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Abstract. Brake noise, especially brake squeal, has been a subject of intensive research 

both in industry and academia for several decades. Nevertheless, the state of the art 

simulations does not provide a predictive tool, and extensive experimental investigations 

are still necessary to find an appropriate design. Actual investigations focus on the 

consideration of nonlinearities which are in fact essential for this phenomenon. 

Unfortunately, by far not all relevant effects caused by nonlinearities are known. One of 

these nonlinear effects that the actual research focuses on is the limit cycle behavior 

representing squeal. In contrast to this, the actual paper considers the influence of the 

equilibrium position established while applying the brake pressure. The elements of the 

brake, namely, the carrier, caliper and pad, are highly nonlinear and elastically coupled 

and allow for multiple equilibrium positions depending e.g. on the initial conditions and 

transient application of the brake pressure while the frictional contact between the pads 

and the disk may excite small amplitude self-excited vibrations around this equilibrium, 

i.e. squeal. The current paper establishes a method and corresponding setup, to measure 

the position engaged by the brake components using an optical 3D-measuring system. 

Subsequently, it is demonstrated that in fact different equilibrium positions can be 

engaged for the same operation parameters and that the engaged position can be decisive 

for the occurrence of squeal. In fact, certain positions result in squeal while others do 

not for the same operation parameters. Taking this effect into consideration may have 

significant consequences for the design of brakes as well as simulation and experimental 

investigation of brake squeal. 
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  1. INTRODUCTION 

Brake squeal and other brake noises are typical examples for NVH (Noise, Vibration, 

Harshness) problems in the automotive industry. These phenomena in general do not represent 

safety risks but are merely comfort issues. Their avoidance nevertheless requires a considerable 

amount of development and testing, making brake noise a topic of numerous scientific and 

technical publications. Several review papers, e.g. [1] and [2], provide overviews on the topic. 

The brake squeal simulation is still a tool with only a limited predictive character which 

almost always requires, in addition, experimental investigations. It is well known that the 

alteration of operating parameters such as brake pressure, brake torque, speed or brake disk 

temperature during such experiments has a strong influence on the squealing behavior, see e.g. 

[3]. Therefore, the necessary number of tests to classify the brake in such manner is extensive, 

e.g. [4]. The situation becomes more complicated by the fact that there is a possibility for 

squealing to sometimes occur and sometimes not even during the tests with the identical 

operation parameters [5-7]. Ref. [6] mainly considers thereby changes in the direction in which 

the brake components obviously capture significantly different positions as well as the 

corresponding influence on the squealing behavior. 

The state of the art procedure to experimentally classify the squealing behavior of the 

passenger car brakes is SAE J2521. During this test, the entire brake and the wheel 

suspension are mounted on a dynamo test bench. A huge amount of braking operations is 

performed on different parameters, while the noise level is recorded to categorize whether 

the brake is squealing or not. 

On the other hand, the industrial state of the art for the brake squeal simulation is based 

on the consideration of simulation data gathered from Finite Element (FE) models. The 

analysis is divided into multiple steps [8]. In the first step, the brake pressure is applied 

quasi statically to determine the equilibrium position and the contact forces. Therefore, a 

nonlinear contact analysis is used. Then the model is linearized with respect to the found 

equilibrium position. Obviously, the equations of motion of this linearized model depend 

on this equilibrium position. The linear model is finally used for a complex eigenvalue 

analysis (CEA). Since these models contain, if correctly set up, the mechanism of self-

excitation due to the friction forces between the disk and the pad, there is a possibility of 

instability of the equilibrium position and the mode shapes with eigenvalues with a positive 

real part are considered as modes potentially associated with squealing [9]. However, linear 

instability does not represent the observed behavior of a squealing brake, as unstable 

solutions in linear models show an increasing amplitude above all boundaries with time 

while the real brake squealing is represented by a more or less stationary behavior with 

distinct frequencies and finite amplitudes. Therefore, the behavior observed in the brake 

squealing can only be represented by nonlinear models [10]. Hereby, nonlinearities limit 

the increasing vibration caused by the self-excitation finally ending in a limit cycle [10, 

11]. Several attempts have been made in the past years to describe these effects and to 

investigate the resulting effects, e.g. [12-19]. These attempts are essential for several 

reasons. One reason is that the nonlinearity limiting the limit cycle could be a key for 

avoiding squealing, i.e. if this nonlinearity could be designed in a way that the amplitudes 

of the limit cycles are irrelevant for noise, the problem of brake squeal would be solved. 

Another reason is that nonlinearities can play a key role, when it comes to the desired 

predictive character of the simulation methods. In [11] it is shown that the mode shape 

belonging to the largest positive eigenvalue real part is not necessarily the one occurring 
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in the limit cycle, as nonlinearities may limit that mode much earlier than another mode 

shape with a smaller positive real part. 

As a conclusion, nonlinearities are essential for the description of brake squeal and may 

play a key role for its suppression. Nevertheless, as the description above makes obvious, 

nonlinearities, if actually considered, are so far considered in detail only at one place of the 

simulation process, namely in limiting the increasing vibrations. Another obvious point, 

where nonlinearities play a role, is in determining the equilibrium position. Here, in general, 

only one equilibrium position and its dependency on parameters such as brake pressure are 

considered, while the immanent nonlinearities could also result in multiple equilibrium 

positions with the same parameters due to different initial conditions. This fact is completely 

ignored in state of the art simulations. Most people having done experiments with squealing 

brakes may have experienced that a squealing brake can be brought to silence or vice versa, 

if the positions of some parts of the brake are manipulated e.g. by pressing temporarily a 

screwdriver on them. Sometimes it is visible with the naked eye that the position of the brake 

parts is not the same after this manipulation as it was before, so that a new equilibrium 

position has been reached, possibly with decisive influence on the noise behavior. 

For both types of above mentioned influences of nonlinearities, the initial conditions 

play an essential role in determining which solution appears. With respect to the limit cycle, 

the initial conditions decide in the case of coexistent stable limit cycle and stable trivial 

solution about the appearance of squealing [20], but the same happens, if different 

equilibrium positions are possible due to nonlinearities, where the stability behaviors may 

differ from each other. In reality, nonlinearities affect the noise behavior in both cases and 

the dependence on the initial conditions is the explanation why brake squeal sometimes 

occurs and sometimes not for the same operation conditions.    

The present paper aims to investigate experimentally the influence of the actually 

engaged equilibrium position on the noise behavior and, therefore, to investigate another 

influence of nonlinearities on the brake squeal. In reality, the engaged equilibrium position 

is determined during the process of applying the brake pressure. This process is highly non-

linear especially due to the new contacts occurring therein. Therefore, it is highly probable 

that different equilibrium positions can be established depending on the initial conditions, 

respectively the state of the brake before the brake pressure is applied. Additionally, there 

might be some influence of external excitation on the engaged equilibrium position. 

As experiments show, the concept of one engaged stationary equilibrium position is an 

idealization in simulations, as these equilibrium positions may also change periodically 

during the turning of the disk due to disk wobbling or other imperfections. Nevertheless, 

the following investigations show that there is significant dependence of the occurrence of 

squealing on the (medium) absolute and relative positions of the brake parts; they also show 

that significant different positions are possible even for constant operation parameters. 

In the metrological investigation it is necessary to consider that the changes in the 

positions are slow (quasi static) and with respect to the displacement in the order of 

0.1 millimeters or more. Squealing, however, has usually a much smaller displacement 

amplitude (µm range or smaller) and it occurs at frequencies in the range of approximately 

1 to 16 kHz. While conventional set-ups regarding the investigation of brake squeal are 

focused on measuring these high frequency vibrations by using accelerometers or laser 

vibrometers, other methods must be established for measuring the equilibrium positions. 
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The paper is structured as follows. First, the developed test bench is presented. The test 

setup comprises an optical 3D measuring system filming the brake. The position data of 

respective parts can be determined using digital image correlation (DIC). This method 

allows the determination of the position of many points on the structure for low frequencies 

(quasi static) and comparatively large displacements. Based on this, two test series are 

presented. Test series number one is used to investigate whether changes in equilibrium 

position can occur under almost identical parameters for braking torque, speed and temperature 

and whether these changes have a significant influence on the squealing behavior. In a second 

test series, what is investigated is the extent to which an increasing braking torque influences 

the equilibrium position. The results are collected and discussed in a manner which illustrates 

the essential influence of the equilibrium position on the squealing behavior.   

2. EXPERIMENTAL SETUP 

The main task of the experimental setup is to detect differences in the equilibrium 

position of the examined floating caliper disk brake while the disk is rotating at a specific 

speed and a specific brake pressure is applied. Especially the brake components carrier, 

caliper and pad are considered. Furthermore, the test bench must be able to detect squealing 

events and to record the corresponding parameters, namely rotational speed, brake torque, 

respectively, brake pressure and temperature. 

  

Fig. 1 Left: main components, i.e. the carrier, caliper and pad of the investigated industrial 

floating caliper brake [21]. Right: overview of the test bench with mounted brake 

and optical 3D measuring system [22] 

Fig. 1 shows one of the brake test benches at MMD TU Berlin, which was already used 

in several prior works, e.g. [11]. It includes an industrial floating caliper disk brake driven 

by an electric motor via the original drive shaft from the inner side. To allow for a wider 

range of equilibrium positions, the clamp connecting the carrier and the caliper 

(Fig. 16 left) in the serial setup was omitted in these two first test series. Nevertheless, 
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similar effects are also observed when the clamp is mounted, as demonstrated in a third 

test series. The entire control of the brake pressure and rotational speed is done manually. 

Compared to industrial test benches this set up does not allow the investigation of high 

rotational speeds or high torques and, therefore, it is not capable of analyzing the brake 

performance. Nevertheless, brake squeal generally requires only low rotational speeds and 

torques. The main advantage of this set-up is that most parts of the brake are perfectly 

accessible for optical measurements. Here, this accessibility is used to observe one side of 

the brake using a GOM Aramis optical 3D measuring system, determining the position of 

the brake parts with a high spatial resolution. 

This 3D measuring system essentially consists of two cameras and a lighting system. It 

enables the capturing of grayscale images with 25 frames per second (fps) and a resolution 

of 2752 by 2200 pixel. Self-adhesive point markers with an inner diameter of 1.5 mm are 

attached to the components carrier, pad and caliper (see Fig. 2 right). The image sequence 

recorded by the 3D-system makes it possible to determine the spatial movement of these 

point markers by using DIC for homologous point tracking in all three dimensions. The 

equipment used is state of the art. 

 
 

 

Fig. 2 Details of the test bench [23]. Left: 3D-system, single camera, angle sensor and 

mounting for the coordinate system. Right: accelerometers, temperature sensor and 

point markers 

Nevertheless, the computation algorithm as described in [24] for the determination of 

displacement data shall be briefly sketched. The glued-on point markers are identified and 

tracked via image recognition techniques. The center of the point determines the position 

of the measurement point. Therefore, the tracking resolution is in subpixel accuracy and 

for this setup in the order of approximately 5µm [25, 26]. The subpixel resolution is possible 

since the points consist of several pixels and, therefore, the center can be interpolated. Each 

camera records a separate image sequence, and the point tracking is also done separately. 

According to [27] the data from both cameras can be combined to determine the 3D 

position of the point markers. 
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Beside the 3D-system there is also a single camera, Photron FASTCAM Mini AX100 

with an applied resolution of 896 by 768 pixel, for possible 2D measurements. This camera 

is utilized to display a live image of the brake to adapt or record certain initial conditions 

before the brake pressure is applied. By overlaying the live image and a previously stored 

reference image it is possible to (approximately) reproduce spatial initial conditions. Fig. 3 

shows two examples of this live image. In both cases this is overlaid with a reference image. 

On the left hand side, the live image is almost the same as the reference. Therefore, it is hard to 

recognize that two images are overlaid. This also means that in this case the conditions stored 

in the reference image are almost identical to the conditions shown in the live view. On the right 

hand side, it can be seen that there are two images overlaid (especially in the region highlighted 

with the red circle). This indicates that the actual conditions differ from the reference conditions. 

  

Fig. 3 Exemplary field of vision of the single camera live image overlaid with a previously 

stored reference image. Left: high agreement between live and reference image. 

Right: relatively high divergence of the two positions visible by naked eye especially 

in downside part marked by the red circle 

Furthermore, four triaxial accelerometers are attached to the carrier and to the pad to 

investigate the high frequency oscillations of the brake components and to detect whether 

the brake is squealing or not. The alignment takes place tangentially, radially and normal 

to the disk plane, respectively. 

The effective braking torque is determined by the strain gauges attached to the drive 

shaft. The values of temperature, rotational speed and rotational angle of the brake disk are 

measured by additional sensors. All signals are recorded simultaneously and synchronized 

with the information from the image sequence. 

3. MEASUREMENTS 

To determine experimentally whether different initial conditions result in different 

equilibrium positions and if those changes have a significant influence on the squealing 

behavior, two test constellations are conducted. In the first constellation (test series 1), 

multiple tests are performed where the operation parameters like braking torque, rotational 

speed and temperature are equal for all tests and constant during the actual test phase. When 
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assuming a constant friction coefficient, the brake pressure is proportional to the braking 

torque. Since the braking torque can be measured more accurately than the brake pressure, 

the brake torque is considered in the following. Since all operating parameters are kept 

constant, only different initial conditions or the positions of the brake components before 

the brake pressure is applied are possible. Therefore, test series 1 is used to determine 

whether these initial conditions have a significant influence on the positions respectively 

the equilibrium positions of the brake components after the brake pressure is applied and 

whether these differences have a significant influence on the squealing behavior. Parts of 

the measurement setup and evaluation procedure were developed in the master’s thesis of 

the second author. 

Each test run includes three steps. First, an initial position is adjusted manually before 

the brake pressure and the rotational speed are applied. The live view of the single camera 

and the overlaid reference image (Fig. 3) are used for this purpose. Then the rotational 

speed of the disk is adjusted, and the brake pressure is slowly increased to a specific level. 

To ensure that during all tests the temperature of the disk is the same, it is measured by an 

infrared sensor. In the case of a temperature lower than the target one, a warm-up cycle is 

done until the target temperature is reached. Finally, the actual test starts, where all data 

are recorded in a time interval of 31.24 s while the brake pressure and rotational speed are 

constant. The time interval of 31.24 s results from the maximum number of images which 

can be stored uncompressed by the camera. In the second constellation (test series 2), the 

main procedure is equal except that the braking pressure is continuously increased during 

the recoding of the data. In total, 146 measurements were carried out, 70 for test series 1 

and 76 for test series 2. 

4. EVALUATION PROCEDURE 

The evaluation procedure is shown by two example measurements from test series 1. 

The two chosen measurements are denoted by M1 with audible squealing and M2 without 

audible squealing, respectively.  

During a single measurement, 782 individual images are recorded with a frame rate of 

25 fps whereby the positions of all point markers are determined for each image. All 

calculated position data refer to the coordinate system shown in Fig. 4, where the directions 

are oriented in tangential ex, radial ey and out of plane ez direction. The position of the i-th 

point Pi can be written as 

 �⃑�𝑖 = (

𝑥𝑖

𝑦𝑖

𝑧𝑖

) . (1) 

The position and orientation of the coordinate system are defined by additional point 

markers which are attached to a frame mounted to the base of the test bench. Therefore, 

slight changes in the camera position do not influence the origin of the reference coordinate 

system and the position of the points on the brake is always measured relatively to this 

inertial coordinate system. Fig. 5 shows the position results for the two considered 

measurements M1 and M2 for P1, P2 and P3. 
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Point Position on the 

brake 

P1 carrier top 

P2 pad top 

P3 caliper top 

P4 carrier bottom 

P5 pad bottom 

P6 caliper bottom 

  

Fig. 4 Example of an image recorded by the optical 3D measuring system. Applied 

coordinate system and measurement points P1to P6 (green dots) according to the 

table on the right. The brake disk rotates counterclockwise 

It should be emphasized that the visible fluctuations in the positions in Fig. 5 are not 

related to brake squeal, as the displacement amplitudes here are much higher and the 

frequencies are much lower compared with the squeal. Squeal only takes place in M1, while 

M2 is silent. Instead of this, as will be shown later, the fluctuations visible in Fig. 5 are 

related to the actual rotational angle of the disk and its origin can, therefore, be related to 

the brake disk wobbling or other out-of-roundness imperfections of the brake. Focusing on 

squealing, which takes place at much higher frequencies than the turning of the disk, it can 

even be said that the equilibrium position might change periodically during the turning of 

the disk. The effect - observed very often during our measurements and in general - is that 

the brake does not squeal permanently while turning, but only at certain ranges of rotational 

angles; or in the case of permanent squealing the intensity varies with the rotational angle. 

As a result, the concept of one stationary equilibrium position applied in simulations 

can hardly be found in measurements. Instead, brake squeal is a low amplitude high 

frequency vibration around an actual position. This position is varying itself in amplitudes 

of higher order of magnitudes with the frequency of disk turning. Additionally, as Fig. 5 

demonstrates, there are significant differences in the positions possible even for the same 

operation parameters, and these differences in position, as will be shown later on in several 

measurements, can make a difference between squeal (M1) and non-squeal (M2)! 

This is not only true for the absolute, but also for relative positions of the brake parts 

as will be shown in the following. Based on the positions considered so far, also the 

absolute value of the relative position, i.e. distances 

 ∆𝑖𝑗= |�⃗�𝑖 − �⃗�𝑗| (2) 

between two points Pi and Pj can be determined. 
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Fig. 5 Positions of P1 (top), P2 (middle) and P3 (bottom). Measurement M1 (squealing) in 

blue and Measurement M2 (no squealing) in orange. The medium positions in case 

of audible squeal (M1) and without squeal (M2) differ significantly 

Assuming that the parts of the brake are approximately rigid with respect to the 

displacement scale considered in the positions, the actual absolute position can be 

determined by the positions of the measured points. Nevertheless, the relative positions or 

their absolute value of the connected brake parts are considered in the following. The 

following results, in fact, show that significant differences in relative positions can be 

observed in squealing and non-squealing cases, so that even the condensed information 

from Eq. (2) seems to be sufficiently significant.  Corresponding results for the two cases 

M1 and M2 are shown in Fig 6. 

Besides the positions, brake torque M and rotational angle φ of the brake disk are also 

measured during the test period. Compared to the position measurements that are recorded 

at every 0.04 s, the measurement set-up allowed much higher sampling rates for these 

signals. Therefore, the mean value of these signals is calculated at every 0.04 s. 
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(a) ∆12 (b) ∆13 (c) ∆23 

Fig. 6 Distances ∆23 according to Eq. (2) for M1 (squeal, blue) and M2 (no squeal, orange). 

Significant differences of the distances can be observed between the squealing (M1) 

and the non-squealing case (M2) 

In addition to these parameters, it is necessary to determine whether the brake is squealing 

or not. Therefore, the data recorded by the accelerometer at the bottom of the carrier (see 

Fig. 2 right) are used while the data of other accelerometers would also have been suitable 

for this task. In Fig.7 the time series of this signal are shown for test M1 (left) with audible 

squealing and test M2 (right) without squealing. It can be clearly seen that the amplitude is 

higher while the brake is squealing. However, several previously performed tests have shown 

that a simple consideration of the amplitude is not sufficient to determine a squealing event 

since the amplitude varied also due to other parameters like brake pressure or rotational speed. 

Therefore, it is hard to define a specific threshold for the amplitude which indicates whether 

squealing occurs or not. To overcome this issue the almost mono-frequent characteristics of 

the brake squeal are taken into account. To integrate this in the evaluation process a specific 

band acceleration level La is defined according to [28] as 

𝐿𝑎 = 20 ∙ log10 ∑ 10𝐿𝑎,𝑖0.2

𝑖

 dB      with:      𝑎0 = 5 ∙ 10−5
m

s2
 

𝐿𝑎,𝑖 = 20 ∙ log (
𝑎𝑖

𝑎0

)  dB, 

 

 (3) 

where ai is the value of the i-th measuring point in the power spectrum in a range of ± 20 Hz 

around the previously determined squealing frequency of 2.65 kHz. Reference acceleration 

a0 is chosen in the way that the minimum band acceleration level in a series of 

measurements results in 0 dB. This specific band acceleration level is very sensitive to the 

frequencies close to the squealing one; hence a better squealing indicator than the overall 

amplitude or intensity of the signal. From a practical point of view, it should be mentioned 

that a significantly different squealing frequency that could have occurred during the 

measurements would have been audible and would therefore have been taken into account. 

However, it must be considered that this indicator will fail if the brake squeals at a significantly 

different frequency. Nevertheless, as the test bench needs permanent supervision this would 

probably be recognized. 
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Fig. 7 Time signals of the accelerometer at carrier bottom used for the detection of squeal. 

Left M1 with audible squealing events and right M2 without 

The time series of the accelerometers are recorded with a sample rate of 30 kHz during 

the test. Since the optical measurement system has a frame rate of 25 fps the position 

information is recorded at every 0.04 s. To calculate the corresponding band acceleration 

level also within this time interval, the time series of the acceleration data is divided into 

synchronous time sequences of 0.04 s. Then the results in each interval are transferred to 

the frequency domain by using the Fast Fourier Transformation. As a result, the power 

spectrum of the acceleration related to each image taken by the camera with 25 fps is 

available. Two plots of exemplary frequency bands for the band acceleration level are 

shown in Fig. 8.The red colored area (± 20 Hz around 2.65 kHz) indicates the values used 

for the calculation of the band acceleration level. Fig. 9 shows the band acceleration level 

for the complete measurement M1 (left) and M2 (right). It should be noticed that in the 

case of squealing (M1) La is much higher but varies with a constant period. This period 

correlates with the rotational speed of the brake. By defining  

  

Fig. 8 Examples of a 0.04 s time sequence transferred to the frequency domain for M1(left, 

with squealing event) and M2 (right, without squealing event). The power spectrum 

is shown in blue and the range of ± 20 Hz around the squealing frequency considered 

for calculating La according to Eq. (3) is shown in red. The black dot marks the 

previously determined potential squealing frequency of 2.65 kHz. [29] 
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Fig. 9 Band acceleration level La according to Eq. (3) for the measurement M1 (left) and 

M2 (right) 

a threshold value of 60 dB for the band acceleration level, which indicates that the brake 

squeals; when this value is exceeded, the figure shows that the squeal is not constant but 

appears repetitively with each revolution of the brake disk. This was also audible during 

the tests, where the squealing event was not continuous but repeated with every rotation of 

the disk. 

To investigate this phenomenon in more details Fig. 10 shows the band acceleration 

level and the braking torque as a function of the rotational angle of the disk. It can be seen 

that both values are strongly related to the rotational angle, but the torque does not differ 

significantly between the squealing and the non-squealing cases. This indicates that the 

disk includes some imperfections, such as wobbling, which has an influence on the brake 

torque and on the squealing condition. Since the aim of the first test series is to identify the 

influence of the actual relative position on the squealing behavior and this relative position 

is changing with the rotational angle, the rotational angle is also considered for the entire 

test duration. 

  

Fig. 10 Band acceleration level La as squealing indicator (left) and braking torque (right) 

as function of rotational angle φ for the measurements M1 (blue) and M2 (orange) 

To visualize the influence of the position changes on the squealing behavior, the band 

acceleration level as the squeal indicator is plotted in color as a function of the rotational 

angle and relative position. Fig. 11 shows this for the two measurements M1 and M2. Each 

point in the plot represents the data recorded every 0.04 s. 
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Each vertical path corresponds to one test series. It is noticeable that the variation of 

the relative position during each individual measurement is small compared to the differences 

between both measurements. One series of relative positions is related to squeal while the 

others are related to non-squeal. The only differences are varied initial conditions, while all 

the operation parameters are kept constant. Since only two tests are considered in the plot, 

large white areas are present indicating that these relative positions were not reached. 

In the following, the complete test series will be discussed, while using the way of 

representation as in Fig. 11. As written earlier, the initial position is fixed manually with 

the help of a single camera which only allows a rough and not very precise determination 

of the initial position. It should also be mentioned that, in general, the initial positions are 

far away from the actual equilibrium positions, as the brake components are elastically 

hinged and, therefore, move with displacement amplitudes of several millimeters, if the 

brake torque is applied. Nevertheless, the following results show that a large range of 

positions can be reached but only some of them make the brake susceptible to noise. 

 

  
(a) ∆12 (b) ∆13 

 

(c) ∆23  

Fig. 11 Band acceleration level La (squealing indicator) according to Eq. (3) as function of 

the distances for both measurements M1 (with squealing event) and M2 (without 

squealing event) 
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5. RESULTS 

The results for the complete test series 1 are shown in Figs. 12 and 13. Following the 

description of Fig. 11, each plot shows the band acceleration level according to Eq. (3), which 

is visualized by color as a function of the rotational angle of the disk and the relative position 

between two specific points on different parts of the brake. In test series 1 all investigated 

parameters are identical for all measurements and constant during each test session. Hereby 

the braking torque is M ≈ 53 Nm, the temperature T = 31 °C and the rotational speed 

v = 28.8 rpm. Only the initial conditions are varied manually by adjusting them to the 

reference image, so that finally varying position series are kept. This shows that the relative 

positions of the parts carrier, caliper and pad vary, and that multiple equilibrium positions are 

possible due to different initial conditions. 

  
(a) ∆12 (b) ∆13 

 

 
(c) ∆23 

Fig. 12 Band acceleration level La as function of distances ∆12, ∆13and ∆23 according to Eq. 

(2) and rotational angel φ for constant braking torque M, rotation speed v and 

temperature T for the upper 3 point markers P1, P2 and P3. Red areas indicate 

squealing. All 70 measurements of test series 1 are included in each image. 
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(a) ∆45 (b) ∆46 

 

 
(c) ∆56  

Fig. 13 Band acceleration level La as function of distances ∆45, ∆46 and ∆56 according to 

Eq. (2) and rotational angel φ for constant braking torque M, rotation speed v and 

temperature T for the bottom 3 point markers P4, P5 and P6. Red areas indicate 

squealing. All 70 measurements of test series 1 are included in each image [30]. 

It is noticeable that for a certain rotational position of the disk the squealing tendency 

depends only on the relative position. There are distinct areas (blue color only) where the 

brake never squealed and significant areas (red color) where the brake always squealed. 

These distinct areas, where the squealing indicator is high, show the strong dependence of 

the squealing behavior on the relative positions. 

In test series 2 the braking torque respective the brake pressure is increased slowly by 

hand (see Fig. 14) during the test procedure. Temperature and rotational speed remain 

unchanged. Again, at the beginning of each measurement, the initial conditions were varied 

relative to the reference image as in test series 1. The potential squealing frequency is again 

2.65 kHz. Due to the limited recording time, less data per braking torque are available. 

Nevertheless, the data is sorted by braking torque at every 5 Nm1. 

 
1The data points are divided into braking torque interval of 0.5 Nm. 
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Fig. 14 Exemplary time profiles for quasi-static increase of the braking torque (right) with 

corresponding band acceleration level La (left) for test series 2 

Fig. 15 shows again the band acceleration level as a function of the rotational angle and 

the distance. When a braking torque of approx. 50 Nm is reached, a red-colored area with 

a high band acceleration level is visible and so is an area of the positions which have led 

to squealing. There are also areas that are permanently without squeal. This result is 

consistent with the one determined from test series 1 (Fig. 13b) as the torque is M ≈ 53 Nm 

in that case. If a braking torque level of approx. 65 Nm is exceeded, the squealing disappears 

completely for all investigated initial conditions. Test series 2 shows the well-known 

influence of the braking torque on the squealing behavior. In connection with equilibrium 

positions, however, it shows that only the combination of specific relative positions, which is 

dependent on the respective initial condition and the transient process (e. g. applying the 

corresponding braking pressure), leads to squealing. For example, distances ∆46 between 

28.35 µm and 28.45 µm did not cause any squeal until a certain brake pressure was reached.  

Due to the elastic connecting elements between the components of a brake, it is obvious that 

the brake components shift significantly when a braking torque is applied. 

It should be noted that during the measurement test series 1 and 2 and, as already 

mentioned in the introduction of the experimental setup, the clamp (see Fig. 16 left) 

connecting the carrier and the caliper was removed. In the passenger car brakes, such a part 

is sometimes used for functional reasons, but not specifically to avoid noise. Based on the 

previous results such a clamp might restrict the range of possible equilibrium positions and, 

therefore, be capable of avoiding squealing. To investigate whether the mounting of the 

clamp has a corresponding effect on the investigated brake a third test series was conducted. In 

this test the clamp was installed while the test procedure was otherwise similar to test series 1. 

The results in Fig. 16(right) show in fact that the clamp fixes the components in such a way that 

only smaller changes, e. g. in distance ∆46, are possible. Nevertheless, the main properties that 

different positions are possible for constant operation parameters while some of them are 

resulting in squealing and some not, are still valid. 
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(a) M ≈ 40 Nm (b) M ≈ 45 Nm 

  
(c) M ≈ 50 Nm (d) M ≈ 55 Nm 

  
(e) M ≈ 60 Nm (f) M ≈ 65 Nm 

Fig. 15 Band acceleration level La as function of distance ∆46 and rotational angel φ in the 

case of increasing braking torque M at constant rotational speed v and temperature T 

(test series 2). Red areas indicate squealing. All 76 measurements of test series 2 

are included in each image 
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Fig. 16 Left: clamp mounted for the 3rd test series. Right: Band acceleration La as function 

of distances ∆46 according to Eq. (2) and rotational angel φ for constant braking 

torque M, rotation speed v and temperature T with mounted clamp (test series 3). 

Red areas indicate squealing 

6. SUMMARY AND OUTLOOK 

State of the art simulations of the brake squeal do not provide a predictive tool and 

extensive experimental investigations are still necessary to find appropriate designs. Actual 

investigations on this topic focus on the consideration of nonlinearities but do so in most 

cases by trying to model and simulate the limit cycle behavior representing squeal. In 

contrast to this, the actual paper considers the influence of the equilibrium position engaged 

during stationary braking due to the transient process. In fact, the elements of the brake, 

namely the carrier, caliper and pad, are highly nonlinear elastically coupled and allow for 

multiple equilibrium positions as is demonstrated in the present paper. It is also demonstrated 

that the engaged position may have a decisive influence on the occurrence of squeal, i. e., 

depending on which equilibrium position is engaged, the brake squeals or not for the same 

operation parameters. For the purpose of these investigations an experimental setup and a 

corresponding analyzing method are established to measure the position engaged by the 

brake components using an optical 3D-measuring system. These experimental results 

indicate observations that most people doing experimental work with brake noise probably 

have made: squealing can be stopped or initiated e. g. by pressing on brake parts with a 

screw-driver (i.e. possibly manipulating the equilibrium position) and for same operation 

conditions brake squeal sometimes occurs and sometimes not. The (relative) positions of 

brake parts are hereby in general not considered. 

Assuming that the results are representative, the conclusions are that essential effects 

for brake squeal are actually not considered in state of the art industrial and actual scientific 

investigations, which is a possible explanation for the poor predictive character of actual 

simulation tools. Consequences for simulations should be that the possibility of multiple 
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equilibria has to be considered. For stability analysis, the equations of motion then must be 

linearized with respect to these multiple possible equilibria with the ultimate possibility, 

that for some equilibria significant instability may occur, and for others not, even in the 

case of constant operation parameters. On the other hand, consequences for the design of 

a silent brake could be that the enforcement of specific equilibrium positions could be 

helpful in avoiding squealing. Finally, a consequence for experimental investigations of 

the NVH behavior of brakes could be that stationary positions of brake parts should be 

measured by default. 
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