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Abstract. In the present day manufacturing scenario, computer numerical control (CNC) 

technology has evolved out as a cost effective process to perform repetitive, difficult and 

unsafe machining tasks while fulfilling the dynamic requirements of high dimensional 

accuracy and low surface finish. Adoption of CNC technology would help an organization 

in achieving enhanced productivity, better product quality and higher flexibility. In this 

paper, an endeavor is put forward to apply discriminant analysis as a multivariate 

statistical tool to investigate the effects of speed, feed, depth of cut, nose radius and type 

of the machining environment of a CNC turning center on surface roughness, tool life, 

cutting force and power consumption. Simultaneous discrimination analysis develops the 

corresponding discriminant function for each of the responses taking into account all the 

input parameters together. On the contrary, step-wise discriminant analysis develops the 

same functions while considering only those significant input parameters influencing the 

responses. Higher values of hit ratio and cross-validation percentage prove the 

application of both the discriminant functions as effective prediction tools for achieving 

enhanced performance of the considered CNC turning operation. 

Key Words: CNC Turning, Discriminant Analysis, Process Parameter, Response, Hit 

Ratio, Cross-validation 

1. INTRODUCTION 

In manufacturing and metalworking industries, turning is the most basic material 

removal process where a single-point wedge-shaped cutting tool is employed to remove 

material from the surface of a rotating cylindrical workpiece. The cutting tool is advanced 

linearly in a direction parallel to the axis of rotation of the workpiece [1]. Turning is an 

extremely precise process that can attain a surface finish of 0.5-1 µm [2]. The turning 

center or lathe provides the power for turning the workpiece at a given rotational speed, 

and feeding the cutting tool at a specified rate and depth of cut, facilitating material 
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removal in the form of chips [3, 4]. In order to cope up with the present-day requirements 

of high productivity and low production cost with enhanced product quality, conventional 

multi-spindle lathes are now being gradually substituted by the high performance 

computer numerical control (CNC) machine tools due to their ease of setting, operation, 

repeatability and accuracy. In CNC machining technology, there is an automated control 

of machine tools through dedicated instructions stored in memory to machine complex 

workpieces to fulfill the requirements of higher dimensional accuracy and better surface 

finish under the occasional supervision of an operator. Its various advantageous features, 

like program storage and editing facility, ability to store multi-part programs, tool offset 

and compensation, ability to send and receive data from a variety of sources etc. have 

made the CNC technology an almost indispensible tool in the present-day highly 

competitive manufacturing environment [5]. A schematic diagram illustrating the CNC 

turning process is shown in Fig. 1. 

 

Fig. 1 Schematic representation of CNC turning process 

It has been observed that the machining performance of a CNC turning center with 

respect to material removal rate (MRR), surface roughness (SR), tool life (TL), cutting 

force (CF), power consumption (PC), tool wear, etc. is greatly affected by the settings of 

its different input parameters, like feed rate, spindle speed, depth of cut, type of the 

cutting fluid, machining environment, etc. [6]. Researchers have already applied several 

approaches to identify the best settings of multiple input parameters of the CNC turning 

processes for attaining higher productivity with the desired quality level. Occasionally, 

the manufacturer’s operating manuals are consulted or the expert operator’s knowledge is 

sought to determine the optimal parametric combination of a CNC turning process. 

Unfortunately, these intuitive and conservative approaches do not always lead to the best 

machining performance of a CNC process under a given machining environment. Thus, 

to determine the optimal operating levels of various input parameters during CNC turning 

operation on a given work material, it has become essential to examine the effects of 

those input parameters on the process outputs (responses). Keeping this objective in 

mind, this paper aims at the application of discriminant analysis for a CNC turning process 

in order to develop the corresponding discriminant functions showing the influences of 
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the considered process parameters on the responses, as well as to single out the most 

significant parameter for each of the responses. In simultaneous estimation of discriminant 

analysis, the developed functions consist of all the input parameters of the CNC turning 

process, while in step-wise analysis, only the significant parameters are taken into account in 

the developed functions. The performance of both the estimation procedures is validated 

based on the values of hit ratio and cross-validation percentage. 

 2. SURVEY OF THE LITERATURE  

Considering feed rate, cutting speed and depth of cut as the input parameters during CNC 
turning operation of SAE 8822 alloy steel, Kanakaraja et al. [7] determined their best settings 
based on Taguchi methodology. Singh and Sodhi [8] adopted response surface methodology 
(RSM) to determine the optimal settings of feed rate, depth of cut and cutting speed for 
attaining improved values of MRR and SR in CNC turning on  aluminium-7020 alloy 
material. During hard turning operation of AISI 4340 steel on a CNC turret lathe, Rashid et al. 
[9] investigated the influences of feed rate, spindle speed and depth of cut on SR values of the 
machined components using Taguchi methodology. While taking into consideration depth of 
cut, spindle speed and feed rate as the parameters of a CNC turning process, Rudrapati et al. 
[10] analyzed their effects on SR of the machined components. The said process was later 
optimized using teaching-learning-based optimization algorithm. Park et al. [11] applied RSM 
technique for establishing the relationships between various machining parameters, i.e. cutting 
speed, feed rate, nose radius, edge radius, rake angle and relief angle, and cutting energy and 
energy efficiency. Non-dominated sorting genetic algorithm-II (NSGA-II) was adopted for 
multi-objective optimization and development of the Pareto optimal solutions. The optimal 
parametric setting was finally determined using technique of order preference by similarity to 
the ideal solution (TOPSIS). Arunkumar et al. [12] applied Taguchi methodology to establish 
the optimal intermixture of depth of cut, speed, feed rate and coolant type during CNC 
machining of LM6 aluminum alloy for having better SR values. Applying RSM technique, 
Nataraj and Balasubramanian [13] established the optimal settings of cutting speed, depth of 
cut and feed rate for achieving better values of SR, intensity of vibration and work-tool 
interface temperature while machining hybrid metal matrix composites. Gadekula et al. [14] 
employed Taguchi methodology for optimization of a CNC turning process while treating 
feed rate, spindle speed and depth of cut as the input parameters, and MRR and SR as the 
responses. Rathore et al. [15] studied the influences of feed rate, depth of cut, spindle speed 
and coolant type on SR properties of AA 6463 materials. The weights of the responses were 
determined using principal component analysis and the optimal parametric mix was identified 
based on grey relational analysis (GRA) technique. Sahoo et al. [16] applied weighted 
aggregate sum product assessment (WASPAS) method for parametric optimization of a CNC 
turning process for achieving minimum tool vibration and SR of 6063-T6 aluminum 
components. Vijay Kumar et al. [17] studied the effects of feed rate, depth of cut and spindle 
speed on SR and MRR during CNC turning on EN 19 stainless steel material. Based on 
Taguchi’s L18 mixed orthogonal array experimental design plan, Syed Irfan et al. [18] 
optimized the settings of cutting speed, feed rate and depth of cut while performing CNC 
turning operation on EN45 spring steel material. The MRR and SR were treated as the 
responses. While machining aluminium-2014 alloy, Aswal et al. [19] considered cutting 
speed, depth of cut and feed rate as the input parameters of a CNC turning operation, and 
investigated their effects on SR. 
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It has been revealed from the review of the existent literature that various multi-criteria 

decision-making tools, i.e. TOPSIS, GRA, WASPAS, etc. have already been employed by 

the past researchers for parametric optimization of CNC turning processes. Taguchi 

methodology has become a popular technique among the research community for single 

objective optimization of CNC turning processes. The relationships between the CNC 

turning parameters and responses have also been investigated through the deployment of 

RSM technique. Both RSM technique and discriminant analysis are explicit methods 

having clear, transparent and unambiguous underlying mathematical principles with similar 

computation time. However, there are some drawbacks of RSM technique. It attempts to fit 

data to a polynomial even though many systems cannot be well explained by second order 

polynomials. It becomes necessary to decrease the range of the independent variables, if the 

system cannot be explained by the regression equation computed through RSM technique. 

On the other hand, discriminant analysis develops a causal model which maximizes the 

group difference by computing weights associated with the independent variables. Hence, it 

becomes an effective tool in evaluating the effect of each independent variable on the 

dependent variable based on its ability to separate the group differences. Besides this, the 

range of the independent variable does not affect the solution accuracy. Thus, it can be 

considered capable of effective parametric analysis of varied machining processes. 

3. DISCRIMINANT ANALYSIS 

Discriminant analysis is a multivariate statistical technique used for categorizing a set 

of observations into predefined groups [20].  It can be considered as a profile analysis, 

where it evaluates differences between groups based on a set of independent variables. It 

establishes the link between the categorical (nominal or non-metric) dependent variables 

and metric independent variables. The discriminant function, computed from this analysis, has 

a linear relationship between two or more independent variables and can be expressed as 

below [21]:  

 Zqr= α +β1X1r + β2X2r+……….+ βnXnr (1) 

where Zqr is the score of discriminant function q for object r, α is the intercept, Xnr is the 

independent variable n for object r and βn is the discriminant coefficient for independent 

variable n. 

The discriminant analysis tests the hypothesis of equality of group means for each of 

the dependent variables. The group mean, also called group centroid, is the arithmetic 

mean of the discriminant scores for all the objects belonging to a single group. The group 

centroid denotes the most characteristic location of an object in a group, and the distance 

between the groups can be explained by comparing their centroids. It also enables 

prediction of the group where a certain element can be classified based on the closeness 

of its discriminant score to the group centroid. The discriminant function is said to be 

statistically significant if there is a substantial difference between the group centroids 

[21]. The statistical significance of the function is calculated by comparing the spread of 

the discriminant score for each group and therefore, by testing the intersection between 

the groups. A small intersection represents significant separation between the groups due 

to the discriminant function, while a large intersection denotes poor differentiating power 

of the function. Multiple discriminant functions can be developed provided that the dependent 

variables comprise more than two groups. The number of functions computed equals to 
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(g – 1), where g is the number of groups, with different discriminant scores calculated by 

each function. In this paper, however, the analysis is conducted with each dependent 

variable consisting of two groups, where their relations with a combination of independent 

variables are established with the help of a single discriminant function. In this analysis, 

the responses of the considered CNC turning process are considered as the dependent 

variables, while the turning parameters are treated as the independent variables. 

The steps of discriminant analysis are illustrated through a flowchart in Fig. 2. At 

first, the problem statement and purpose of the analysis are identified. The purpose of this 

 

Fig. 2 Flowchart showing steps of the discriminant analysis 



206 B. SARKER, S. CHAKROBORTY 

 

paper is to demonstrate the application of discriminant analysis to evaluating the effects 

of the considered CNC turning parameters on the responses while identifying the most 

significant parameter influencing each of the responses. The analysis framework is then 

formulated. Determination of the independent and dependent variables takes place, 

followed by classification of the dependent variables into corresponding binary categories. If 

a dependent variable is metric, it needs to be transformed into non-metric data. Checking 

of the sample size is also required in this step. Pituch and Stevens [22] advised that the 

ratio between the sample size and number of independent variables should be 20:1, with a 

minimum of 20 elements in the group containing the least number of objects. 

After this step, the corresponding assumptions of discriminant analysis, i.e. multivariate 

normality, multicollinearity and homogeneity of covariance matrices need to be validated. 

The independent variables can be tested for univariate normality while calculating their 

skewness and kurtosis values, which can be considered as adequate for validation of 

multivariate normality [21, 22]. Multicollinearity indicates high inter-correlations between 

two or more independent variables. It poses problems in determination of the significance 

of an independent variable because the influences of the independent variables are confounded 

due to high correlations between them, making its absence as a mandatory requirement [22]. 

Multicollinearity can be tested using variance inflation factor (VIF) and tolerance values. The 

VIF measures how much larger the variance would be for multicollinear data than the 

orthogonal data, where its most preferred value is 1 [23]. Tolerance is the reciprocal of VIF. 

Homogeneity of covariance matrices or homoscedasticity specifies whether the covariance 

matrix for each group is equal to each other and is verified using the Box’s M test, which 

considers equality of the within-class covariance matrices as the null hypothesis. Thus, non-

rejection of the null hypothesis is desired, which can be denoted by an insignificant result. 

The developed discriminant function can be interpreted by assessing the unstandardized 

and standardized coefficients of the independent variables and structure matrix. The 

contribution of an independent variable to the ability of the discriminant function to 

separate and classify objects into the related groups is determined by the absolute value of 

its standardized discriminant coefficient. As the independent variables are quantified in 

different scales, it is recommended to compare their relative contributions based on 

standardized coefficients. Larger is the absolute value of the standardized coefficient, higher 

is the discriminating power of the independent variable. The influence of an independent 

variable on the discriminant function can also be explained using the corresponding 

structure matrix. The structure coefficients, also known as structure correlations, are the 

correlations between the independent variables and discriminant function. Thus, structure 

coefficient can be treated as the factor loading of an independent variable on the 

discriminant function, allowing measurement of the relative closeness of the variable to the 

discriminant function. In step-wise discriminant analysis, structure correlations can be 

computed even for those variables not included in the model. The unstandardized 

coefficient, computed for each of the independent variables in the model, is utilized for 

formulating the discriminant function. The discriminant function yields the discriminant 

score for different values of the independent variables. These scores are instrumental in 

cross-validation and classification of the objects into the corresponding groups. The objects 

are classified into groups based on their discriminant scores and closeness to the group 

centroids. The cut-off scores, considered to determine the groups into which the related 

objects are classified, are computed using group centroids. The cut-off score (ZC) between 

two groups is calculated using the following equations: 
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a) For unequal groups: 

 ZC= (NAZB + NBZA) / (NA+NB) (2) 

where NA and NB are the group sizes, and ZA and ZB are the group centroids, respectively. 

b) For equal groups: 

 ZC= (ZA + ZB) / 2 (3) 

In the validation stage, accuracy of the discriminant function in separating and 

classifying objects into the relevant groups is measured, based on two approaches, i.e. hit 

ratio and cross-validation. Hit ratio is a measure of actual percentage of correct 

classification of objects by the developed discriminant function. Along with the hit ratio 

calculation, cross-validation must be carried out to validate the results in order to apply 

the function for classification of the subsequent objects into appropriate groups. 

Discriminant analysis aims at maximization of the separation between two groups based 

on sample-specific error [24]. Since the errors may differ for different samples of objects, 

it becomes necessary to cross-validate the results, which provides the predictive accuracy 

of the function along with its suitability of application for a wider range of samples. In 

this paper, the leave-one-out procedure of cross-validation is applied [22], where one 

element from the sample is systematically excluded and the discriminant function is 

estimated based on the remaining elements in the sample. The excluded element is then 

classified into one of the two groups according to its discriminant score. This process 

repeats till every element in the sample is excluded and classified. Higher values of hit 

ratio and cross-validation percentage are desired to validate the function’s suitability and 

potentiality as a multivariate prediction tool. 

Discriminant analysis has certain similarities and dissimilarities with regression analysis 

and analysis of variance (ANOVA). All these techniques have one dependent variable and 

one or more independent variables. However, ANOVA and regression analysis are concerned 

with continuous dependent variables, while discriminant analysis has categorical dependent 

variables [25]. On the other hand, regression and discriminant analysis deal with continuous 

independent variables while ANOVA has categorical independent variables. Both regression 

and discriminant analysis can predict values (although of different data types) and study the 

influence of independent variables on dependent variables, while ANOVA is used to ascertain 

the effects of independent variables on dependent variables. 

Mathematically, discriminant analysis is similar to one-way multivariate ANOVA 

(MANOVA), with the difference being in the variable data types. In MANOVA, like 

ANOVA, the classification is on the basis of the categorical independent variables, while 

in discriminant analysis, the classification is on the basis of the values that the dependent 

variables obtain. 

 4. DISCRIMINANT ANALYSIS FOR A CNC TURNING PROCESS 

Gupta et al. [26] applied Taguchi methodology along with fuzzy logic reasoning 

approach for multi-response optimization of a high speed CNC turning operation on AISI 

P20 tool steel material using TiN coated tungsten carbide inserts. Speed (S), feed (F), 

depth of cut (D), nose radius (NR) and environment (E) were selected as the input 

parameters (independent variables), and SR (in µm), TL (in min), CF (in N) and PC (in W) 

were the responses (dependent variables). Taking three different operating levels for each of 
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the turning parameters, Gupta et al. [26] conducted 27 experimental runs and measured the 

corresponding responses values. The settings of the CNC turning parameters are provided in 

Table 1 and the detailed experimental plan is shown in Table 2. Based on this dataset, both the 

simultaneous and step-wise estimation discriminant analyses are carried out to explore the 

influences of the considered CNC turning parameters on each of the responses. For this 

purpose, IBM SPSS Statistics 25.0 software is employed.  

Table 1 CNC turning parameters along with their levels [26]  

Turning parameter Symbol Unit Level 1 Level 2 Level 3 

Speed S m/min 120 160 200 

Feed F mm/rev 0.1 0.12 0.14 

Depth of cut D Mm 0.2 0.35 0.5 

Nose radius NR Mm 0.4 0.8 1.2 

Environment E   Dry Wet Cryogenic 

As all the response values for the said CNC turning operation are metric in nature, it is 

necessary to categorize them into two non-metric groups on the basis of their median values, 

as provided in Table 2. The values of the responses which are higher than their corresponding 

medians are considered as high and are categorized into Group 2. On the contrary, in Group 1, 

values of the responses lower than the medians are classified as low.  

Table 2 CNC turning parameters along with their levels [26]  

S F D NR 
E 

SR SR TL TL CF CF PC PC 

(m/min) (mm/rev) (mm) (mm) (µm) Group (min) Group (N) Group (W) Group 

120 0.1 0.2 0.4 1 1.41 2 29 2 171.3 1 1066 1 
120 0.1 0.35 0.8 5 0.71 2 34 2 147.5 1 1560 2 

120 0.1 0.5 1.2 9 0.6 2 54.67 2 111.74 1 866 1 

120 0.12 0.2 0.8 5 0.47 1 34.67 2 120.3 1 1493 2 
120 0.12 0.35 1.2 9 0.19 1 51.66 2 180.6 2 987 1 

120 0.12 0.5 0.4 1 1.18 2 27 1 236.2 2 1187 1 

120 0.14 0.2 1.2 9 0.67 2 50 2 157.7 1 960 1 
120 0.14 0.35 0.4 1 1.16 2 24.66 1 214.4 2 1134 1 

120 0.14 0.5 0.8 5 0.92 2 28.33 2 286.9 2 1813 2 

160 0.1 0.2 1.2 5 0.18 1 27.66 1 116.37 1 1586 2 
160 0.1 0.35 0.4 9 0.45 1 47.66 2 133.33 1 1013 1 

160 0.1 0.5 0.8 1 0.43 1 21.66 1 191.23 2 1240 1 

160 0.12 0.2 0.4 9 0.58 1 45.66 2 125.4 1 893 1 
160 0.12 0.35 0.8 1 0.72 2 20.33 1 149.43 1 1253 1 

160 0.12 0.5 1.2 5 0.31 1 25.66 1 212.46 2 1773 2 
160 0.14 0.2 0.8 1 0.66 2 20 1 162.93 1 1107 1 

160 0.14 0.35 1.2 5 0.64 2 22.33 1 190.23 2 1533 2 

160 0.14 0.5 0.4 9 0.75 2 41.33 2 177.76 2 1373 1 
200 0.1 0.2 0.8 9 0.16 1 40 2 106.23 1 1053 1 

200 0.1 0.35 1.2 1 0.23 1 15.67 1 208.5 2 1373 1 

200 0.1 0.5 0.4 5 0.67 2 21.67 1 209.8 2 2094 2 
200 0.12 0.2 1.2 1 0.4 1 14.67 1 200.2 2 1286 1 

200 0.12 0.35 0.4 5 0.5 1 20.33 1 178.8 2 1866 2 

200 0.12 0.5 0.8 9 0.18 1 37.66 2 168.7 1 1613 2 
200 0.14 0.2 0.4 5 0.64 2 18 1 162 1 1573 2 

200 0.14 0.35 0.8 9 0.31 1 34.33 2 162.5 1 1453 2 

200 0.14 0.5 1.2 1 0.48 1 16.66 1 276.16 2 1667 2 

Median   0.58   27.66   171.3   1373   
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It is worthwhile to mention here that among the responses, SR, CF and PC are smaller-

the-better type of quality characteristics, and TL is the sole larger-the-better quality feature. 

Since discriminant analysis cannot be performed with categorical independent variables, 

type of the cutting environment is converted into three distinct classes using a 1-9 point 

scale (where 9 = cryogenic environment, 5 = wet environment and 1 = dry environment). 

For carrying out a robust discriminant analysis, number of experimental runs plays an 

important role. Pituch and Stevens [22] suggested a ratio of 20:1 between the number of 

observations and the number of independent variables, with a minimum of 20 members in 

the smallest group. Thus, 123 additional experimental runs are simulated to have a sample 

pool of 150 observations, which is in agreement with the guideline stated. All those 

independent and dependent variables are simulated in such a way that they must lie between 

their corresponding minimum and maximum values. Table 3 exhibits the number of 

members in each group for discriminant analysis for the four responses. 

Table 3 Members in each group for discriminant analysis  

Group 
Number of members 

SR TL CF PC 

1 77 76 79 85 

2 73 74 71 65 

Now, the assumptions for normality, non-multicollinearity and homogeneity of covariance 

matrices need to be validated. For both the simultaneous and step-wise estimations of 

discriminant analysis, normality and multicollinearity tests would be the same, while the test 

for homogeneity of covariance matrices would be different. For normality test, the related 

skewness and kurtosis values are computed, and for multicollinearity test, tolerance and VIF 

values are estimated. Table 4 exhibits results of the normality and multicollinearity tests for 

the considered input (independent) variables. 

Table 4 Tests for normality and multicollinearity  

Input Normality test Multicollinearity test 

variable Skewness Kurtosis Tolerance VIF 

S 0.111 -1.478 1 1 

F 0.037 -1.493 1 1 

D 0.000 -1.510 1 1 

NR 0.000 -1.510 1 1 

E 0.000 -1.510 1 1 

According to Pituch and Stevens [22], when both skewness and kurtosis values for a 

distribution are between -2 and +2, it should be considered as normal. In this case, values 

of skewness lie in the range of 0 to 0.111, while the kurtosis values are between -1.510 

and -1.478. As all the skewness and kurtosis values are within the prescribed range, it can 

be concluded that the considered input variables follow normal distribution. Tolerance is 

a measure of variability in one independent variable that the other independent variables 

cannot explain. Its value lies between 0 and 1, with lower values indicating presence of 

multicollinearity. The VIF is the reciprocal of tolerance. The tolerance and VIF values are 

1 for all variables, indicating that the variables are orthogonal, without multicollinearity. 
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4.1. Simultaneous Estimation 

In this procedure, every single independent variable is involved in the analysis based 
on which the corresponding discriminant function is developed. However, before the 
analysis, the assumption of equality of covariance matrices needs to be tested using the 
Box’s M value. The null hypothesis for this test is that the within-group covariance 
matrices are equal for the dependent variables. The Box’s M values for SR, TL, CF and 
PC are computed as 76.789, 59.22, 60.568 and 74.954, respectively. The corresponding 
p-values are all less than 0.001, inferring that they are significant, thus rejecting the null 
hypothesis for the four dependent variables. However, the discriminant analysis may still 
be robust despite the violation of the above assumption of equality of covariance matrices 
as it has less importance during the analysis [27]. Table 5 shows the assessment of model 
fit with the help of the Wilks’ lambda value. The Wilks’ lambda indicates the effectiveness of 
the discriminant function in differentiating objects into the related groups. The lower the value 
of Wilks’ lambda is, the higher the discriminating power of the function is. Smaller p-values 
(p < 0.05) also infer the same conclusion. In this case, all the four discriminant analyses 
exhibit low p-values, representing the functions’ ability to effectively distinguish objects 
between the groups. Tables 6-8 collectively exhibit the influences of the independent variables 
(S, F, D, NR and E) on the responses (SR, TL, CF and PC) for the said CNC turning process. 

Table 5 Assessment of model fit for simultaneous estimation  

Output 

variable 
Eigenvalue 

Canonical 

correlation 

Wilks’ 

lambda 

Chi-

square 
Df p-value 

SR 0.644 0.626 0.608 72.297 5 0.000 

TL 2.17 0.827 0.315 167.862 5 0.000 

CF 0.954 0.699 0.512 97.453 5 0.000 

PC 0.17 0.382 0.854 22.904 5 0.000 

Table 6 Group centroids for simultaneous estimation  

Group 
Group centroid 

SR TL CF PC 

1 (Low) 0.776 1.444 -0.92 -0.359 

2 (High) -0.818 -1.483 1.023 0.469 

Table 7 Standardized discriminant function and structure coefficients for simultaneous 

estimation 

 SR TL CF PC 

Input 

variable 

Std. disc. 

func. 

coeff. 

Str. 

coeff. 

Std. disc. 

func. 

coeff. 

Str.  

coeff. 

Std. disc. 

func. 

coeff. 

Str.  

coeff. 

Std. disc. 

func. 

coeff. 

Str.  

coeff. 

S 0.829 0.636 0.742 0.271 0.174 0.089 0.723 0.663 

F -0.532 -0.35 0.196 0.062 0.4 0.214 0.478 0.419 

D -0.198 -0.123 0.211 0.078 0.911 0.685 0.462 0.405 

NR 0.504 0.338 0.235 0.056 0.18 0.084 0.311 0.281 

E 0.369 0.249 -1.079 -0.701 -0.658 -0.395 0.23 0.2 
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Table 8 Unstandardized discriminant function coefficients for simultaneous estimation 

Input Unstandardized discriminant function coefficient 

Variable SR TL CF PC 

S 0.029 0.025 0.005 0.023 

F -33.764 12.016 25.000 29.661 

D -1.61 1.724 8.892 3.8 

NR 1.589 0.717 0.55 0.952 

E 0.115 -0.472 -0.214 0.07 

Constant -1.738 -4.116 -6.311 -9.609 

4.1.1. Discriminant analysis for SR 

Table 6 shows that for SR response, Group 2 with higher values of SR (> 0.58 µm) has a 

negative centroid, while Group 1 having lower values of SR (≤ 0.58 µm) has a positive 

centroid. It indicates that the independent variables with negative standardized discriminant 

coefficients would influence the discriminant score of an observation towards the group with 

higher values of SR (Group 2). Similarly, the variables with positive coefficients would 

influence the discriminant score of an observation towards the group with lower SR values 

(Group 1). Table 7 shows that F and D have negative standardized discriminant function 

coefficients which would tend to decrease the discriminant score, moving it towards the 

centroid of Group 2. As a result, when the values of F and D increase, SR also increases with 

deterioration of surface quality of the turned components. Conversely, as S, NR and E have 

positive coefficients for SR in Table 7, increase in their values would significantly reduce SR. 

The strength of influence of each independent variable on the discriminating power of the 

developed function is indicated by the absolute value of its coefficient, which in turn, can be 

employed to compare the level of its significance on the considered dependent variable. In this 

case, SR depends mostly on S, followed by F, although their nature of contribution is 

completely opposite. The structure coefficients, which show the correlations between the 

independent variables and discriminant function, are 0.636, -0.35, -0.123, 0.338 and 0.249 for 

S, F, D, NR and E, respectively. Table 8 shows the unstandardized discriminant function 

coefficients, based on which the following discriminant function for SR is developed: 

 ZSR= -1.738 + 0.029×S – 33.764×F -1.61×D +1.589×NR + 0.115×E (4) 

The corresponding cut-off score is calculated as -0.042, which signifies that the 

observations with discriminant scores, estimated using Eq. (4), less than -0.042 should be 

classified into Group 2 (SR values more than 0.58 µm). Similarly, the observations with 

discriminant scores of more than -0.042 should be categorized into Group 1 (SR values 

less than 0.58 µm). 

4.1.2. Discriminant analysis for TL 

It can be observed from Table 6 that Group 2 with higher TL values has a negative 

centroid. On the other hand, the centroid of Group 1 consisting of lower values of TL is 

positive. Table 7 depicts that S, F, D and NR have positive coefficients, while E has 

negative coefficient. Thus, it can be inferred that TL would decrease with increasing values 

of S, F, D and NR, while it would increase with increase in the scored value of E. The TL 

would mostly depend on E, followed by S. The correlations between the independent 

variables and discriminant function are 0.271, 0.062, 0.078, 0.056 and -0.701 for S, F, D, 
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NR and E, respectively. Now, based on the unstandardized discriminant function 

coefficients of Table 8, the following discriminant function for TL is derived. 

 ZTL= -4.116 + 0.025×S + 12.016×F + 1.724×D + 0.717×NR - 0.472×E (5) 

The cut-off score is equal to -0.039, which denotes that the observations whose 

discriminant scores, estimated using Eq. (5), are less than -0.039, should be classified into 

Group 2 with higher TL value (more than 27.66 min). On the other hand, observations 

with discriminant scores of more than the cut-off score would be in Group 1 with lower 

TL values (less than 27.66 min). 

4.1.3. Discriminant analysis for CF 

Table 6 shows that Group 2 with higher CF values has a positive centroid and Group 

1 with lower CF values has a negative centroid. From Table 7, it can be propounded that 

S, F, D and NR have positive coefficients, while the coefficient for E is negative. As a 

result, CF would increase with increasing values of S, F, D and NR, and increased score 

for E would result in decreased value of CF. The most important turning parameter 

influencing CF is D, followed by E, as noticed from the absolute values of their 

corresponding standardized discriminant coefficients. The structure coefficients, representing 

the correlations between the independent variables and discriminant function, are 0.089, 

0.214, 0.685 and 0.084 and -0.395 for S, F, D, NR and E, respectively. Now, based on 

Table 8, the following discriminant function for CF is developed. 

 ZCF= -6.311 + 0.005×S + 25.0×F + 8.892×D + 0.550×NR - 0.214×E (6) 

For CF response, the corresponding cut-off score is estimated to be 0.103. It 

symbolizes that the observations with discriminant scores higher than 0.103 would be 

assigned to Group 2 with higher CF values (more than 171.3 N). In the similar direction, 

the observations having discriminant scores of less than the cut-off score would be 

allocated to Group 1 (CF values less than 171.3 N).  

4.1.4. Discriminant analysis for PC 

From Table 6, it can be noticed that the centroid for Group 2 is positive, while its 

value is negative for Group 1. Thus, the independent variables whose standardized 

discriminant function coefficients are positive, would like to increase the discriminant 

scores of the observations moving them towards the centroid of Group 2. In Table 7, all 

the five independent variables have positive coefficients. Hence, increasing values of S, 

F, D, NR and E are all responsible for higher PC during the CNC turning operation. It can 

also be revealed that S and F are the two most important turning parameters influencing 

PC. The correlations between the independent variables and discriminant function are 

estimated as 0.663, 0.419, 0.405, 0.281, 0.2 for S, F, D, NR and E, respectively. Now, 

based on Table 8, the following discriminant function for PC is established.  

 ZPC= -9.609 + 0.023×S + 29.661×F + 3.8×D + 0.952×NR + 0.070×E (7) 

For this response, the value of the cut-off score is calculated as 0.110. It indicates that the 

observations with discriminant scores of more than 0.110 would be classified into Group 2 

having higher PC (greater than 1373 W). Similarly, observations with discriminant scores of 

less than 0.110 would be included in Group 1 with lower PC values (less than 1373 W).  
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4.1.5. Validation of the discriminant analysis results 

Now, it is required to validate the results derived from the simultaneous estimation-

based discriminant analysis in order to justify the corresponding prediction performance. 

It can be observed from Table 3 that for SR response, among 150 original and simulated 

experimental runs, 77 have low SR values (less than 0.58 µm) and the remaining 73 

observations have high SR values (more than 0.58 µm). In Table 9, the discriminant 

function developed for SR can correctly identify 71 Group 1 observations (out of 77) and 

52 Group 2 observations (out of 73). So, the percentages of correct classifications are 

92.2% and 71.2%, respectively. Hence, the hit ratio for the discriminant function for SR 

is 82% (123 out of 150), with a misclassification error of 18%. The prediction performance of 

this discriminant function is cross-validated based on leave-one-out approach, using IBM 

SPSS Statistics 25.0 software. For SR, the percentages of correct classification for Group 

Table 9 Classification results for simultaneous estimation method 

 
Output 

variable 

Type of 

validation 
Count (%) Group 

Predicted group 

membership Total 

 1 2 

 

SR 

Original 

Count 
1 71 6 77 

 2 21 52 73 

 
% 

1 92.2 7.8 100 

 2 28.8 71.2 100 

 

Cross-

validated 

Count 
1 65 12 77 

 2 21 52 73 

 
% 

1 84.4 15.6 100 

 2 28.8 71.2 100 

 

TL 

Original 

Count 
1 70 6 76 

 2 6 68 74 

 
% 

1 92.1 7.9 100 

 2 8.1 91.9 100 

 

Cross-

validated 

Count 
1 70 6 76 

 2 6 68 74 

 
% 

1 92.1 7.9 100 

 2 8.1 91.9 100 

 

CF 

Original 

Count 
1 68 11 79 

 2 16 55 71 

 
% 

1 86.1 13.9 100 

 2 22.5 77.5 100 

 

Cross-

validated 

Count 
1 57 22 79 

 2 16 55 71 

 
% 

1 72.2 27.8 100 

 2 22.5 77.5 100 

 

PC 

Original 

Count 
1 70 15 85 

 2 24 41 65 

 
% 

1 82.4 17.6 100 

 2 36.9 63.1 100 

 

Cross-

validated 

Count 
1 70 15 85 

 2 24 41 65 

 
% 

1 82.4 17.6 100 

 2 36.9 63.1 100 
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1 and Group 2 objects based on cross-validation are 84.4% and 71.2%, respectively. 

Hence, the hit ratio for cross-validation is 78% (117 out of 150). Similarly, in case of TL, 

both the hit-ratio and cross-validation percentages are 92%. For CF response, the hit-ratio 

is 82%, while the cross-validation percentage is 74.7%. Finally, for PC, 74% of the 

original and cross-validated grouped cases can be correctly classified. These higher 

values of hit-ratio prove that the discriminant functions developed on the basis of the 

simultaneous estimation method have the ability to correctly classify the responses into 

appropriate lower and higher groups. 

4.2. Step-wise Estimation 

The step-wise estimation of discriminant analysis is appropriate when only the significant 

independent variables need to be included in the developed discriminant function. These 

independent variables are selected based on the Wilks’ lambda value. The variables 

having smaller Wilks’ lambda values and maximum ability to decrease the overall Wilks’ 

lambda, are first chosen for inclusion in the model. Before developing the model, it is 

assumed that the model does not have any independent variable. In each step, the variable 

whose ‘F to enter’ value is the largest and simultaneously higher than the entry criterion, 

is included in the model, while the ‘F to remove’ value is necessary to exclude any 

insignificant variable from further consideration. The ‘F to enter’ and ‘F to remove’ 

values, which would decide the entry and exit of the independent variables in the model, 

are estimated as 3.84 and 2.71, respectively, and are set as defaults in the software. These 

values relate to p-values of 0.05 and 0.10, respectively. This process is continued till all 

the significant variables, satisfying the entry criterion, are included in the model, while 

the insignificant variables are removed from the model. 

As mentioned earlier, before the start of this analysis, testing of the assumptions is 

mandatory. Assumptions of normality and multicollinearity, as tested in Table 4, also hold 

true for step-wise discriminant analysis. The Box’s M test is conducted again to check 

whether the covariance matrices are homogenous or not. The values of the Box’s M for SR, 

TL, CF and PC are determined as 55.583, 47.129, 6.697 and 21.78, respectively. The 

corresponding p-values for SR and TL are less than 0.001, while those for CF and PC are 

greater than 0.001 (0.365 and 0.002, respectively). Hence, for SR and TL, the null 

hypothesis of equality of covariance matrices is rejected, while it cannot be rejected for 

CF and PC. Even though for SR and TL, the assumption of equality of covariance matrices is 

violated, their discriminant analyses may still be considered robust. The model fit now needs 

to be validated applying the overall Wilks’ lambda for the discriminant functions of all the 

four responses in order to check their ability to separate objects into separate groups. Table 10 

exhibits the eigenvalues and Wilks’ lambda values for the dependent variables (SR, TL, CF 

and PC), testing the significance of the discriminant function for each of those variables. It can 

be noticed that all the p-values are less than 0.05, indicating satisfactory discriminating power 

of the developed functions. In Tables 11-14, variables entered into the models and removed 

from the models during step-wise discriminant analysis for the four considered responses are 

provided. 
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Table 10 Assessment of model fit for step-wise estimation 

Output 

variable 
Eigenvalue 

Canonical 

correlation 

Wilks’ 

lambda 
Chi-square Df p-value 

SR 0.619 0.618 0.618 70.311 4 0.000 

TL 2.088 0.822 0.324 164.63 4 0.000 

CF 0.896 0.687 0.528 93.687 3 0.000 

PC 0.144 0.355 0.874 19.753 3 0.000 

Table 11 Variables included/not included in the model for SR 

Variable included Variable not included 

Input 

variable 
Tolerance F-value 

Wilks’ 

lambda 

Input 

variable 
Tolerance 

Min. 

tolerance 
F-value 

Wilks’ 

lambda 

E 0.945 48.422 0.824 

D 0.994 0.941 2.221 0.608 
S 0.965 17.046 0.69 

NR 0.97 15.11 0.682 

D 0.983 8.096 0.652 

Table 12 Variables included/not included in the model for TL 

Variable included Variable not included 

Input 

variable 
Tolerance F-value 

Wilks’ 

lambda 

Input 

variable 
Tolerance 

Min. 

tolerance 
F-value 

Wilks’ 

lambda 

E 0.793 232.304 0.843 

F 0.982 0.78 3.806 0.315 
S 0.814 61.737 0.462 

NR 0.969 5.361 0.336 

D 0.983 4.369 0.334 

Table 13 Variables included/not included in the model for CF 

Variable included  Variable not included 

Input 

variable 
Tolerance F-value 

Wilks’ 

lambda 

Input 

variable 
Tolerance 

Min. 

tolerance 
F-value 

Wilks’ 

lambda 

D 0.921 83.389 0.829 
S 0.993 0.916 2.114 0.52 

E 0.933 33.654 0.649 

NR 0.989 0.917 2.277 0.519 
F 0.967 11.539 0.569 

Table 14 Variables included/not included in the model for PC 

Variable included  Variable not included 

Input 

variable 
Tolerance F-value 

Wilks’ 

lambda 

Input 

variable 
Tolerance 

Min. 

tolerance 
F-value 

Wilks’ 

lambda 

S 0.995 11.674 0.944 
NR 0.998 0.994 2.177 0.861 

F 0.997 4.891 0.903 

E 0.998 0.995 1.229 0.867 
D 0.997 4.536 0.901 
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It can be revealed from Table 11 that the independent variables included in step-wise 

estimation of the dependent variable SR are S, F, NR and E. The independent variables 

that significantly influence TL are E, S, NR and D. On the other hand, D, E and F are the 

significant variables for CF, while S, F and D maximally influence PC. From the computed 

F-values, S is the most significant independent variable for SR, followed by F. For TL, the 

most significant independent variable is E, followed by S. Similarly, D has the maximum 

discriminating power on CF, followed by E. For response PC, S is identified as the most 

significant independent variable. Conversely, D is singled out as the least significant 

contributor for SR, while F has no discriminating power on TL. In the similar direction, S 

and NR do not contribute significantly to CF, and for PC, the insignificant independent 

variables are NR and E. In discriminant analysis, an independent variable can significantly 

differentiate objects into the corresponding groups only when the difference between the 

means of the independent variables across the groups is significant. For insignificant 

independent variables, the difference between their means across the groups is not enough to 

create sufficient separation between those two groups. Hence, for any variation in the values 

of insignificant variables, changes in the discriminant scores remain negligible with respect to 

their respective dependent variables. Likewise the simultaneous estimation method of 

discriminant analysis, Tables 15-17 also exhibit the effects of five independent variables of the 

CNC turning process on the dependent variables for step-wise estimation method.  

Table 15 Group centroids for step-wise estimation 

Group 
Group centroid 

SR TL CF PC 

1 (Low) 0.761 1.416 -0.891 -0.33 

2 (High) -0.802 -1.455 0.992 0.432 

Table 16 Standardized discriminant function and structure coefficients for step-wise estimation 

Input 

variable 

SR TL CF PC 

Std. disc. 

func. 

coeff. 

Str. 

coeff. 

Std. disc. 

func. 

coeff. 

Str.  

coeff. 

Std. disc. 

func. 

coeff. 

Str.  

coeff. 

Std. disc. 

func. 

coeff. 

Str.  

coeff. 

S 0.833 0.649 0.737 0.277 - -0.083 0.768 0.721 

F -0.534 -0.357 - -0.133 0.4 0.22 0.508 0.456 

D - 0.075 0.21 0.08 0.914 0.707 0.49 0.44 

NR 0.504 0.344 0.233 0.057 - -0.095 - -0.041 

E 0.375 0.254 -1.072 -0.715 -0.652 -0.407 - -0.039 

Table 17 Unstandardized discriminant function coefficients for step-wise estimation 

 Unstandardized discriminant function coefficient 

Input 

variable 
SR TL CF PC 

S 0.029 0.024 - 0.024 

F -33.915 - 25.012 31.516 

D - 1.713 8.919 4.025 

NR 1.589 0.712 - - 

E 0.116 -0.469 -0.212 - 

Constant -2.312 -2.659 -5.051 -9.024 
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Table 15 shows that the centroid of Group 2 with higher SR values is negative, while 

Group 1 having lower SR values has a positive centroid. Thus, it can be unveiled that S, 

NR and E with positive standardized discriminant coefficients have negative impacts on 

SR, while SR would increase with higher values of F. The structure coefficients which 

denote the correlations between the independent variables and discriminant function are 

estimated as 0.649, -0.357, 0.075, 0.344 and 0.254 for S, F, D, NR and E, respectively. 

Based on the results of step-wise estimation, the values of the standardized coefficient 

and structure correlation show that S has the most discriminating power on SR, 

maximally influencing it. Table 17 provides the unstandardized discriminant coefficients 

which lead to the subsequent development of the following discriminant function for SR: 

 ZSRS= -2.312 + 0.029×S - 33.915×F + 1.589×NR + 0.116×E (8)  

The related cut-off score is estimated as -0.041. It denotes that the observations whose 

discriminant scores are higher than -0.041 would be classified into Group 1 with lower 

SR values. Similarly, the observations having discriminant scores of less than -0.041 

would be assigned to Group 2 with higher SR values. 

As in Table 15, the centroid of Group 2 is negative and that of Group 1 is positive, the 

independent variables having positive standardized discriminant coefficients would cause the 

observations to move closer to Group 1, thereby reducing TL. Therefore, S, D and NR have 

negative influences on TL, while an increase in the score for E would increase TL. Both the 

standardized coefficients and structure correlations establish that E has the maximum 

discriminating power on TL. The related discriminant function for TL is represented as below: 

 ZTLS= -2.659 + 0.024×S + 1.713×D + 0.712×NR - 0.469×E (9) 

The cut-off discriminant score for TL is -0.039. Thus, the observations with discriminant 

scores of less than -0.039 would be assigned to Group 2 with higher TL values. On the 

contrary, observations with discriminant scores higher than the corresponding cut-off 

score would be classified into Group 1with lower TL values. 

From Table 15, it can also be observed that as Group 2 has a positive centroid value, 

the independent variables with positive standardized discriminant coefficients are 

expected to have positive impacts on CF. Thus, with increasing values of F and D, CF 

would increase, while it would decrease with higher scores for E. Both the standardized 

coefficients and structure correlations identify D as the most significant input variable for 

CF. The following equation shows the developed discriminant function for CF: 

 ZCFS= -5.051 + 25.012×F + 8.919×D - 0.212×E (10) 

For this response, the cut-off score is calculated as 0.100. It denotes that the 

observations with discriminant scores higher than 0.100 would be added to Group 2 with 

higher CF values. Similarly, the observations with discriminant scores lower than the cut-

off score would be included in Group 1 with lower CF values. 

Similarly for response PC, as the independent variables with positive standardized 

discriminant coefficients significantly influence it, increasing values of F and D would be 

responsible to increase PC. Based on the standardized discriminant coefficients and 

structure correlations, it can be propounded that S has the maximum influence on PC. 

The related discriminant function is developed as given below: 

 ZPCS= -9.024 + 0.024×S + 31.516×F + 4.025×D (11) 
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The cut-off score for these responses is calculated as 0.102, which signifies that the 

observations having discriminant scores of more than 0.102 would be assigned to Group 

2 with higher PC values. On the contrary, observations with discriminant scores of less 

than the cutoff score would be included in Group 1 having lower PC values. 

The numbers of correctly classified items, indicated by hit ratio, along with the cross-

validation results for all the dependent variables are provided in Table 18. For SR 

response, the hit ratio is 81.3% and the cross-validation percentage is 78%. The hit ratio 

and cross-validation percentage for TL are both 96%. For CF, both the hit ratio and cross-

validation percentage are 82%, while the hit ratio and cross-validation percentage for PC 

are both 74%. From these observations, it can be concluded that the developed step-wise 

discriminant functions for the responses have the ability to categorize the observations 

into the corresponding groups with minimum misclassification error.  

5. RESULTS AND DISCUSSION 

As mentioned earlier, the aim of this paper is to study the influences of different input 

parameters of a CNC turning process on its responses as well as to identify the most 

important parameter for each of the responses. It can be unveiled from both the simultaneous 

and step-wise estimation methods of discriminant analysis that speed is the most significant 

parameter for SR and PC. On the other hand, machining environment maximally influences 

TL and depth of cut is the most influential parameter for CF. The coefficients of these input 

parameters in the discriminant function for each of the responses, along with the structure 

correlations, indicate their comparative strengths of influence on the responses.  

In this analysis, it can be noticed that an increase in speed causes SR to decrease. The 

decrease in SR can be explained due to decrease in built-up-edge formation at higher 

temperature at the chip-tool interface at higher spindle speed [28]. An increase in feed 

rate leads to an increase in SR. As feed rate increases, wide and deep cracks are formed 

which are responsible for poor surface quality of the machined components [29]. An 

increase in feed rate also causes CF to increase due to the required plastic deformation 

and generation of excess heat in the machining area, thereby increasing tool wear and 

eventual deterioration of surface finish. Although SR increases with increasing values of 

depth of cut, it is supposed to have negligible effect on SR. The slight variation in SR is 

due to tool chatter, occurring at higher values of depth of cut. Better surface quality of the 

machined components can be achieved at higher nose radius. It can be attributed to lower 

strength of insert nose. At smaller nose radius of the tool, the contact length between 

insert tip of the tool and workpiece becomes narrower, thus reducing heat dissipation 

from the shear zone, causing higher stress and heat concentration at the zone, thereby 

increasing tool wear and SR [29]. It can also be observed that cryogenic machining 

environment improves SR because the machining zone temperature is effectively 

controlled at cryogenic environment, which simultaneously reduces adhesion between 

tool flank faces and chip, thus reducing tool wear and SR [30]. 
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Table 18 Classification results for step-wise discriminant analysis 

Output 

variable 

Type of 

validation 

Count 

(%)  
Group 

Predicted group 

membership Total 

1 2 

SR 

Original 

Count 
1 65 12 77 

2 16 57 73 

% 
1 84.4 15.6 100 

2 21.9 78.1 100 

Cross-

validated 

Count 
1 65 12 77 

2 21 52 73 

% 
1 84.4 15.6 100 

2 28.8 71.2 100 

TL 

Original 

Count 
1 76 0 76 

2 6 68 74 

% 
1 100 0 100 

2 8.1 91.9 100 

Cross-

validated 

Count 
1 76 0 76 

2 6 68 74 

% 
1 100 0 100 

2 8.1 91.9 100 

CF 

Original 

Count 
1 68 11 79 

2 16 55 71 

% 
1 86.1 13.9 100 

2 22.5 77.5 100 

Cross-

validated 

Count 
1 68 11 79 

2 16 55 71 

% 
1 86.1 13.9 100 

2 22.5 77.5 100 

PC 

Original 

Count 
1 70 15 85 

2 24 41 65 

% 
1 82.4 17.6 100 

2 36.9 63.1 100 

Cross-

validated 

Count 
1 70 15 85 

2 24 41 65 

% 
1 82.4 17.6 100 

2 36.9 63.1 100 

Tool life can be defined as the time elapsed for the measured wear level of a tool to 

exceed an established critical value of wear. A standard measure of TL is the time to 

develop its maximum value of flank wear width [31]. Increased values of speed and feed 

rate cause higher tool flank wear, thereby decreasing TL. An increase of tool flank wear 

can be attributed to the increase in the concentration of compressive stress at the tool rake 

face in the vicinity of the cutting edge. Higher tool flank wear is also due to increase in 

temperature of the tool creating high cutting edge load or lowered tool hardness due to 

the phenomenon of thermal softening at the proximity of the cutting edge [29]. On the 

other hand, feed rate does not have any significant influence on TL. Tool flank wear also 

increases with increasing values of nose radius due to increase in CF, which can be 

attributed to the increase in the thrust force component [32]. Higher depth of cut implies 

that the contact length between the cutting edge and workpiece increases, causing deeper 
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wear along the cutting edge, thereby decreasing TL [33]. Machining environment has 

significant impact on TL. It can be noticed that tool wear is minimum at cryogenic machining 

environment. Application of cryogenic environment improves wear resistance of the tool and 

decreases the temperature at the cutting zone, thereby reducing abrasion and adhesion. 

With increase in spindle speed of the CNC turning process, CF is found to increase, 

although insignificantly. It can be attributed to the material strengthening effect induced 

by the strain gradient [34]. Similarly, nose radius positively influences CF. The increase 

in CF is due to increase of the thrust force component, along with a marginal increase in 

feed force and tangential force [35]. Feed rate and depth of cut also have positive influences 

on CF. With increase in feed and depth of cut, CF increases because the sheared chip cross-

section grows larger along with the deformed metal volume, which makes the workpiece 

material increasingly resistant to shearing, requiring more force to remove the chips [36]. 

Application of cryogenic environment during CNC turning reduces CF, due to reduction in 

the coefficient of friction between the chip and the tool, and decrease in the chip contact 

length due to formation of smaller chips [37]. 

According to this discriminant analysis, all the five CNC turning parameters have 

positive influences on PC. Higher power is required for higher CF, simultaneously caused 

by the increases in speed, feed, depth of cut and nose radius [38]. However, an increase in 

PC at cryogenic machining environment can be attributed to the increase in strength and 

hardness of the workpiece, when cooled by the cryogenic fluid [39]. This increase in 

strength and hardness of the workpiece may lead to an increase in energy consumption 

while removing material from the workpiece surface. However, it can be noted that both 

the nose radius and machining environment are insignificant parameters, while speed is 

the most significant parameter for PC. 

6. CONCLUSION 

This paper deals with the application of discriminant analysis in a CNC turning process to 

explore the influences of its five input parameters on four responses, and identify the most 

significant parameter for each of the considered responses. After validating the corresponding 

assumptions, like absence of multicollinearity and missing data, normality of the independent 

variables, etc., two sets of discriminant functions are developed. In simultaneous estimation 

method, all the independent variables are considered, while in step-wise estimation method, 

the insignificant independent variables are excluded while developing the respective models. 

Based on the developed discriminant functions, it can be revealed that higher feeds are 

responsible for poor surface finish of the turned components, where better surface quality is 

achieved at higher values of speed and nose radius, and cryogenic machining environment. It 

is least affected by depth of cut. Similarly, higher values of speed, depth of cut and nose radius 

are responsible for reduced tool life. It would increase at cryogenic machining environment 

and remain unaffected due to feed.  Cutting force would increase at higher values of feed and 

depth of cut. Cryogenic machining environment would cause cutting force to decrease, and 

speed and nose radius have no significant roles on cutting force. Finally, higher values of 

speed, feed and depth of cut are all responsible for more power consumption during CNC 

turning operation, while it remains unaffected due to changes in nose radius and machining 

environment. It can also be propounded that the reduced discriminant functions developed by 

step-wise estimation method has similar effectiveness as those formulated with the inclusion 

of all the independent variables. Higher values of hit ratio and cross-validation percentage 
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conclude that both the functions are well capable of classifying objects into the corresponding 

binary groups. 

Discriminant analysis has few limitations. It requires certain assumptions to be 

satisfied in order to provide satisfactory results. In discriminant analysis, with an increase 

in the number of independent variables, sample size must be increased as well. However, its 

advantages outweigh its limitations. Discriminant analysis has several advantages as an 

effective prediction tool. The causal relationship between the independent and dependent 

variables can be envisaged based on the developed discriminant function and computed 

discriminant score, which provides it an edge over the other prediction tools, like support 

vector machine, artificial neural network, etc. It is capable of dimensionality reduction as 

the dimensionality of each observation is reduced from multiple independent variables to 

a single attribute (discriminant score) for binary discriminant analysis. It is similar to 

multiple regression analysis, predicting values of dependent variables based on the 

developed relationship between independent and dependent variables. These benefits 

encourage checking the applicability of multiple discriminant analysis for modeling and 

parametric analysis of similar machining processes as future research interest.  
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