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Abstract. This paper highlights Li-He’s approach in which the enhanced perturbation 

method is linked with the parameter expansion technology in order to obtain frequency 

amplitude formulation of electrically actuated microbeams-based microelectromechanical 

system (MEMS). The governing equation is a second-order nonlinear ordinary 

differential equation. The obtained results are compared with the solution achieved 

numerically by the Runge-Kutta (RK) method that shows the effectiveness of this 

variation in the homotopy perturbation method (HPM). 
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1.  INTRODUCTION 

The last two decades have witnessed rapid advancement in nonlinear sciences arising 

in oscillation theory and other fields of physics [1-5]. Several methods were developed to 

find periodic solutions of nonlinear oscillatory systems, for example, variation iteration 

method (VIM) [6-7], homotopy perturbation method [8-9], Hamiltonian approach (HA) 

[10], energy balance method (EBM) [11], spreading residue harmonic balance method 
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(SRHBM) [12], iteration perturbation method (IPM) [13], and other methods [14-15]. 

HPM was proposed in the later 1990s [16-17] and now has been established into a mature 

phase for ordinary differential equations [18-19], partial differential equations [20-21], 

and differential equations of fractional order [22-24]. It is widely applied for nonlinear 

oscillation problems of conservative oscillators [19,25], attachment oscillator [26], Fangzhu 

oscillator [27], micro systems’ oscillators [28-29], and fractional-order oscillators [30]. 

Generally, a single iteration of this technique leads to a high accuracy of the solution.  

Many researchers devoted their efforts and time to scrutinize the applicability of HPM 

for nonlinear problems and used it with the parameter expansion technology [31-32], the 

supporting terms [33-35], and the Laplace transform [18,21]. Recently, an adjustment in 

the perturbation method is proposed by Filobello-Nino [36], named the enhanced 

perturbation method. This method is highly accurate and provides better results because it 

deals with the problems with both small and large values of the perturbation parameters. 

Li and He [37] adopted this modification to link the enhanced perturbation method with 

the parameter expansion technology [19,31], and highly accurate results can be achieved 

for nonlinear oscillators. Ji et. al., [38] employed hybridization of Li-He’s technique with 

EBM to find an approximate solution of the nonlinear problem of a tangent packing system. 

The microelectromechanical system (MEMS) refers to the high technology devices of 

small sizes; it has become a hot topic in both academic and industrial communities [39-

40]. The MEMS are intelligent structures and their systems are commonly micron or 

nanometer. Microelectronic technology is the origin of these tiny devices used in 

vibrators, sensors, switches, and so on [41-42]. Spring-base structures [43-45], nanotubes 

[15,46], and microbeams [11-12,14] can be considered as some of the potential and very 

applicable nano/microstructures in various sensing and actuating devices. These structures 

are modeled by generally using Galerikin’s method and represented by nonlinear 

mathematical models. Different types of forcing nonlinearities such as electrostatic force 

[11,43], electromagnetic force [41,44], and van der Waals force [12] make the solution 

process extremely difficult. Therefore, approximate solutions of these nonlinear models 

are important for predicting their dynamic behavior. 

Recently Fu et al. [11] studied electrically excited microbeams-based MEMS oscillator by 

employing the EBM [11]. The electrostatic force was used for actuation while the solution 

was depicted as an amplitude-frequency relationship. In this paper, we link the enhanced 

perturbation method with the parameter expansion technology [19,31] and propose an 

amplitude-frequency formula based on Li-He’s approach [37] in order to find an approximate 

solution of the aforementioned model. The nonlinear frequency obtained from the proposed 

technology is compared with the frequency achieved numerically using the Runge-Kutta 

method (RK) for verification. We also match the results of Li-He’s technique with those 

attained from EBM [11] to ensure the effectiveness of the suggested approach over EBM. 

2.  PROBLEM STATEMENT 

Consider a doubly-clamped microbeam of length L, width b, thickness h and density ρ 

shown in Fig. 1 with coordinate system OXYZ. Equation of motion as deflection of 

microbeam can be expressed with a partial differential equation as 
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where W(x,) is the function of location x while time  represents the deflection of 

microbeam, E is the Young’s modulus, I=bh3/12  and S=bh are moment of inertia about 

Y-axis and area of cross section, respectively, Ñ is the axial load between microbeam and 

its substrate and F(x, ) is the actuation force resulting from electrostatic excitation [42]. 
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where ν denotes Poisson ratio, εν is dielectric constant with usual value of 8.85 PFm−1 and 

d is the initial gap between the substrate and the beam. As the whole study is performed 

for a doubly-clamped microbeam, the boundary conditions will be 
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Fig. 1 Model of doubly clamped electrically actuated microbeam-based MEMS 

For simplicity, the variables of deflection of microbeam, location, and time in nondimensional 

form can be taken as 
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Eq. (1) after substituting the nondimensional variables from Eq. (4) is given by 
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where nondimensional parameters axial load N, aspect ratio α and parameter of electrostatic 

force V in Eq. (4) are as follows 
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Also the boundary conditions in nondimensional form can be expressed as 
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We apply method of separation of variables in order to find the solution of Eq. (6) subject 

to boundary conditions of Eq. (8). Hence defection function w(η,t) can be written as the 

product of two functions. 

 ( , ) ( ) ( )w t t   =  (9) 

where χ(t) is the time function and ξ(η) is the trail function satisfying all the boundary 

conditions mentioned in Eq. (8). In our study, we use trail function suggested as [11] 

 2 2( ) 16 (1 )   = −  (10) 

Substitute Eq. (9) into Eq. (6) and multiply the governing equation by φ(η)(1−w2)2 and 

then integrate over dimensionless domain in order to obtain 
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where over dot  ( )•  represents differentiation with respect to time variable t and prime 

( )•  represents the partial differentiation with respect to coordinate variable η. Eq. (11) 

can be rewritten as 
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where coefficients c0, c1,…, c6 can be determined as follows 
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Eq. (12) is a second-order nonlinear ordinary differential equation and Li-He’s approach 

will be employed for the solution under the following initial conditions 

 (0) , (0) 0A = =  (13) 

where A is the initial amplitude of the nonlinear oscillatory system. 

3.  BASIC IDEA OF LI-HE’S APPROACH 

To understand the idea of Li-He’s approach, consider the linear oscillator 

 2 0x x + =  (14) 

where x is the function of time t representing the general displacement and Ω is the 

angular frequency of the oscillator. Eq. (14) can be expressed in an operator form as 

 2 2( ) 0D x+ =   (15) 

where D=d/dt is a differential operator. The enhanced perturbation method apply 

annihilator operator D2+Ω2 to Eq. (15); we have 

 2 2 2 2 2 4( )( ) 2 0D D x x x x + + = +  + =  (16) 

This method can solve a wide class of non-linear problems. It is more effective in the 

case of nonlinear problems with the forced term but it can also apply to the problems 

without forced term [36]. After applying some suitable substitution, the Eq. (16) is a 

higher-order equation and can be rewritten into linear Ḻ and nonlinear Ṉ operator form as: 

 0Lx Nx+ =  (17) 

We can construct the homotopy equation for Eq. (17) as 

 0( , ) (1 )[ ( ) ( )] [ ( ) ( )] 0, [0,1]H q q L L q L N q    = − − + + =    (18) 

where q is embedding parameter and ξ0 is initial solution of Eq. (17). It is clear from Eq. (8) 

 0( ,0) ( ) ( ) 0H L L  = − =  (19) 

 ( ,1) ( ) ( ) 0H L N  = + =  (20) 
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HPM uses embedding parameter q as an expanding parameter [19], and basic assumption 

is that the solution of Eq. (17) can be specified as a power series in q: 

 2 3 4

0 1 2 3 4q q q q     = + + + + +  (21) 

Setting q=1 results in the approximate analytic solution of Eq. (17) 
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4.  SOLUTION OF MODEL PROBLEM 

To apply Li-He’s technique discussed in the above section, Eq. (12) can be expressed 

in the form 
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To reveal the solution process, consider Eq. (23) which is hard to be resolved analytically 

specially when b1=−1, because the linear part has the form 

 0  − =   

which has no periodic solution. We express Eq. (23) in an operator form as 
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According to the enhanced perturbation method [36], we put on the annihilator operators 

D2+1 to Eq. (14)  
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By applying the annihilator operators, a higher-order differential equation of Eq. (24) can 

be written as 
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The linear part becomes now 
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which represents a linear oscillator. For Eq. (26), the homotopy equation can be defined as 
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The solution and coefficient of the linear term can be expanding as 
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where Ω4 and Ωi are constants and can be recognized by means of no secular term. 

Substituting Eq. (29) and Eq. (30) into Eq. (28) and continuing as that by the standard 

perturbation method, we have 
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By utilizing Eq. (12), we can take the initial approximate solution as  

 0 cosA t =   (33) 

Eq. (32) will get the form after employing the initial solution 
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After simple calculation, Eq. (34) can be written 
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Requirement of no secular term needs 
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If it is enough to obtain the first-order approximate solution, then from Eq. (30), we yield 
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Solving Ω from Eqs.(40) and (41) we have  
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and the corresponding approximate solution of Eq. (12) is 
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which is different from the solution gained by EBM [11]. 

5.  RESULTS AND DISCUSSION 

The analytic nonlinear frequency and the approximate solution for the vibration of 

microbeam can be calculated from Eqs. (42) and (43), respectively. A comparison 

between the frequencies obtained from Li-He’s approach and those gained by RK is 

demonstrated in Table 1 for different parameters. It displays the high correctness of the 

proposed solution as the maximum percentage error is not greater than 1%. This table and 

the graphs of Figs. 2 and 3 specify that the analytic solution accomplished by Li-He’s 

approach, Eqs. (42) and (43), can estimate the dynamic vibrational activities of the 

microbeams acceptably. This approves the validity of the proposed solution. 

Table 1 Comparison of analytic frequency obtained by Li-He and RK methods  

A N Α V ΩRK ΩLi-He Error (%) 

0.15 12 20 15 22.9224 22.8896 0.1431 

0.15 18 50 15 29.8489 29.8222 0.0269 

0.3 6 35 10 28.8737 28.8882 0.0502 

0.3 24 10 20 16.6002 16.6422 0.2530 

0.45 12 20 5 28.5210 28.4952 0.0905 

0.45 24 10 10 26.4555 26.5042 0.1841 

0.6 6 25 5 29.0216 29.0262 0.0159 

0.6 18 40 5 33.8716 34.0674 0.5781 
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Fig. 2 Comparison of solutions and errors of  Li-He’s approach with EBM for the 

parameters A=0.3, N=10, α =24, V=10 

 

Fig. 3 Comparison of solutions and errors of Li-He’s approach with EBM for the 

parameters A=0.45, N=20, α =12, V=5 
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The top panels of Figs. 2 and 3 compare the solutions obtained from Li-He’s technique 

(red line) expressed in Eq. (43), EBM (black line) depicted in Ref. [28] with the solution 

achieved by RK method (blue line). This comparison validates that the findings from the 

proposed method and those attained by the RK method match remarkably well. We also 

show the variation of errors for the said system in the bottom panels of Figs 2 and 3. Errors 

of EBM (black stars with solid line) and errors of Li-He’s approach (red squares with solid 

line) against time confirm the supremacy of the proposed technique over the EBM. 

6. CONCLUDING REMARKS 

In this research study, we have applied hybridization of the enhanced perturbation 

method and the parameter expansion technology (collectively called Li-He’s 

approach) to approximate the periodic behavior of electrically excited microbeams-based 

microelectromechanical system. The solution achieved from the proposed method has good 

agreement with the numerically ones gained by the Runge-Kutta technique. This method not 

only gives an alternative approximate solution to the oscillatory system by refining the order 

of the original differential equation but it also makes the solution process more accurate and 

reliable. This idea can also be implemented in other nonlinear oscillatory problems. 
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