 0.548 2.52 

4 0.1153 0.00125 0.0041 60.4 1.35 4.39 

5 0.1146 0.00115 0.0032 62.2 1.165 3.26 

Overall 0.1151 0.00158 0.0042 62.2 1.646 4.41 
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Fig. 8 Distribution of the results in short measurement series: a) deviation δ and b) measurement 

time t 

Interestingly, the first three groups that would be expected to be similar, revealed the 

following statistics: mean values  were similar for groups 2 and 3, with 2.2 μm higher 

for group 1, but the respective confidence intervals were similar for groups 1 and 3, with CI 

for the group 2 almost 50% wider. For the groups with 10 and 25 repetitions, confidence 

intervals reduced substantially, down to 0.0041 and 0.0032, respectively. Notably, mean 

value  for group 4 was slightly higher than that for groups 2 and 3, while for group 5 it 

was slightly lower. The difference was smaller than 0.4 μm, significantly below the 

maximum permissible error E0,MPE = (1.7+3L/1000) μm for the CMM used in experiments. 

5. CONCLUSIONS 

The results of the experimental research studies demonstrated that increased probe 

deflections pd reduced the values of measured form deviation. Additionally, pd higher than 

0.2 mm increased the results dispersion. It was found also that the measurement uncertainty did 

not depend on the scanning sampling step from 0.05 to 0.2 mm, but it should be noted that a 

smaller step increased the measurement time. 

 


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Noteworthy, the true measurement time was for 30-40% longer than that declared by 

nominal scanning velocity. These characteristics must be taken into consideration when 

projecting the batch inspection procedures, especially when 100% of parts must be 

measured. Moreover, there is no necessity in the increased number of repetitions since 

even a small number of repetitions gave similar mean results with differences close to the 

maximum permissible error of the CMM. 

The most important conclusion is that the highest value of form deviation was identified in 

the same location irrespective of the applied measurement parameters. Expanded uncertainty of 

form deviation measurement at the level of confidence p = 99% was U0.99 = 0.005 mm, less 

than 10% of the measured tolerance. This value proved that the chosen CMM as well as the 

inspection methodology were appropriate for the measurement of the given curved profile. 

Acknowledgements: The paper is a part of the research program conducted at the Faculty of 

Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, 

Poland. No specific funds were applied.  

REFERENCES 

1. Bo, P., Bartoň, M., 2019, On initialization of milling paths for 5-axis flank CNC machining of free-form 

surfaces with general milling tools, Computer Aided Geometric Design,  71, pp 30-42. 
2. Vosniakos, G., Pipinis, G., Kostazos, P., 2021, Numerical simulation of single point incremental forming for 

asymmetric parts, Facta Universitatis-Series Mechanical Engineering, doi: 10.22190/FUME201210046V. 

3. Jiang, X. J., Scott, P. J., 2020, Chapter 10 - Characterization of free-form surfaces, in: X.J. Jiang, P.J. Scott 
(Eds.), Advanced Metrology, Academic Press, pp. 247-280. 

4. Fleischer, J., Munzinger, C., Lanza, G., Ruch, D., 2009, Position and contour detection of spatially curved 

profiles on the basis of a component-specific scale, CIRP Annals – Manufacturing Technology, 58(1), pp. 
481-484.  

5. Weckenmann, A., Knauer, M., 1998, The influence of measurement strategy on the uncertainty of 

CMM-measurements, Annals of the ClRP, 47(7), pp. 451-454. 
6. Poniatowska, M., 2012, Deviation model based method of planning accuracy inspection of free-form surfaces 

using CMMs, Measurement, 45(5), pp 927-937. 

7. Xiong, Y.L., 1990, Computer aided measurement of profile error of complex surfaces and curves: Theory and 
algorithm, International Journal of Machine Tools and Manufacture, 30(3), pp. 339-357. 

8. Lou, S., Brown, S.B., Sun, W., Zeng, W., Jiang, X., Scott, P.J., 2019, An investigation of the mechanical filtering 

effect of tactile CMM in the measurement of additively manufactured parts, Measurement, 144, pp. 173-182.  
9. Menq, C., Chen, F.L., 1996, Curve And Surface Approximation From CMM Measurement Data, Computers ind. 

Engng, 30(2), pp. 211-225. 
10. Lin, H., Keller, F., Stein, M., 2020, Influence and compensation of CMM geometric errors on 3D gear 

measurements, Measurement, 151, Article 107110.  

11. Ding, D., Zhao, Z., Zhang, X., Fu, Y., Xu, J., 2020, Evaluation and compensation of laser-based on-machine 
measurement for inclined and curved profiles, Measurement, 151, Article 107236. 

12. Adam Wozniak, A., Krajewski, G., Byszewski, M., 2019, A new method for examining the dynamic performance 

of coordinate measuring machines, Measurement, 134, pp. 814-819. 
13. Zhang Y., Chen, Z., Zhu, Z., Wang, X., 2020, A sampling method for blade measurement based on statistical 

analysis of profile deviations, Measurement, 163, Article 107949. 

14. Dhanish, P.B., Mathew, J., 2006, Effect of CMM point coordinate uncertainty on uncertainties in determination 
of circular features, Measurement, 39(6), pp. 522-531. 

15. Kubátová, D., Melichar, M., Kutlwašer, J., 2017, Evaluation of Repeatability and reproducibility of CMM 

equipment, Procedia Manufacturing, 13, pp. 558-564.  
16. Raja, J., Muralikrishnan, B., Fu, S., 2002, Recent advances in separation of roughness, waviness and form, 

Precision Engineering, 26(2), pp. 222-235.  

17. Raghu, S., Mamatha, T.G., Pali, H.S., Sharma, R., Vimal, J.R., Kumar V., 2020, A comparative study of 
circularity of artefact detecting circle using CMM and form tester with different filters, Materials Today: 

Proceedings, 25(4), pp. 821-826.  



 Accuracy Analysis of the Curved Profile Measurement with CMM: a Case Study 135 

18. Kalish, N. J., Davidson, J. K., Shah, J.J., 2020, Constructive statistics and virtual capture zones: A novel math 
model for CMM metrology, Procedia CIRP, 92, pp. 39-44.  

19. He, G., Sang, Y., Wang, H., Sun, G., 2019, A profile error evaluation method for freeform surface measured by 

sweep scanning on CMM, Precision Engineering, 56, pp. 280-292. 
20. Gąska, A., Harmatys, W., Gąska, P., Gruza, M., Gromczak, K., Ostrowska, K., 2017, Virtual CMM-based model 

for uncertainty estimation of coordinate measurements performed in industrial conditions, Measurement, 98, pp. 

361-371.  
21. Zhou, Z., Zhang, Y., Tang, K., 2016, Sweep scan path planning for efficient freeform surface inspection on 

five-axis CMM, Computer-Aided Design, 77, pp. 1-17.  

22. Oxford English Dictionary. Oxford University Press. (2013) consistency, n. OED Online. Retrieved December 

17, 2013, from http://www.oed.com 

23. Saunders, P., Wilson, A., Orchard, N., Tatman, N., Maropoulos, P., 2014, An Exploration into Measurement 

Consistency on Coordinate Measuring Machines, Procedia CIRP, Volume 25, pp. 19-26.  
24. EN ISO 1101:2017: Geometrical product specifications (GPS). 

25. Qiu, H., Li, Y., Cheng, K., Li, Y., 2000, A practical evaluation approach towards form deviation for 

two-dimensional contours based on coordinate measurement data, International Journal of Machine Tools 
& Manufacture, 40, pp. 259–275. 

26. Fan, J., Ma, L., Sun, A., Zou, Zh., 2020, An approach for extracting curve profiles based on scanned point cloud, 

Measurement, 149, Article 107023. 
27. CRYSTA-APEX S SERIES, Bulletin No. 2173, Mitutoyo, https://www.mitutoyo.com/wp-content/uploads/ 

2013/01/2097_CRYSTA_ApexS.pdf (Accessed on December, 7, 2020). 

28. Gapinski, B., Grzelka, M., Rucki, M., 2006, The roundness deviation measurement with coordinate measuring 
machines, Engineering Review, 26(1-2), pp. 1-6.  

29. Gapinski, B., Rucki, M., 2008, The roundness deviation measurement with CMM, 2008 IEEE International 

Workshop on Advanced Methods for Uncertainty Estimation in Measurement, pp. 108-111, doi: 
10.1109/AMUEM.2008.4589944 

30. JCGM 100:2008. Evaluation of measurement data — Guide to the expression of uncertainty in 

measurement. 

31. Jezierski, J., Kowalik, M., Siemiatkowski, Z., Warowny, R., 2010, Tolerance analysis in the mechanical 

engineering, WNT, Warszawa (in Polish). 
32. Messinis, S., Vosniakos, G.C., 2020, An agent-based flexible manufacturing system controller with Petri-net 

enabled algebraic deadlock avoidance, Reports in Mechanical Engineering, 1(1), pp. 77-92.  

 


