
FACTA UNIVERSITATIS  
Series: Mechanical Engineering Vol. 22, No 3, Special Issue, 2024, pp. 449 - 457  

https://doi.org/10.22190/FUME210306038W 

© 2024 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND 

Original scientific paper 

SELF-CONSISTENCY CONDITIONS IN STATIC THREE-BODY 

ELASTIC TANGENTIAL CONTACT  

Emanuel Willert  

Technische Universität Berlin, Institute of Mechanics, Germany 

ORCID iD: Emanuel Willert   https://orcid.org/0000-0001-7535-7301  

Abstract. The contact problem for an elastic third-body particle between two elastic 

half-spaces is considered. The contact is assumed to consist of three Hertzian contact 

spots. The normal and tangential contact problems are analyzed analytically 

considering partial slip in the contacts and the influence of third-body weight. Self-

consistency conditions between global equilibrium and the contact solution are 

formulated to give criteria, under which circumstances static slip and stationary sliding 

are possible states for the third-body particle. The sliding case is solved in detail. 
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1. INTRODUCTION 

The tribological problem of the third body has recently attracted a lot of scientific 

interest, mostly in connection with the behavior and lifecycle of wear particles, whose 

understanding plays a critical role in a better description of both the wear process itself as 

well as the influence of wear and particle transport on other tribological phenomena in 

mechanical contacts [1]. Several aspects of the three-body problem have been analyzed, 

including the formation of wear debris particles – which was studied both experimentally 

[2] and numerically [3] – as well as their kinetics [4]. It was also shown that the third-

body dynamics can have a massive influence on the frictional or other contact mechanical 

properties of a tribological system [5-7] and that vice versa contact properties like loading 

forces influence the mode of motion (sliding or rolling) of the wear debris particle [8]. 

While quite some research has been done on the wear and flow behavior of the debris 

particles, e.g., based on Monte Carlo methods [9] or Cellular Automata [10], there are 

hitherto very few works on the three-body system as a contact mechanical problem (which 

it obviously is). Li [11] analyzed the elastic three-body contact problem based on the 

Boundary Element method, using a starting configuration with only one contact spot on 

each of the first bodies, which at some threshold will result in rolling of the third body, 
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because of the kinematic indeterminateness of a two-point fixation. An analytic, easy-to-

use contact theory of the three-body problem, that might be very useful for practitioners 

or industrial applicants, to the best the author’s knowledge, is lacking completely. 

Whereas a (more or less) spherical particle between two surfaces, that are moved 

tangentially relative to one another, will usually simply roll, this may not be so easy for a 

third body of irregular shape. From experience we know that it will make a big difference 

for the apparent macroscopic friction between the first bodies, whether the third-body 

particle between them will roll or slide. In this context it is an interesting question whether 

static slip or stationary sliding are possible states for the particle. In a recent work it was 

shown analytically that that the same third-body particle can both slide and roll for a given 

coefficient of friction, depending on the particle’s geometry and orientation [12]. 

Thus, in the present manuscript, the problem of self-consistency for static slip or 

stationary sliding of the third body will be investigated in analytic fashion, based on a 

Hertz-Mindlin formulation of the three-body contact problem. Note that the manuscript 

question is basically whether and how non-rolling configurations are possible for the 

third-body particle. So, effects of rolling are always excluded from the analysis.  

  2. GLOBAL EQUILIBRIUM CONDITIONS 

Let us consider the 2D-model of an elastic third-body particle of some irregular shape 

between two elastic half-spaces, as shown in Fig. 1. For static determinateness let there 

be three (axisymmetric) Hertzian contact spots, where the particle in the vicinity of the 

contact has radii of curvature Ri, i = 1,2,3. In the general 3D case, there should also be 

contact spots in the lateral direction (outside the plane shown in Fig. 1), to ensure lateral 

stability during tangential motion, but this will be neglected in the following analysis. As 

the lateral positions of the contact spots do not enter the following equations, the results 

can be applied directly to the 3D case, if the number of contact spots is adjusted 

appropriately. The gap height without any loads between the half-spaces is h0. 

 

Fig. 1 Sketch and force diagram for the analyzed three-body contact problem 
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The global equilibrium conditions for the third body are 
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Combining the last two equations we obtain 

 1 1 2 2 3 3 1 1 0 ,N x N x N x T h T h− − =    (2) 

because the total indentation depth, Δh = h0 – h, must be negligible for the Hertzian 

theory to be applicable.  

3. NORMAL CONTACT SOLUTION 

For the contact solution in the following sections it shall be generally assumed that 

the characteristic length of the contact spots (e.g. their radius) is much smaller than the 

macroscopic dimensions of the third-body particle (so that one can neglect finite size 

effects for the elastic body) and that the contacting bodies are elastically similar to avoid 

elastic coupling of the normal and tangential contact problems, i.e. (introducing the shear 

moduli Gi and Poisson ratios νi, where the index “3” corresponds to the third-body 

particle, and “1” and “2” to the upper and lower half-spaces) [13] 
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With the effective elastic moduli on the upper and lower side [13],  
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the Hertzian normal contact solution reads [13] 
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The Hertzian solution can obviously only be used if the contact spots do not interact 

elastically. If the contact spots are very close to each other, one should consider interactions 

between them [14]. 

Without loss of generality let us assume that the lower half-space is fixed, and the 

upper half-space is macroscopically displaced by Δh. In general, the third-body particle 

will experience small elastic displacements in all its degrees of freedom (as a rigid body); 

if we denote the normal and tangential displacement of the center of gravity by wS and uS, 

and the small rotational angle by φ, the indentation depths for the three contact spots are 

given by 
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For the pure normal contact problem, the tangential forces are absent. The equilibrium 

conditions for Fz and My will then give a nonlinear equation system to determine the two 

unknown displacements, wS and φ. This equation system will usually be unsolvable in 

closed analytical form and due to the plenty of influencing parameters a comprehensive 

solution cannot be shown here. For illustration purposes, however, let us give the 

solution, if the particle (e.g., due to symmetry) is not rotating.  

Inserting Eqs. (6) (with φ = 0) into the first of Eqs. (1), we obtain 
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Introducing dimensionless variables, 

 

1/2 1/2*
3/2 2 31 2

* 1/2 3/2 * 1/2

1 1 1 1

3
: , : , : ,

4

R Rd Emg
m

h E R h E R
  − +
= = =
 

  (8) 

Eq. (7) simplifies to 

 3/2 3/2 3/2(1 ) .m  −+ = −   (9) 

From the derivation above it follows that this equation is independent of the number 

of contact spots on the upper and lower side – which only changes the value of α – if all 

contacts on one side have the same indentation depth, i.e., if all “asperities” have the 

same height. However, considering a height distribution as in classical asperity theories 

[15] would, of course, be possible without difficulties. 

The nonlinear Eq. (9) cannot be solved in closed form. However, usually the particle 

weight will be small compared to the contact forces. In this case an asymptotic solution 

can be found easily. It is given by 
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Note that δ itself has a weak dependence on the current total indentation Δh (via the 

normalized particle weight). Hence, the distribution of the total indentation into the upper 

and lower side will not be universal during the indentation process, if there are external 

forces acting on the debris particle. 
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4. TANGENTIAL CONTACT SOLUTION 

Due to the equilibrium condition for the moments of forces, the normal and tangential 

contact problems are coupled macroscopically and therefore must be solved together. 

Suppose the upper half-space is displaced in the tangential direction by Δu, according to 

some loading history Δu = Δu(Δh). Then, the relative tangential displacements in the 

contact spots are given by 
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All tangential forces are functions of these displacements, 

 ( ), 1,2,3.i i iT T u i= =   (12) 

However, the precise form of those functions depends on the loading history, and therefore, 

on all system parameters. Because of that it is not feasible – although theoretically possible 

based on the known solution procedures for tangential contact problems with arbitrary loading 

histories [16] – to give a comprehensive analytic solution for Ti. For example, it would be a 

gross simplification to use the classical Cattaneo-Mindlin solution, that is valid only for a 

specific loading history, namely a constant normal force and a subsequently applied increasing 

tangential force (which clearly contradicts the global equilibrium conditions). Nonetheless, a 

numerical determination for a concrete parameter set is easy, for example within the 

frameworks of the method of dimensionality reduction [17] or the method of memory 

diagrams [18]. Once the force laws for the tangential forces are known, the global equilibrium 

conditions (1) provide an equation system for the determination of the three displacements, 

wS, uS and φ.  

It should be noted that the critical displacement, for which the contacts start to slide 

globally, is always [13] 
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with the effective shear moduli 
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Hence, all contacts on one side will to start to slide at the same time if they have the same 

indentation depth, independent of their local radii of curvature. 

When all contacts are sliding, the tangential problem becomes trivial, and all tangential 

forces are given by the Amontons-Coulomb law 

 .i i iT N=   (15) 

To illustrate the importance of the loading history once again for the tangential contact 

solution, let us consider a simple (but somewhat academic) non-sliding case, which can 

be easily solved in exact analytic form, namely the two-contact configuration without 

external forces.  
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If we set N3 = T3 = mg = 0, equilibrium of the forces demands that the contact forces on 

both sides are equal and opposite and the equilibrium condition for the moment of forces 

reduces to 

 1 2 : tan .
x x

T N N
h


−

= =   (16) 

Hence, during loading the tangential contact force always has to be proportional to the 

normal force and this, of course, also always has to be true for the force increments dN 

and dT. Consider a given equilibrium with the forces N and T and the contact radius a. 

Now, the normal force is increased by dN, which according to the Hertzian theory results 

in a new contact radius [13] 
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Irrespective of the previous load history, the entire contact area will initially completely 

adhere (according to Amontons’ law, the slip area is constantly at the limit of possible 

sticking, a slight increase in pressure leads to complete sticking). By applying an 

additional incremental force dT, however, local slip can again spread from the edge of the 

contact. The stick radius c is given by the Cattaneo-Mindlin theory and equals [13] 
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If c > a, the contact area increases faster than slip can propagate into the contact, i.e., the 

contact will always be completely sticking. This leads to the condition 

 tan .    (19) 

Hence, it was shown that – within the Hertz-Mindlin approximation – there is no partial 

slip for this loading history; the contact is always completely sticking if µ > tan α (and 

obviously completely sliding otherwise), because the contact area grows faster than slip 

can propagate from the contact edge. So, the self-consistency condition for elastic bodies 

resulting from Hertz-Mindlin contact mechanics is in this case the same as the one for 

rigid bodies (i.e., non-rolling configurations are only possible if tan α ≤ µ)! 

5. SELF-CONSISTENCY CONDITIONS FOR GROSS SLIDING 

In the case of static slip (i.e., macroscopic “sticking”) the tangential forces are bound 

by the friction law, which imposes a self-consistency condition. For stationary sliding 

there are two self-consistency conditions (because the tangential forces are given 

explicitly by the friction law), directly resulting from the global equilibrium,  
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So, if the upper and lower contacts have the same frictional properties, the weight of the 

particle will disturb the equilibrium and thus inhibit stationary sliding. That is not restrained 

to the particle weight or the number of contact spots on each side: in fact, if the coefficients 

of friction on both sides are the same and all contacts are sliding, obviously any force, 

which is not aligned with the friction angle, will violate the equilibrium condition. 

Finally, if once again rotation of the particle is absent, using the normal contact 

solution from Eqs. (7) and (8), the first of Eqs. (20) can be written in the form 
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If the particle weight is negligible compared to the contact forces, this simplifies to 
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which, interestingly, does not depend on the elastic properties of the system. 

One possibility for the absence of rotation would be complete symmetry, i.e., x1 = 0, 

R2 = R3 and x2 = –x3. This results in the self-consistency condition µh0 = 0, so stationary 

sliding in this case is impossible! 

6. EXAMPLE CASE WITH EQUAL COEFFICIENTS OF FRICTION 

To illustrate the above findings let us consider a wear debris particle of some general 

shape, which in the contact plane forms three contact spots with the first bodies. We want to 

know whether stationary sliding is a possible state for the third body if the coefficients of 

friction on the upper and lower surfaces are equal and if we can neglect the particle weight. 

The contact enumeration shall be as in Fig. 1, i.e., spot number “one” is the singular one, 

“three” is the one on the other surface but on the same side (left/right with respect to the 

center of gravity) and “two” the one on the other surface and on the other side. All 

geometrical notations are the same as in Fig. 1. As we neglect the particle weight and the 

friction coefficients are equal on both surfaces, the second of Eqs. (20) is always fulfilled and 

the only remaining condition of self-consistent stationary sliding is the first of Eqs. (20). 

Fig. 2 shows the contour line diagram of the normalized position of the third contact 

spot, ξ3 = x3/x1, as a function of the normalized force distribution, n2 = N2/N1 and the 

normalized position of the second contact spot, ξ2 = -x2/x1, necessary to enable stationary 

sliding of the third-body particle. The normalized gap width between the first body 

surfaces was chosen to be H = µh0/x1 = 1. Note that the results for different values of H 

can be simply obtained by shifting the coordinate ξ2 by Δξ2 = ΔH/n2. 
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Fig. 2 Contour line diagram of the normalized position of the third contact spot, ξ3 = 

x3/x1, as a function of the normalized force distribution, n2 = N2/N1 and the 

normalized position of the second contact spot, ξ2 = -x2/x1, necessary to enable 

stationary sliding of the third-body particle if the coefficients of friction on both 

sides are the same. The normalized gap width between the first body surfaces was 

chosen to be H = µh0/x1 = 1. Geometrical notations as in Fig. 1. 

7. DISCUSSION AND CONCLUSIONS 

In the considerations above several simplifying assumptions have been made to allow 

for analytical treatment of the problem, most prominently the Amontons-law, linear 

elasticity and the absence of surface roughness and elastic coupling. However, most 

findings are a consequence of the principal structure of the three-body contact problem 

and its resulting static indeterminateness. It was shown how global external forces on the 

third-body particle – like its weight – can influence the local contact problem and that 

static slip and stationary sliding are only possible (but they are possible, at least, if one 

neglects frictional instabilities) for specific system configurations. For example, for 

stationary sliding, if external forces are absent, the frictional properties of the upper and 

lower contacts must be the same. That condition is, however, not sufficient, as the 

equilibrium of the moments of force will impose another restriction for the geometrical 

“arrangement” of the contact spots. That restriction seems to be independent of the elastic 

properties but does depend on the local geometry in the vicinity of the contact spots 

(which strongly influences the respective normal contact solution). 
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